
Encrypting Wireless Network Traces to Protect User
Privacy: A Case Study for Smart Campus

Luqiao Zhang†, Ozgur Oksuz∗, Levon Nazaryan∗, Chaoqun Yue∗, Bing Wang∗, Aggelos Kiayias‡, Athanasios Bamis§
∗Department of Computer Science & Engineering, University of Connecticut, Storrs, CT, USA

† School of Network Engineering, Chengdu University of Information Technology, Chengdu, China
‡ National and Kapodistrian University of Athens, 15784 Athens, Greece

§Seldera LLC.

Abstract—Wireless network traces have been widely used to
understand human behaviors and provide value-added services.
Sanitization based techniques have been shown to be severely
lacking in protecting sensitive user information embedded in such
traces. In this paper, we take an encryption based approach that
provides much stronger protection of user privacy. One challenge
in encrypting wireless network traces is how to encrypt time
range while maintaining the utility of the traces. We propose two
practical encryption techniques to support queries that involve
time range. These two techniques provide much stronger security
guarantee than existing order preserving encryption schemes,
and present different tradeoffs in complexity, as well as storage
and network bandwidth requirement. Last, we quantify the
performance of the proposed approach using a smart campus
prototype. The results show that our approach only leads to
moderate increase in storage, network bandwidth and computa-
tion overhead, demonstrating the practicality of our approach.

Index Terms—privacy, smart campus, wireless network

I. INTRODUCTION

Mobile devices, especially pocket-size devices such as
smartphones, are effective “human sensors” because they are
physically small and often carried by their owners. As such,
wireless network traces that record the movement of mobile
devices have been widely used to study human behaviors.
For instance, they have been used to understand user mobility
patterns [28], [10], [23], inter-meeting times [19] and group
behaviors [18], leading to realistic models and much insight
that are valuable for scientific research. They have also been
used for value-added services, for instance, detecting anomaly
in physical space [4], actuating HVAC systems in smart
buildings [2], and locating emergencies in campuses [14].

The intimate relationship between mobile devices and their
owners also means that mobile wireless network traces often
contain sensitive user information (e.g., trajectory of a user
over a period of time). To protect user privacy, a standard
practice is sanitizing the traces. For instance, the identities
of the users (e.g., their user names or MAC addresses) are
anonymized through a one-to-one mapping. Recent studies,
however, have shown that sanitization based techniques are
severely lacking in preserving user privacy [30], [22]. The

The work of the first author was done while he was visiting UConn. The
first two authors share lead authorship.

intuition is that human mobility is rather unique and pre-
dictable [28], [10]. Therefore, even when the identity is
anonymized, a user can still be identified easily based on her
unique mobility signature. Remedy solutions such as general-
ization (e.g., reducing the resolution in location information)
and perturbation (e.g., changing time information) provide
better privacy protection at the cost of potentially reducing
the utility of the network traces.

In this paper, we take an encryption based approach that
differs drastically from existing approaches. Specifically, we
propose a framework where data are encrypted once being cap-
tured and their processing is performed in a privacy-preserving
fashion without them being ever revealed in plaintext to the
data processing server. This design provides much stronger
protection of user privacy compared to various anonymization
techniques. One challenge in encrypting wireless network
traces is how to encrypt time range (e.g., the time range that a
device is associated with a WiFi access point), where the order
in time must be preserved to maintain the utility of the traces.
While order preserving encryption schemes [1], [5], [26] can
preserve the order in time, they reveal the order of the data,
which is a significant amount of information. In this paper,
we develop an effective solution to resolve this challenge. Our
main contributions are as follows:

• We formulate a secure time range matching problem and
propose two practical techniques to solve it. One is a sim-
ple quantization based technique and the other is based
on a novel application of Delegatable Pseudorandom
Function (DPRF) [20]. We rigorously analyze the security
of these two techniques, and show that both techniques
provide much stronger security than order preserving
encryption schemes. They also present different tradeoffs
in complexity, security, as well as storage and network
bandwidth requirement.

• We quantify the performance of our proposed approach
in a case study of smart campus, where we explore two
representative applications that are supported by querying
encrypted campus WiFi network traces to make a campus
“smarter.” The evaluation shows that our approach only
leads to moderate increase in storage, network bandwidth
and computation overhead, demonstrating the practicality



TABLE I
A SNIPPET OF A WIFI NETWORK TRACE.

ID Location Start time Duration (s)
1023 AP1 09:01 October 16, 2015 300
2034 AP2 16:10 October 16, 2015 4200

Data Encryption

Key Dissemination

Application Server Proxy

1

2

3

45

Adaptor

Client

Data Server

Data Owner

Fig. 1. System architecture and workflow.

of our approach.
The rest of the paper is organized as follows. Section II

describes the problem setting and our high-level approach.
Section III presents the two techniques for secure time range
matching and security analysis. Sections IV and V present
the prototype implementation and performance evaluation,
respectively. Section VI briefly describes related work. Last,
Section VII concludes the paper and outlines future directions.

II. PROBLEM SETTING

Consider a wireless network trace, e.g., a WiFi or cellular
network trace. We assume the trace contains identity, spatial
and temporal information. For instance, in a WiFi network, the
information can describe when a mobile device is associated
with an access point and the duration of the association; in a
cellular network, this can describe when a phone is connected
to a cellular tower and the duration of the connection. For
simplicity, we assume it is of the form depicted in Table I.

As mentioned earlier, instead of anonymization, we take an
encryption based approach to protect user privacy. Our goal is
two-fold: providing provable security, while being simple and
practical. We next describe the system architecture, the main
focus of our study, and the security model.

A. System Architecture

To allow legacy client applications to be used directly in
our system, we use a proxy based architecture to make the
data encryption transparent to the client (as in [31], [27]).
The architecture, illustrated in Fig. 1, contains a client, an
application server, a proxy, and a data server. The client issues
plaintext query to an application deployed at the application
server. The data server stores the encrypted data, which can
be stored in a database or simply a text file. For ease of
exposition, we assume that the data are stored in a database
in the rest of the paper. As the data are stored as ciphertext, a
proxy equipped with encryption keys is introduced as a inter-
mediary between a client application and the data server. Last,

an adaptor is introduced at the data server as a middleware to
handle operations that are not supported by standard database
queries. Multiple clients can send queries simultaneously to
the data server (through the application server and the proxy).
We treat client and user interchangeably in this paper.

The workflow of our system is illustrated in Fig. 1. For
initialization, the data owner encrypts the data, stores the
encrypted data in the database, and sends secret keys to the
proxy through a secure channel. The handling of a client
query is as follows: (1) The client, after proper authentication,
submits query to the application server; (2) The application
server verifies that the query satisfies the access control policy,
relays the query to the proxy after necessary parsing; (3)
The proxy converts the query into ciphertext, and sends it
to the data server; (4) The data server retrieves the data from
the database, the adaptor performs necessary processing, and
returns the results to the proxy; and (5) The proxy decrypts
the data and returns the plaintext results to the application
server, which relays to the client. We assume standard authen-
tication technique is being used (e.g., through user name and
password). Access control can be defined so that a client is
restricted to submit certain queries. The detail is beyond the
scope of this paper; we only briefly discuss issues related to
our schemes in Section III.

B. Focus of the Study

For the wireless trace illustrated in Table I, one primary
challenge is how to encrypt time range. The other fields in
the table are represented as single values; how to encrypt
such values while supporting various queries has been studied
extensively in the literature. For instance, the study [31]
presents efficient and provably secure methods for such fields.
We therefore mainly focus on how to encrypt time range in
this paper. While order preserving encryption schemes can
preserve the order in time, the order in time that they reveal
may expose the identity of a user. For instance, suppose that
we can infer that a user visits buildings A, B, A and C (in
the order of time) every Monday, where A is the Computer
Science building, and B and C are classroom buildings.
Suppose only one faculty in Computer Science teaches in
building B and then in building C every Monday, then we can
infer that the user is likely to be this faculty even though we
do not know exactly what time the user visits these buildings.
Our goal is developing practical encryption techniques for time
range that do not reveal order while maintaining utility of the
data.

The problem we focus on is secure time range matching,
where the query involves a time range and each row in the
database includes a time range field, and the goal is to extract
the rows that have time range overlapping with the queried
time range for at least a threshold value ∆ (in addition to
other conditions in the query). As an example, suppose the
query is to find all the connections that are between time t1
and t2. Then the corresponding secure time range matching
problem is to find all the rows in the database with the time
range t′1 and t′2 so that [t1, t2] ∩ [t′1, t

′
2] ≥ ∆ (all operations



are in ciphertext). Suppose another query is to find all the
connections that are at location AP1 between time t1 and t2.
In this case, besides the time range matching as before, an
additional condition is that the location needs to equal to AP1

(again the comparison is in ciphertext).
A solution to the secure time range matching problem

includes the following four algorithms.
• k ← Setup(1λ): is a probabilistic algorithm run by the

data owner for setting up the system. It takes as input
security parameter λ and outputs a secret key k.

• T ← Enc(k, Tp): is a deterministic algorithm executed by
the data owner. It takes the secret key k and the plaintext
database table Tp as input, and output an encrypted
database table T .

• q ← Trapdr(k, qp): is a deterministic algorithm executed
by the proxy. It takes as input the secret key k and a
plaintext time range query qp, and transforms the query
to trapdoor (i.e., encrypted query) q.

• R ← Search(q, T,∆): is a deterministic algorithm exe-
cuted by the data server. It takes as input the trapdoor q,
searches over the encrypted database T , and outputs the
set of items that overlap with the query q by at least ∆.

C. Security Model

As in [31], [27], we focus on privacy; data integrity and
availability are beyond the scope of this paper. Specifically,
we consider a semi-honest adversary that has complete access
to the data server. The adversary is curious, but does not
change any data inside the database, does not change queries
issued by the proxy or query results, and does not deviate from
the protocol. In addition, we assume that the adversary also
controls the adaptor at the data server.

The application server and the proxy are fully trusted. The
authorized users are fully trusted by the data owner, and are
authorized to access the database through queries. Our model
does not allow collusion between the data server and any of
the users. The access control between the data owner and the
users is out of the scope of this paper. We aim to achieve
two privacy goals: data privacy and query privacy, defined as
follows.

Data Privacy. Roughly, data privacy means that the sensitive
information (plaintext values) for both data records and queries
are not disclosed. As in [31], we define a leakage function L
consisting of L1 and L2, which correspond respectively to
leakage from the data and the queries. Specifically,
L1. Everything in the encrypted database T , including the

number of rows and columns, and the relationship of the
values.

L2. The positions of the responses to encrypted queries,
denoted as P (q1), . . . , P (qt), where q1, . . . , qt are the
encrypted queries.

We say our system satisfies data privacy if, after a poly-
nomially bounded number of queries, what the adversary has
observed can be simulated by a probabilistic polynomial-time
(PPT) algorithm S using only the leakage function L as input.

0002 

1 0 3 2 5 4 7 6 9 8 11 10 13 12 

0012 

15 14 

0102 0112 1002 1012 

0 
1 

002 012 102 112 

1102 1112 

Fig. 2. Illustration of a 4-level GGM tree.

In other words, the adversary is not able to learn any useful
information other than the leakage. This notion is defined
and used in [31]. More formally, for any polynomial and all
sufficiently large λ (security parameter), data privacy means
that there exists a probabilistic polynomial-time algorithm S
(simulator) such that for any t < poly(λ), any adversary A,

|Pr [Aλ(q1, . . . , qt, T ) = 1]

− Pr [Aλ(S(P (q1), . . . , P (qt), T )) = 1] | < 1/poly(λ) .

where T is the encrypted database and poly() is a polynomial-
time function.
Query Privacy. Query privacy means that the adversary
cannot deduce any information about the queries that an
authorized user makes. More specifically, any two different
but the same size range queries remain indistinguishable
by the adversary. We formalize query privacy through an
indistinguishability-based game that runs in three phases: the
first learning phase, the challenge phase, and the second
learning phase. In other words, query privacy says that even
the adversary has some information about some ranges and
their corresponding trapdoors, he is not able to learn more
information about the ranges that he does not know. Similar
notions of query privacy are used in [20].

III. SECURE TIME RANGE MATCHING SCHEMES

We propose two practical schemes for secure time range
matching. One is a basic scheme based on quantization and
the other is based on a novel application of Delegatable
Pseudorandom Function (DPRF) [20]. Both schemes consider
a time range discretized by a given granularity. For instance,
for a time range of 24 hours, at the granularity of one minute,
the discretized time range is [0, 1439]1, where a time point is
mapped to a value corresponding to minutes that have elapsed
since 00:00; a time point with finer granularity than minute is
rounded to the closest minute.

A. Basic Scheme

To encrypt a time range [a, b], the basic scheme simply
lists all the values between a and b, and maps each value
to a random value that is indistinguishable from other values.

1For ease of notation, we use [a, b] to represent the integer interval of
{a, a+ 1, . . . , b}.



This can be achieved through a pseudorandom function (PRF).
Specifically, we use the well-known tree-based GGM PRF
family [15], proposed by Goldreich, Goldwasser and Micali.
This family defines a PRF that takes a key k and a preimage x,
and assigns it an image fk (x), such that fk (x) (for randomly
chosen k) is indistinguishable from a uniformly random string
of the same length. This PRF is based on the hierarchical
application of any length-doubling Pseudorandom Generator
(PRG) according to the structure induced by a tree, where
input values are uniquely mapped to root-to-leaf paths. Specif-
ically, let G be a publicly known PRG that takes a n-bit secret
string k ∈ {0, 1}n as input, and outputs a 2n-bit string, G (k).
Let G0 (k) and G1 (k) denote respectively the first and second
half of G (k). The GGM pseudorandom function family [15]
is defined as F = {fk : {0, 1}n → {0, 1}n}k∈{0,1}n such that
fk(x) = Gx0

(
Gx1

(
· · ·

(
Gxn−1

(k)
)))

, where (xn−1 . . . x0)2
is the binary representation of x.

As an example, Fig. 2 depicts a GGM tree with 4 levels.
The leaves are labeled with a decimal number from 0 to 15,
sorted in ascending order. Every edge is labeled with 0 (resp.
1) if it connects a left (resp. right) child. Every internal node
is labeled with the binary string determined by the labels of
the edges along the path from the root to this node.

The basic scheme is summarized as follows.
• k ← Setup(1λ): output a secret key k and the correspond-

ing GGM tree.
• T ← Enc(k, Tp): For a given secret key k and a plaintext

database table Tp, output encrypted database table T ,
where the ciphertext for a time range record [a, b] in Tp
is ∪x∈[a,b]fk(x).

• q ← Trapdr(k, qp): For a given secret key k and a
plaintext time range query qp, output trapdoor q =
∪x∈qpfk(x).

• R← Search(q, T,∆): For an input trapdoor q and every
time range record r in the encrypted database T , if r∩q ≥
∆, then r is a matching record, and add r to R.

The data owner needs to encrypt a large number of time
ranges, which can be accelerated through a lookup table.
Specifically, we can create a lookup table that stores the PRF
value for each leaf node in a GGM tree. Specifically, for a
GGM tree with 2n nodes, for leaf node x ∈ [0, 2n − 1], we
store its PRF value fk(x) as the xth entry of the lookup table.
Similarly, since the proxy is fully trusted, it can also store the
table and use the table to speed up the conversion of a time
range query to the corresponding ciphertext.

B. Improved Scheme

The basic scheme can lead to significant communication
and storage overhead when the time range is large and the
granularity is small since it maps every value in a time range
to a PRF value individually. To reduce the overhead, we
propose an improved scheme based on DPRF [20]. DPRF is
a cryptographic primitive for delegating the evaluation of a
pseudorandom function to an untrusted party, which enables
the untrusted party to evaluate a PRF on a strict subset of its
domain using a trapdoor derived from the DPRF secret key.

The trapdoor is constructed to respect certain policy predicate
that determines the subset of input values that the proxy is
allowed to compute. When the policy predicate is described
as (1-dimensional) ranges, the study [20] proposes one DPRF
construction that provides query privacy, which we adopt for
encrypting time ranges in our context (see details below). The
DPRF values are computed using a GGM tree.

Specifically, for a given GGM tree, to encrypt a time range,
the improved scheme finds a set of internal nodes in the tree
whose subtrees (leaves) collectively covers the time range,
and sets the ciphertext of the time range as the union of the
ciphertext of the internal nodes as well as their corresponding
heights. There may exist multiple sets of internal nodes that
can cover a time range. One way is to use Best Range Cover
(BRC) [20] that finds a set that contains the minimum number
of internal nodes that covers the time range. While BRC
is optimal in storage space, it may leak information. As an
example, two ranges [2, 7] and [9, 14] have the same length
of 6, while BRC uses two internal nodes 0012, and 012 (with
the heights of 1 and 2 respectively) for [2, 7], and uses four
internal nodes 1012, 10012, 1102, 11102 (with the heights of
1, 0, 1, 0 respectively) for [9, 14], which are distinguishable.
Uniform Range Cover (URC) [20] solves the above problem.
It modifies the output of BRC to generate a uniform output for
a given range size r (see more details in [20]). Using URC, the
internal nodes for [2, 7] are 0102, 00102, 0112, 00112 (with the
heights of 1, 0, 1, 0 respectively), the internal nodes for [9, 14]
remain the same as before. Therefore the representations for
these two intervals have the same number of elements with
pairwise equal heights, and thus indistinguishable. While URC
is less efficient than BRC, interestingly, it preserves the same
storage overhead O(log `), where ` is the length of the interval.
We adopt URC in this paper.

As in the basic scheme, the data owner or proxy can also
use a lookup table to speed up data encryption when using
the improved scheme. The lookup table needs to store the
PRF values for both the internal and leaf nodes. We index a
node of value x and depth (level) d as I(d, x) = 2d − 2 + x,
and store its PRF value in the I(d, x)th entry of the lookup
table. For instance, in Fig. 2, node 0 (i.e., the left child of
the root) is indexed as 0, node 1 is indexed as 1, node 002 is
indexed as 2, node 012 is indexed as 3, and their PRF values
are stored correspondingly in the lookup table.

A limitation of the above DPRF scheme is that, for a
given internal node in the GGM tree, it leaks the underlying
subtree structure. We use the following approach to limit the
amount of leakage to individual subtrees of height h, while
the relative order of the subtrees is not leaked. Specifically,
we divide any range [a, b] into a set of sub-intervals of
[a, i× 2h], [i× 2h + 1, (i+ 1)× 2h], . . . , [(i+m)× 2h + 1, b],
where i × 2h is the smallest multiple of 2h that is larger
than a, and (i + m) × 2h is the largest multiple of 2h that
is smaller than b. Then the ciphertext of [a, b] is the union
of the ciphertext of the set of sub-intervals (the order of the
sub-intervals is randomly permuted before transforming them
to ciphertext). For an interval of length `, the storage overhead



is O
(
d`/2he log 2h

)
= O

(
hd`/2he

)
. The choice of h presents

a tradeoff: a larger h leads to smaller storage overhead at the
cost of larger leakage.

Algorithm 1 Query search in the improved scheme: check
whether r ∈ T matches query q

1: overlap = 0
2: for each (fk(x), hx) ∈ q do
3: for each (fk(y), hy) ∈ r do
4: if (hx = hy) then
5: if (fk(x) = fk(y)) then
6: overlap = overlap + 2hx

7: end if
8: else
9: if (hx > hy) then

10: Let S represent the set of partial PRF values
when expanding fk(x) to the height of hy

11: if (fk(y) ∈ S) then
12: overlap = overlap + 2hy

13: end if
14: else
15: Let S represent the set of partial PRF values

when expanding fk(y) to the height of hx
16: if (fk(x) ∈ S) then
17: overlap = overlap + 2hx

18: end if
19: end if
20: end if
21: if overlap ≥ ∆ then
22: return true
23: end if
24: end for
25: end for
26: return false

We next describe how to query a time range when using
the improved scheme. For an input trapdoor q and every time
range record r in the encrypted database T , a naive way to
check whether r overlaps with q is to expand both of them to
the leaf level, and use the same approach as that used for the
basic scheme. We next describe a more efficient scheme by
comparing partial PRF values, as shown in Algorithm 1. The
algorithm considers each element (fk(x), hx) ∈ q and each
element (fk(y), hy) ∈ r. If hx = hy , it compares fk(x) and
fk(y) directly. If hx > hy , it expands fk(x) to the level of
hy , and then compares it with fk(y). Similarly, if hx < hy , it
expands fk(y) to the level of hx, and then compares it with
fk(x). The variable, overlap, keeps track of the amount of
overlap between q and r. If overlap ≥ ∆, then r is a matching
record for q. Otherwise, r is a not matching record for q.

We now illustrate the above algorithm using an ex-
ample. In Fig. 2, suppose the encrypted query is
{(fk(0012), 1), (fk(00012), 0)} (corresponding to plaintext
query [1, 3]), and the time range in a record is {(fk(0112), 1)}.
The naive approach incurs 6 equality checks, while Algo-
rithm 1 requires only 3 equality checks: one for comparing

(fk(0012), 1) and (fk(0112), 1) since they are both at level 1,
and two for comparing (fk(00012), 0) and the two expanded
leaf nodes from (fk(0112), 1).

C. Security Analysis

We next prove that the basic and improved schemes for
encrypting time range preserve both data privacy and query
privacy.

Theorem 1 (Data Privacy): The basic and improved
schemes are data private in that they do not leak any more
information than the leakage L1 and L2.

Proof: To prove this theorem, we need to show that for
every adversary A, there exists a simulator S that takes the
input and output of the corrupted party (i.e., the server), and
outputs a view that cannot be distinguished from the server’s
real protocol view. In other words, the adversary is not able
to distinguish whether the given view is formed by interacting
with a simulator or a real party. S takes L1 and L2, which
consist of the encrypted table T , and t encrypted queries where
t is polynomially bounded (since our main focus is on time
range, we only consider time ranges in the table) that are input
and output of the corrupted party (i.e., the server). Specifically,
let P (qi) denote the set of entries and their corresponding
positions that are hit (or matched) from table T corresponding
to the ith queried range, qi = [a, b], where i = 1, . . . , t.
Assuming the size of the range is one (i.e., it contains only
a single element, a = b) for each query. Since the simulator
has the leakage L2, it assigns a random value in the positions
that satisfy the query in table T to the same positions in the
T ′ (a new table). Then, the simulator assigns random values
to fill in the entire table using L1 and outputs corresponding
q′1, . . . , q

′
t. The case when the size of the range is larger than

one can be shown in a similar way.
When time ranges are encrypted using the improved

scheme, the simulation is a little bit more involved since
the derivation should be consistent from each ith level to
(i − 1)th level in all records, where i = 1, .., α (α is the
height of the tree). In this case, L1 is the same as that in
the basic construction, which consists of the encrypted table
T . Specifically, the size of the table, the number of unique
partial PRF values for each row, their levels and positions. The
leakage L2 consists of the observation of the t encrypted query
results, which consist of the positions of the rows that satisfy
the ith query, i = 1, . . . , t. L2 also consists of which positions
and levels of partial PRF values that satisfy the query in each
row in the encrypted table T . To begin with, the simulator
can create a GGM tree using a random value m′ as the secret
seed, and establish a one-to-one mapping between the nodes
in the original GGM tree and the nodes in the new GGM
tree. The simulator knows the total number of distinct PRF
values in T . It also knows the height of the original GGM
tree (e.g., by deriving all partial PRF values to the leaf level).
Therefore, it can create a tree using m′ so that the new tree
is of the same height of the original tree. The simulator first
simulates the entire table using L1 as follows: the simulator
performs the following steps by first marking all the nodes in



the new tree as not used. It then performs the followings two
steps: (1) Among all the PRF values in T , find the PRF value
that is associated with the maximum height. Suppose that this
PRF value is v and the height is h. The simulator finds the
leftmost unused node at height h in the new tree. Let v′ be
its PRF value. Then the simulator marks the node (in the new
tree) as used, maps v to v′, and changes all instances of v
with height h in table T and the t queries to v′. After that,
the simulator maps the left (resp. right) child of v to the left
(resp. right) child of v′ in the new tree, marks these nodes in
the new tree as used, and changes the values in T according
to the mapping. The procedure repeats sequentially until all
the children of v have been replaced. (2) Of the remaining
PRF values in T , the simulator repeats step (1) until a one-to-
one mapping is established for each of these values between
the original and the new tree, and the values in both table T .
In order to simulate encrypted queries, the simulator does the
following. First assume that the size of the range is one (only
one single element) for each query. Since the simulator has
the leakage L2, it assigns the value of the same position in
T ′ for each query. Then, the simulator outputs T ′, q′1, . . . , q

′
t.

The case when the size of the query is bigger than one can
be shown in a similar way.
Query Privacy. Recall that query privacy means two different
but the same size range queries are not distinguishable by
the adversary. For the improved scheme, the proof of query
privacy follows from the security proof of URC in [20] (The-
orem 4). For the basic scheme, query privacy can be proved
similarly since the basic scheme is a special construction of
the improved scheme.

IV. CASE STUDY: PROTOTYPE FOR SMART CAMPUS

As a case study, we implement a prototype that encrypts
university campus WiFi network traces for smart campus
applications.

Smart Campus Case Study. In this case study, network traces
collected from a university campus WiFi network are used to
make the campus “smarter”. In university campuses, people
often prefer to connect their smartphones to campus WiFi
networks (instead of cellular networks) for Internet access,
because of their higher bandwidth, lower delay, lower cost,
and lower energy consumption [3], [13], [21]. Therefore, the
smartphones (and hence their owners) can be tracked through
the access points (APs) that they are associated with. The
knowledge of people’s locations on a campus in realtime can
make the campus “smarter”, as has already been shown in
several recent studies [4], [2].

We consider two representative applications in the context
of smart campus. The first is user presence check, namely,
checking whether a user is in a building or not during a time
range. This can be used for forensic purpose, e.g., finding a
missing person. The second application is people counting,
namely counting the number of people in a building during
a time range. This can be useful for indoor environment
conditioning [2] or detecting anomaly in physical space [4].

Prototype Implementation. Since in practice many applica-
tions are web based, we implement the application server,
proxy and adaptor as Servlets that run on web servers. Specifi-
cally, we use Apache Tomcat 7.0 web servers in the prototype.
The encrypted data are stored in a MySQL server 5.6 database.

The wireless network traces that we use are AP association
logs collected from the University of Connecticut campus
WiFi network. During preprocessing, we extract the identity
(MAC address), location (represented as building name), and
time range of each association record from the traces. Both
IDs and locations are encrypted using AES-128 in Electronic
Code Book mode (the length of an ID or building name is
short). The choice of AES-128 is for simplicity; we may use
the schemes in [31] for better security at the cost of slightly
more resource usage. The time ranges are encrypted using the
basic and improved schemes, respectively. Last, the prototype
uses SHA-256 as the PRG function, and Base64 to convert
between binary data and ASCII strings.

The prototype supports the two smart campus applications
that are described earlier. For user presence check, a query
specifies an ID, a building name, and a time range. For people
counting, a query specifies a building name and a time range.
For both cases, a set of matching records are returned from
the data server to the proxy, which in turn decrypts them
and returns them to the client. To reduce the latency from
converting a PRF value back to the corresponding time range,
we also encrypt staying times using AES and store them in
an additional column in the database.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the smart
campus prototype. We organize the AP association trace into
multiple databases, each containing up to d days of data.
The choice of d presents a tradeoff: larger d provides better
privacy at the cost of more resources. We set d = 10 in
the rest of the paper. The time ranges are encrypted using
minute time granularity (this granularity is sufficient for the
two smart campus applications). As such, we use a GGM tree
with 214 > 24×60×10 leaves. We consider two 10-day time
periods, from 4/17/2013 to 4/26/2013 and from 10/16/2015 to
10/25/2015. In the interest of space, we only report the results
for the former, which contains 1,524,850 records, 222 distinct
buildings and 41,293 distinct user devices. The results for the
latter show similar trend. We set the threshold ∆ = 2 minutes
to avoid categorizing a user that simply passes by a building
as one that stays in the building. For the improved scheme,
we set h to 6, i.e., the amount of leakage is within individual
subtrees of height 6 (containing up to 64 leaves, corresponding
to 64 minutes, slightly larger than one hour).

For all the results below, we conduct experiments on three
virtual machines (VMs). The client and application server are
on one VM that has 4GB RAM and two cores of a 2.5 GHz
Intel Core i5 CPU. The proxy is on another VM that has
similar configuration. The adaptor and database are on the
third VM that has 8GB RAM and one core of a 2.5 GHz Intel
Xeon CPU.



20 40 60 80 100
10

2

10
3

10
4

Query Time Length (m)

C
o
m

m
u
n
ic

a
ti
o
n
 o

v
e
rh

e
a
d
 (

c
)

 

 

Basic

Improved

Plaintext

Fig. 3. Communication overhead (in characters or bytes), d = 10.

A. Data Encryption: Computation Time and Storage Space

The data owner encrypts the data and stores the ciphertext
at the data server. On average, encrypting an ID and a
location (building name) using AES takes 0.06 and 0.03 ms,
respectively. Encrypting a time range using the basic and
improve schemes is by using lookup tables as described in
Section III. The time required to create the lookup table is
0.18 and 0.19 second for the basic and improved schemes,
respectively.

The storage overhead for representing staying time under
the improved scheme is significantly lower than that of the
basic scheme. Specifically, a time range [a, b] leads to (b− a)
PRF values under the basic scheme, and O

(
hd(b− a)/2he

)
PRF values under the improved scheme. The average number
of PRF values for one time range in our data set is 6.03 and
21.2 under the improved and basic schemes, respectively. The
database sizes (including all the fields in the database as well
as metadata) under the improved and basic schemes are 836
MB and 2.4 GB, respectively, 3.8× and 11.7× of the size of
the plaintext database. For both schemes, the database size can
be reduced when using more storage-efficient implementation
for representing PRF values.

B. Communication Overhead

For communication overhead, we mainly quantify the size
of a ciphertext query that is sent from the proxy to the data
server. Fig. 3 plots the results, where the query time range
increases from 20 to 100 minutes. The encrypted query under
the improved scheme is a few hundred bytes, which can
be included in a single packet. For the basic scheme, the
encrypted query can be included in a few packets.

C. Computation Time

For a query, the computation mainly contains three parts:
computation at the proxy (converting plaintext query into
ciphertext, and decrypting query results), computation at the
adaptor (processing data read from the database to obtain
results for a query), and database reading time (reading data
from the database corresponding to a query). The computation
time at the proxy is negligible (below 5 ms for all the cases).
We next only present the computation time at the server.
People Counting. For this application, we choose to query
the two mostly visited buildings. The queried time range
is randomly chosen, varied from 20 to 100 minutes. Only

the queries that return non-empty set are considered when
calculating the various overhead. For each setting, the results
are obtained from 100 queries. The data server retrieves a set
of entries that match the building name (encrypted) specified
in the query from the database. Fig. 4(a) plots the average
database reading time (with 95% confidence intervals). The
average database reading time for the plaintext database is
the lowest. For the encrypted databases under the basic and
improved schemes, the average database reading time under
the basic scheme is much larger, due to the much larger
database size. The adaptor processes the retrieved data from
the database by checking whether a retrieved record contains
a time range that overlaps with the queried time range for
more than ∆ = 2 minutes. Fig. 4(b) plots the latency at the
adaptor. When using the basic scheme, both the retrieved and
queried time ranges are represented by a set of PRF values of
leaf nodes in a GGM tree, and hence can be compared directly
through equality check. When using the improved scheme, the
comparison is through Algorithm 1 (see Section III-B), which
may involve deriving PRF values to a lower layer of the GGM
tree, and hence incurs larger delay than that under the basic
scheme. Fig. 4(c) plots the total latency (i.e., database reading
time plus computation time at the adaptor). We observe the
latency under the basic scheme is slightly larger than that of
the improved scheme.
User Presence Check. For this application, we again vary the
queried time range from 20 to 100 minutes. For each query,
the data server first retrieves a set of entries that match the
ID and building name (both encrypted) specified in the query.
The adaptor then processes the retrieved records. Fig. 5 plots
the results. The database reading time under the basic scheme
is still much larger than that of the improved scheme. The
latency at the adaptor under the improved scheme is only tens
of milliseconds larger than that of the basic scheme since much
less records are returned from the database for this application
compared to that of people counting application. As a result,
for the total latency, the difference between these two schemes
is larger than that in the people counting application.

VI. RELATED WORK

Our work is broadly related to searchable encryption, which
allows search over encrypted data. A rich literature is on this
topic (e.g., [29], [7], [9]). A recent study [11] points out
that no off-the-shelf searchable symmetric encryption scheme
supports range queries. Hence the authors reduce range search
to multi-keyword search, introduce the first range searchable
symmetric encryption (RSSE) framework and propose several
practical RSSE schemes. Our work is independent of and in
parallel with [11]. The key difference is that we formulate and
solve a secure time range matching problem, where both the
queries and database records are time ranges (in [11], only
queries are ranges while database records are not ranges).

Many studies developed techniques to support queries over
encrypted database. For instance, Yang et al. [31] proposed
efficient and provable secure methods for queries on encrypted
data stored in an outsourced database. Hacigumus et al. [16]



20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

Query Time Length (m)

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

m
s
)

 

 

Basic

Improved

Plaintext

(a) Database reading time.

20 40 60 80 100
0

1000

2000

3000

4000

5000

Query Time Length (m)

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

m
s
)

 

 

Basic

Improved

Plaintext

(b) Computation time at the adaptor.

20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

Query Time Length (m)

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

m
s
)

 

 

Basic

Improved

Plaintext

(c) Total computation time.
Fig. 4. Computation overhead at the data server for people counting application, d = 10.

20 40 60 80 100
0

0.5

1

1.5

2
x 10

4

Query Time Length (m)

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

m
s
)

 

 

Basic

Improved

Plaintext

(a) Database reading time.

20 40 60 80 100
0

10

20

30

40

50

60

Query Time Length (m)

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

m
s
)

 

 

Basic

Improved

Plaintext

(b) Computation time at the adaptor.

20 40 60 80 100
0

0.5

1

1.5

2
x 10

4

Query Time Length (m)

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

m
s
)

 

 

Basic

Improved

Plaintext

(c) Total computation time.
Fig. 5. Computation overhead at the data server for user presence check application, d = 10.

proposed heuristic bucketization techniques that divide the do-
main of a column into partitions, randomly map the partitions,
and then store the partition number for each data item. Hore
et al. [17] explored the performance tradeoffs in setting the
bucket sizes. Popa et al. [27] developed CryptDB that executes
SQL queries over encrypted data using a collection of efficient
SQL-aware encryption schemes. Our study differs in scope
from them in that we focus on secure time range matching
in wireless network traces, instead of general databases and
general SQL queries.

Lu et al. [25] proposed a range query scheme that enjoys
privacy preserving logarithmic complexity search using B+
structure. The scheme has several drawbacks. First, each range
trapdoor size is O(log2 L), where L is the number of leaves
in the tree. The ciphertext size of a single point in a range is
O(logL), also depending on L. Secondly, since the scheme
uses B+, the ciphertexts are sorted in order and stored in the
database server, the server can guess and figure out the order
between a query value and a data value. The study in [24]
proposed range query processing scheme that uses bloom filter
data structure, which introduces unmatched data items (false
positives). The study in [8] proposed a range query scheme
where a user needs to interact with the data owner to get secure
trapdoor, and hence the data owner is required to be online all
the time. Our schemes do not have such a requirement.

One technique for supporting range queries is through
order preserving encryption (OPE) schemes, where ciphertexts
preserve the numerical orders of the corresponding plaintexts.
The first OPE scheme was proposed by Agrawal et al. [1].
Boldyreva et al. [5] gave the first formal treatment of OPE.

The authors later found that their proposed security guarantee,
however, reveals half of the plaintext besides the order of
the plaintext [6]. Popa et al. [26] proposed Order Preserving
Encoding, which is an interactive protocol that requires stateful
encryption functions. As shown in Section II, OPE reveals
significant information and hence is not suitable for our
scenarios. Our basic and improved schemes provide stronger
privacy than OPEs and do not require interaction.

Last, another direction for preserving privacy in wireless
network traces is through differential privacy techniques (e.g.,
[12]), which require adding noises and perturbation to the
traces. Our approach in this paper is based on encryption that
does not perturb any value in the network traces.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an encryption based approach to
protect user privacy in wireless network traces. Specifically,
we presented two practical encryption techniques to encrypt
time ranges that present different tradeoffs. We quantified the
performance of the proposed approach in a case study of smart
campus. Our evaluation shows that our approach only leads
to moderate storage overhead and speed slowdown, demon-
strating the practicality of our approach. Our study provides
a new direction that uses encryption instead of anonymization
for preserving user privacy in wireless network traces.

As future work, we will expand our prototype to support
other applications. We will also investigate an approach that
uses multiple proxies that is tolerant to attacks to proxies.



REFERENCES

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving
encryption for numeric data. In Proc. of ACM SIGMOD, June 2004.

[2] B. Balaji, J. Xu, A. Nwokafor, R. Gupta, and Y. Agarwal. Sentinel:
Occupancy based HVAC actuation using existing WiFi infrastructure
within commerical buildings. In Proc. of ACM Conference on Embedded
Networked Sensor Systems, 2013.

[3] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. En-
ergy consumption in mobile phones: a measurement study and implica-
tions for network applications. In Proc. of ACM IMC, 2009.

[4] K. Baras and A. Moreira. Anomaly detection in university campus WiFi
zones. In Proc. of PerCom Workshops, 2010.

[5] A. Boldyreva, N. Chenette, Y. Lee, and A. OŃeil. Order preserving
symmetric encryption. In Proc. of EUROCRYPT, April 2009.

[6] A. Boldyreva, N. Chenette, and A. OŃeill. Order preserving symmetric
encryption revisited: improved security analysis and alternative solu-
tions. In Proc. of CRYPTO, 2011.

[7] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key
encryption with keyword search. In Proc. of EUROCRYPT, 2004.

[8] J. Chi, C. Hong, M. Zhang, and Z. Zhang. Privacy-enhancing range
query processing over encrypted cloud databases. In WISE, 2015.

[9] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable
symmetric encryption: Improved definitions and efficient constructions.
In CCS, 2006.

[10] Y. A. de Montjoye, C. Hidalgo, M. Verleysen, and V. Blondel. Unique
in the crowd: The privacy bounds of human mobility. In Proc. of Nature
Sci. Rep., 2013.

[11] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, and
M. Garofalakis. Practical private range search revisisted. In Proc. of
ACM SIGMOD, 2016.

[12] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our
data, ourselves: Privacy via distributed noise generation. In Proc. of
EUROCRYPT, pages 486–503, 2006.

[13] H. Falaki and S. Keshav. Trace-based analysis of Wi-Fi scanning
strategies. SIGMOBILE Mob. Comput. Commun. Rev., 13(1):73–76,
2009.

[14] A. A. Farhan, A. Bamis, and B. Wang. Locating emergencies in
a campus using Wi-Fi access point association data. In Proc. of
ACM Workshop on Pervasive Urban Crowdsensing Architecture and
Applications (PUCAA), 2013.

[15] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. J. ACM, 1986.

[16] H. Hacigumus, B. Lyer, C. Li, and S. Mehrotra. Executing SQL over
encrypted data in the database service provider model. In Proc. of ACM
SIGMOD, pages 216–227, June 2002.

[17] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for
range queries. In Proc. of VLDB, 2004.

[18] W. Hsu, D. Dutta, and A. Helmy. Extended abstract: Mining behavioral
groups in large wireless LANs. In Proc. of ACM MobiCom, September
2007.

[19] W. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy. TVC: Modeling
spatial and temporal dependencies of user mobility in wireless mobile
networks. In Proc. of IEEE/ACM Transactions on Networking, vol-
ume 17, pages 1564–1577, October 2009.

[20] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias.
Delegatable pseudorandom functions and applications. In Proc. of CCS,
2013.

[21] K.-H. Kim, A. W. Min, D. Gupta, P. Mohapatra, and J. P. Singh.
Improving energy efficiency of Wi-Fi sensing on smartphones. In Proc.
of IEEE INFOCOM, 2011.

[22] U. Kumar and A. Helmy. Human behavior and challenges of anonymiz-
ing WLAN traces. In Proc. of GLOBECOM, pages 1–6, 2009.

[23] U. Kumar, N. Yadav, and A. Helmy. Gender based grouping of mobile
student societies. In Proc. of MODUS, IPSN workshop, April 2008.

[24] R. Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar. Fast range query
processing with strong privacy protection for cloud computing. Proc.
VLDB Endow., 2014.

[25] Y. Lu. Privacy-preserving logarithmic-time search on encrypted data in
cloud. In NDSS, 2012.

[26] R. A. Popa, F. H. Li, and N. Zeldovich. An ideal-security protocol for
order-preserving encoding. In Proc. of Security and Prvacy, 2013.

[27] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan.
CryptDB: Protecting confidentiality with encrypted query processing.
In Proc. of SOSP, 2011.

[28] C. Song, Z. Qu, N. Blumm, and A.-L. Barabsi. Limits of predictability
in human mobility. Science, 2010.

[29] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches
on encrypted data. In IEEE Symposium on Security and Privacy,
Oakland, CA, May 2000.

[30] K. Tan, G. Yan, J. Yeo, and D. Kotz. Privacy analysis of user association
logs in a large-scale wireless LAN. In Proc. of INFOCOM, pages 31–35,
2011.

[31] Z. Yang, S. Zhong, and R. N. Wright. Privacy-preserving queries on
encrypted data. In ESORICS, 2006.

[32] L. Zhang, O. Oksuz, L. Nazaryan, C. Yue, A. Kiayias, and A. Bamis.
Encrypting wireless network traces to protect user privacy: A case study
for smart campus. http://nlab.engr.uconn.edu/smartcampus.pdf.


