
Delay Monitoring for Wireless Sensor Networks:
An Architecture Using Air Sniffers

Wei Zeng∗, Xian Chen∗, Yoo-Ah Kim∗, Zhengming Bu†, Wei Wei‡, Bing Wang∗, Zhijie Jerry Shi∗
∗Computer Science & Engineering Department, University of Connecticut

†Department of Electrical Engineering, Ba Yin Vocational and Technical College, Xinjiang, China
‡Department of Computer Science, University of Massachusetts, Amherst

Abstract—Wireless sensor networks have been used for many
delay-sensitive applications, e.g., emergency response and plant
automation. In such networks, delay measurement is important
for a number of reasons, e.g., real-time control of the networked
system, and abnormal delay detection. In this paper, we propose
a measurement architecture using distributed air sniffers, which
provides convenient delay measurement, and requires no clock
synchronization or instrumentation at the sensor nodes. One chal-
lenge in deploying this architecture is how to place the sniffers
for efficient delay measurement. We prove the sniffer placement
problem is NP-hard and develop two algorithms to solve it.
Using a combination of small-scale testbed experiments and large-
scale simulation, we demonstrate that our architecture leads to
accurate delay monitoring and is effective in detecting abnormal
delays, and furthermore, the number of sniffers required by our
sniffer placement algorithms is close to the minimum required
value.

I. I NTRODUCTION

Wireless sensor networks have been used for many delay-
sensitive applications, e.g., emergency response, plant automa-
tion and control, and health care. In such networks, measuring
the delays inside the network is important for a number of
reasons. It is important for real-time control: control strategies
for the networked system need to be designed and adjusted
based on communication delays [1]. It is also important for
detecting abnormal delays so that they can be corrected to
maintain the normal operation of the network.

When nodes in a network have synchronized clocks, obtain-
ing the delay from one node to another is simple: the sender
places a timestamp when sending a packet, the receiver places
a timestamp when receiving the packet, and the difference
of the two timestamps is one instance of the delay. Clock
synchronization is, however, a challenging task in large-scale
sensor networks. Although numerous solutions have been pro-
posed (see survey [2] and the references therein), they typically
require a large number of message exchanges, which consume
the scarce energy of the sensor nodes. One way to eliminate the
need of clock synchronization is using half of the RTT between
two nodes as the one-way delay. This, however, may lead to
inaccurate estimates given the asymmetric communication in
sensor networks [3].

In this paper, we propose an architecture that uses air
sniffers for delay measurement in wireless sensor networks.
The sniffers are placed at distributed locations, each pas-
sively listening to packet transmissions in its neighborhood
and recording the time when hearing a transmission. We

demonstrate that this architecture provides a convenient way
to monitor delays and detect abnormal delays inside a wireless
sensor network. It has the advantages that it does not require
clock synchronization or instrumenting the sensor nodes to
measure delays, and hence does not consume scarce resources
(e.g., CPU, memory, network bandwidth) of sensor nodes.
On the other hand, since deploying sniffers incurs additional
deployment cost, one key challenge in designing this archi-
tecture is how to place the sniffers to minimize this cost. We
hence formulate and solve asniffer placement problemwhich
places the sniffers so that (1) each pair of sensor nodes that
can transmit to each other is monitored by one sniffer, (2)
each sniffer monitors no more thanw pairs of nodes (sniffers
are simple embedded devices for large-scale deployment, and
hence have limited capabilities), and (3) the number of sniffers
is minimized. We prove that the sniffer placement problem is
NP-hard and develop two algorithms to solve it. One is an
approximation algorithm that utilizes max-flow formulation;
the other is a simple heuristic algorithm.

We evaluate the feasibility and effectiveness of the proposed
architecture using a combination of small-scale testbed experi-
ments and large-scale simulation. The small-scale experiments
demonstrate that our architecture obtains accurate delay mea-
surements and is effective in detecting abnormal delays. The
large-scale simulation evaluates the performance of the two
sniffer placement algorithms, and show that the number of
sniffers required by both algorithms is close to the minimum
required value.

As related work, several studies (e.g., [4], [5]) have success-
fully utilized sniffers in infrastructure-based wireless LANs
for network management and characterization. Single-hop
infrastructure-based wireless LANs, however, differ funda-
mentally from multi-hop wireless sensor networks as in our
setting. Furthermore, none of the these studies addresses how
to place sniffers for delay measurement. Several recent studies
use sniffers in wireless sensor networks [6], [7]. Their focuses
are on code debugging and performance monitoring, not on
monitoring delays and placing sniffers as in our study. Our
max-flow based algorithm is inspired by [8], which determines
how to choose centers from a set of nodes in a network (each
center serves a group of nodes). However, our problem differs
from that in [8] in important ways. First, in our problem, the
monitoring is over pairs of sensor nodes that can transmit
to each other, while the monitoring in [8] is over individual

2

Fig. 1. Measurement architecture using sniffers for a wireless sensor network.
The white and shaded nodes represent sensor nodes and sniffers respectively.

nodes. Furthermore, in [8], the set of nodes (and hence the
candidate centers) is given beforehand. In our problem, sniffers
can be placed at any point in the sensor network (and hence
there are infinitely many candidate locations).

The rest of the paper is organized as follows. Section II
describes the proposed delay measurement architecture using
sniffers. Section III formulates the sniffer placement problem,
and Section IV presents two algorithms to solve it. Section V
evaluates the feasibility and effectiveness of our architecture.
Finally, Section VI concludes the paper and presents future
work.

II. D ELAY MEASUREMENT USING SNIFFERS

Consider a static sensor network that is used to support
a delay-sensitive application. Since the application is delay-
sensitive, it is important to measure packet transmission delays
inside the network so that real-time control strategies can be
adjusted (e.g., in plant automation and control), and abnormal
delays can be detected and corrected in a timely manner.

We do not assume the clocks at the sensor nodes are syn-
chronized since clock synchronization requires a large number
of message exchanges, and consumes precious energy of
the sensor network. Without clock synchronization, obtaining
packet transmission delay from one node to another is a chal-
lenging task. We propose an architecture that uses sniffers for
delay measurement. As we shall see, this architecture provides
convenient ways to monitor delays and detect abnormal delays
inside the network.

In the architecture, a set of sniffers are deployed at distrib-
uted locations inside the sensor network (we discuss where to
place sniffers in detail in Section III). Each sniffer has two
network interfaces (as in [6], [7]). One interface operates on
the same channel as that of the sensor nodes, and is used
to listen to packet transmissions from nearby sensor nodes.
The other interface operates on a non-interfering channel,
and is used to communicate with other sniffers and a server
(e.g., for reporting abnormal delays). The reason for using
a non-interfering channel is that packet transmissions from
this interface do not interfere with the traffic inside the sensor
network. Fig. 1 illustrates this architecture, where the white
nodes represent sensor nodes, and the shaded nodes represent
sniffers. In the figure, two sensor nodes are connected by an
edge if they can transmit to each other; a sniffer is connected

to a sensor node (using a dashed line) if the sniffer can hear
the transmission from that node.

We next describe methodologies for per-hop delay monitor-
ing and abnormal delay detection using the above architecture.
Without loss of generality, consider a network path with a
hop connecting sensor nodes,A to B. We will describe how
to measure delays and detect abnormal delays fromA to B
using sniffers. Our description considers two cases: (1)A is an
intermediate node: it receives packets from an upstream node
and then forwards them toB; and (2)A is a source: it does
not receive any incoming packet; instead, it generates packets
and forwards them toB.

A. Delay monitoring

When A is an intermediate node, obtaining packet trans-
mission delay fromA to B using sniffers is straightforward.
Suppose an upstream node sends a packet toA, and a sniffer
overhears this transmission and records the reception time ast.
Once receiving the packet,A forwards it toB, and the sniffer
overhears this transmission and records the reception time as
t′. Then the transmission delay of the packet fromA to B is
d = t′ − t. This is because when ignoring radio propagation
delay (which is negligible since the transmission range in a
sensor network is tens or hundreds of meters while the radio
propagation speed is approximately3×108 meters per second),
A receives the packet att andB receives the packet att′. Since
t is also the time point whenA starts to transmit the packet to
B (A starts to forward the packet immediately after receiving
it), t′− t represents the delay from sending the packet fromA
to B. Note that, in the above method, sinced is determined by
the relative difference oft′ and t, the sniffer’s clock does not
need to be set to the correct wall clock time to obtain accurate
measurement ofd.

When A is a source and no packets are transmitted toA,
using sniffers does not obtain the absolute delay fromA to
B. However, we can easily obtain relative delays fromA
to B, which can be used to obtain delay variance (which
is important for realtime control [1]) and detect abnormal
delays (as we shall see in Section II-B). More specifically,
consider a common scenario where sources transmit packets
periodically and embed an application-level sequence number
to each packet1. In such a scenario, for a packet with sequence
numberi, the packet sending time atA, ti, is iτ + t0, where
t0 is a constant andτ is the period of the transmission at the
source. Since a sniffer does not knowt0, it does not knowti.
However, when the sniffer overhears the packet transmitted
from A to B at timet′i, it can treatt′i − iτ as a relative delay
for this packet (we assume the sniffer knows the period,τ , and
obtains the sequence number,i, from the overheard packet).
The quantity,t′i− iτ , is a relative delay because (1) it ignores
the constantt0, and (2)iτ and t′i are according to the clocks
of A and B, respectively, which are not synchronized (and
hence may have clock skew and offset). As the sniffer obtains

1This is a common scenario in wireless sensor networks: for many monitor-
ing applications, sources transmit packets periodically, and sequence number
is a common technique to differentiate packets from a source.

3

a sequence of relative delays fromA to B, it can adjust the
delays by removing clock skew and offset in an online manner
(e.g., using the technique in [9]). For thei-th packet, letdi

be the adjusted delay after removing clock skew and offset in
t′i − iτ . Thendi is the absolute delay of thei-th packet from
A to B shifted by a constant.

As per-hop delays (absolute or relative delays) are being
obtained, depending on the requirements of the application, a
sniffer may (selectively) transmit the delays to other sniffers
and/or to a server (using the interface that operates on the
channel not interfering with sensor nodes). Or it may only
obtain statistics of the delays, and transmit these statistics.
Two basic statistics, mean and standard deviation, can be
obtained using the following method at little computation and
storage overhead [10]. Consider a sequence of delays,{di}n

i=1,
wheredi is the i-th delay measurement. Let̂µ and σ̂ denote
respectively the current estimates of the mean and standard
deviation. They are updated when a new delay measurement is
obtained. DefineSn =

∑n
i=1 di, andWn =

∑n
i=1 (di − µ̂)2.

After obtaining the latest delay observation,dn, Sn and Wn

are updated as:

Sn = Sn−1 + dn

Wn = Wn−1 + ((n− 1)dn − Sn−1)2/(n(n− 1)).

Then the mean and standard deviation are updated asµ̂ =
Sn/n, and σ̂2 = Wn/(n− 1).

B. Abnormal delay detection

Abnormal delay detection can be modeled as a change-point
detection problem: when the distribution of the delays changes
(we assume the original delays are normal), we say the delays
become abnormal. WhenA is an intermediate node, as shown
earlier, a sniffer obtains a sequence of absolute delays fromA
to B, and can apply an online change-point detection algorithm
to these delays to detect a change point. WhenA is a source,
a sniffer obtains a sequence of relative adjusted delays fromA
to B. Since these delays only differ from the absolute delays
by a constant, the sniffer can still apply an online change-point
detection algorithm to these delays to detect a change point.

Many techniques have been developed for online change-
point detection [11], [12]. Different online detection tech-
niques may prove effective for different abnormal scenarios.
We illustrate how we detect abnormal delays that are caused
by congestion in Section V-A.

C. Summary

The sniffers placed for delay measurement can also be used
for other purposes. For instance, they can monitor sensor nodes
and discover abnormal nodal behaviors [7]. For instance, a
sniffer may raise an alarm when it stops hearing from a sensor
node for a while. We only focus on monitoring delays in this
paper.

In summary, our proposed architecture uses existing traffic
inside the sensor network for delay measurement. It is simple,
requiring no clock synchronization or instrumentation at the
sensor nodes. As we shall see (in Section V), our delay

monitoring and abnormal delay detection methodologies using
this architecture indeed provide accurate results. On the other
hand, a key challenge in deploying this architecture is how
to place the sniffers for effective monitoring. We formulate
and solvesniffer placement problemin Sections III and IV,
respectively.

III. SNIFFER PLACEMENT PROBLEM

In our proposed architecture, sniffer placement needs to
satisfy several constraints. First, as we have seen in Section II,
each sniffer needs to monitor the transmission of apair of
sensor nodes to obtain per-hop delays. Secondly, each sniffer
may only be able to monitor a limited number of sensor node
pairs (we assume sniffers are simple embedded devices for
large-scale deployment). Last, since deploying sniffers incurs
additional cost, it is desirable to minimize the number of
sniffers.

We formulate the sniffer placement problem as follows. It
places the sniffers inside a sensor netowrk so that (1) any two
sensor nodes that can transmit to each other is monitored by
at least one sniffer, (2) each sniffer monitors at mostw pair
of nodes, and (3) the total number of sniffers is minimized.
The first constraint assumes that any pair of nodes that can
transmit to each other can potentially communicate in the
sensor network (and hence needs to be monitored). This is
because the network topology changes with traffic demands,
and dynamic routing protocols (such as [13]) can render
dynamic topologies. The second constraint takes account of
the limited capability of the sniffers. We refer tow as the
maximum allowed workloador workload constraint. If a
sniffer overhears the transmission from more thanw pairs of
nodes, it only processes the packets fromw pairs. The last
constraint aims at minimizing the cost for deploying sniffers.

More formally, consider a wireless sensor network deployed
in a two-dimensional area, and letri denote the transmission
range of sensor nodeni. As in many studies, we assume that
the coverage regionof ni, Ri, is a circular area, centered
at the node, with the radius ofri. We assume that a sniffer
placed at any point in the coverage region ofni can overhear
the transmission fromni. Furthermore, we assume thatri =
r,∀i. Therefore, two nodes can transmit to each other if their
distance is less thanr, and a sniffer can overhear a sensor node
if its distance to the sensor node is less thanr. The goal of the
sniffer placement problem is to determine the locations of the
sniffers, and assign pairs of sensor nodes to sniffers to satisfy
the three requirements stated earlier. When a sniffers monitors
a pair of nodes,ni andnj , we denote it asϕ(ni, nj) = s, and
refer toϕ as theassignment function.

We prove that the sniffer placement problem is NP-hard
(proof is found in the Appendix). In Section IV, we develop
efficient approximate algorithms to solve this problem.

IV. SNIFFER PLACEMENT ALGORITHMS

In this section, we first propose a pre-processing algorithm
that determines candidate sniffer locations (since a sniffer
can be placed anywhere in a sensor network, the number of

4

Fig. 2. Illustration of virtual graph.

candidate sniffer locations is infinite). We then present two
algorithms to solve the sniffer placement problem.

A. Determining candidate sniffer locations

We develop the following algorithm to determine a set of
candidate sniffer locations, denoted asL. Initially, L is empty.
We then consider each pair of sensor nodes,ni andnj , in the
network. If ni and nj can transmit to each other (i.e., their
distance is less thanr), then the boundaries of their coverage
regions,Ri andRj , must intersect at two points, and we add
these two intersection points toL. Algorithm 1 summarizes
this algorithm.

Algorithm 1 Determine Candidate Sniffer Locations
1: L = ∅
2: for ∀ni, nj , i 6= j do
3: if ni andnj can transmit to each otherthen
4: The boundaries ofRi andRj intersect at two points,

denoted asp1 andp2

5: L = L ∪ {p1, p2}
6: end if
7: end for

We next show that the above algorithm for determining
candidate locations is sufficient. That is, supposeS∗ is the set
of sniffers in an optimal solution. Then, for any sniffers ∈ S∗,
we can find a candidate location inL that corresponds to the
location ofs.

Theorem 1:∀s ∈ S∗, there exists a locationl ∈ L so that
the set of sensor node pairs monitored bys can be monitored
by a sniffer located atl.

Proof: Without loss of generality, suppose the set of
sensor node pairs that are monitored bys is X = {(ni, nj)}.
Then s must be in the intersection region ofRi and Rj ,
∀(ni, nj) ∈ X. Let B denote the boundary of this intersection
region. Then there existi, j such that(ni, nj) ∈ X, and one
intersection point of the boundaries ofRi andRj , denoted as
l, is on B. Then l can monitor all the pairs inX, and l ∈ L
by Algorithm 1, thus proving our claim.

B. Sniffer placement algorithms

We develop two algorithms for sniffer placement. Both
algorithms use Algorithm 1 to determine a set of candidate
sniffer locations, and place a sniffer at each candidate location
to construct a candidate sniffer set,Sc. Furthermore, both

candidate
sniffers

.

.

.

virtual
nodes

.

.

.

w 1 1super
source

super
sink

Fig. 3. Illustration of the max-flow formulation.

algorithms consider avirtual graph constructed as follows.
We first map each pair of sensor nodes that can transmit to
each other to avirtual node. We then connect a virtual node
and a candidate sniffer using avirtual edgeif the sniffer can
monitor the pair of sensor nodes that correspond to the virtual
node. Fig. 2 shows an example virtual graph (it is the virtual
graph for the example in Fig. 1), where the white dashed nodes
and shaded nodes represent respectively the virtual nodes and
candidate sniffers, and the dashed lines represent the virtual
edges. LetV denote the set of virtual nodes. Letϕ(v) = s
denote that sniffers ∈ Sc monitors virtual nodev ∈ V . It is
equivalent to the assignment functionϕ(ni, nj) = s, where
ni and nj are the pair of sensor nodes corresponding tov.
Therefore, we only need to assign sniffers to the virtual nodes
to obtain assignment in the original problem.

We next present the algorithms for sniffer placement in
detail. Both algorithms run in iterations to determine a set
of sniffers,S ⊆ Sc, and the assignment function,ϕ. Initially,
the set of sniffers,S, is empty. In each iteration, the algorithms
add a sniffer intoS. The iteration continues until all virtual
nodes are monitored. These two algorithms differ in that one
is based on a max-flow formulation, and the other uses a
simple heuristic. We refer to them asMax-flow and Max-
degreeSniffer Placement Algorithm, respectively.

1) Max-flow Sniffer Placement:This algorithm uses a max-
flow formulation and is inspired by [8]. We construct a max-
flow graph as follows. First, we construct a bipartite graph,
where one set in the graph is the candidate sniffer set,Sc,
and the other set is the virtual node set,V . A node s ∈ Sc

is connected to a nodev ∈ V if s can monitorv (i.e., s
can overhear the transmission of the pair of sensor nodes
corresponding tov); the capacity of edge(s, v) is 1. We further
add a super source and a super sink. The super source is
connected to each candidate sniffer with the capacity ofw.
This limits that a sniffer monitors at mostw virtual nodes
(i.e., w pairs of sensor nodes). Each sensor node is connected
to the super sink with the capacity of1. Fig. 3 illustrates the
max-flow graph thus constructed. Letf denote the maximum
integral flow of this graph. Then it is easy to see that all
the virtual nodes are monitored if and only iff = |V |.
Furthermore, the assignment function can be easily obtained
from the max-flow solution: if the amount of flow from sniffer
s to virtual nodev is positive, i.e.,f(s, v) > 0, we assigns
to monitorv. In the following, we refer to a max-flow graph
thus constructed asG(Sc, V, E, w, 1, 1), where the first two

5

elements represent the sets of candidate sniffers and virtual
nodes, respectively; the third element represents the set of
edges that connects candidate sniffers and virtual nodes; the
last three elements represent the capacity of an edge from the
super source to a sniffer, the capacity of an edge from a sniffer
to a virtual node, and the capacity of an edge from a virtual
node to the super sink, respectively.

Algorithm 2 Max-Flow Sniffer Placement
1: Place a sniffer at each candidate location to construct a

candidate sniffer setSc

2: S = ∅, E = ∅
3: for ∀s ∈ Sc, ∀v ∈ V do
4: if s can monitorv then
5: E = E ∪ {(s, v)}
6: end if
7: end for
8: repeat
9: Sc = Sc \ S

10: for ∀s ∈ Sc do
11: Construct max-flow graphG(S ∪ {s}, V, E,w, 1, 1)
12: Let fs denote the maximum integral flow ofG
13: end for
14: s = arg maxs∈Sc fs

15: S = S ∪ {s}
16: until all virtual nodes are monitored
17: for ∀s ∈ S, ∀v ∈ V do
18: if fs(s, v) > 0 then
19: ϕ(v) = s
20: end if
21: end for
22: Return(S, ϕ)

The Max-flow Sniffer Placement algorithm is presented in
Algorithm 2. Line 1 places a sniffer at each candidate location
to construct a candidate sniffer set,Sc. Line 2 initializes the
sniffer set,S, to be an empty set. Lines 3-7 add a set of edges,
E, between candidate sniffers and virtual nodes: it adds an
edge(s, v) whens ∈ Sc can monitorv ∈ V . In each iteration
(lines 9-15), the algorithm selects a candidate sniffers ∈ Sc

and s /∈ S so thatS ∪ {s} produces the maximum integral
flow in the max-flow graphG(S∪{s}, V, E, w, 1, 1), and adds
this sniffer into the sniffer set. This process continues until
all virtual nodes are monitored. Last, lines 17-21 record the
assignment function.

Following the result in [8], we have the following approxi-
mation ratio result (the proof is similar to that in [8]; detailed
proof is omitted):

Theorem 2:The Max-flow Sniffer Placement algorithm has
approximation ratio ofln |V |, whereV is the set of virtual
nodes.

2) Max-degree Sniffer Placement:Algorithm 3 describes
this algorithm. Line 1 places a sniffer at each candidate
location to construct candidate sniffer set,Sc. Line 2 initializes
the sniffer set,S, to be an empty set. Lines 4-16 describe the

operations in one iteration. In each iteration, the algorithm
first constructs graphG(Sc ∪ V, E), whereSc andV are the
current set of candidate sniffers and virtual nodes, respectively,
(s, v) ∈ E if s can monitorv, ∀s ∈ Sc, ∀v ∈ V . It then
adds the sniffer with the maximum degree into the sniffer set
(hence the name Max-degree Sniffer Placement Algorithm).
The intuition is that a candidate sniffer with a larger degree
can monitor more virtual nodes, and hence may reduce the
number of sniffers needed. More specifically, supposes has the
maximum degree. The algorithm addss to the sniffer set, and
assigns to monitor a set of virtual nodes thats can monitor,
denoted asN(s). If more thanw virtual nodes are inN(s),
it assigns thew virtual nodes with the lowest degrees tos
(the intuition is that virtual nodes with larger degrees may be
able to be monitored by other candidate sniffers). Afterwards,
it adjustsSc and V : line 13 removess from Sc, and line
14 removes all virtual nodes that are monitored fromV . The
iteration continues until all virtual nodes are monitored.

Algorithm 3 Max-Degree Sniffer Placement
1: Place one sniffer at each candidate location to construct

candidate sniffer setSc

2: S = ∅
3: repeat
4: Construct graphG(Sc∪V,E), edge(s, v) ∈ E if s can

monitor v ∈ V , ∀s ∈ Sc, ∀v ∈ V
5: Suppose thats ∈ Sc has the maximum degree
6: S = S ∪ {s}
7: N(s) = {v | s can monitorv, v ∈ V }
8: if |N(s)| ≤ w then
9: ϕ(v) = s,∀v ∈ N(s)

10: else
11: Assign sniffers to w virtual nodes inN(s) that have

the lowest degrees
12: end if
13: Sc = Sc \ {s}
14: Remove all virtual nodes that are monitored fromV
15: until all virtual nodes are monitored
16: Return(S, ϕ)

V. PERFORMANCE EVALUATION

In this section, we evaluate the feasibility and effectiveness
of our delay measurement architecture. Our evaluation is
on two aspects: one on evaluating the methodologies for
delay monitoring and abnormal delay detection; the other on
evaluating the sniffer placement algorithms.

A. Evaluation of measurement methodologies

We use testbed experiments to evaluate our methodologies
for delay monitoring and abnormal delay detection. Our test-
bed consists of eight TelosB motes, as illustrated in Fig. 4.
All the motes use B-MAC [14], the default MAC protocol
in TinyOS. Due to limited space (the testbed is deployed in
an office), we separate the sensor nodes in a few meters, as
marked in Fig. 4. Correspondingly, the power level at each

6

n
1

n
4

n
3

n
2

n
0

s

n
5

n
6

4 m

1 m

Fig. 4. Testbed setting: noden0 is the sink, nodes is a sniffer.

mote is set to a low level (it is set to 3, i.e.,−25 dBm). Node
n0 is the sink. Nodes is the single sniffer in the testbed. It
can overhead packet transmissions from all the nodes in the
testbed. Last, a source sends a packet every two seconds; each
packet carries an application-level sequence number. For ease
of experiments, we fix the route from a source to the sink.

1) Delay monitoring: To evaluate the delay monitoring
methodology presented in Section II-A, we compare per-hop
delays obtained using this methodology with those obtained
by instrumenting the sensor nodes. More specifically, consider
the delay on a network hop from sensor nodeA to B. This
per-hop delay contains two components: the delay at nodeA
and the radio propagation delay for sending a packet fromA
to B. When ignoring the latter (which is negligible), the per-
hop delay equals to the delay atA, which can be obtained
by instrumentingA to record two timestamps: one is when
A starts to transmit a packet (or receives a packet when it
is an intermediate node), and the other is whenA receives a
signal that this packet is actually sent out into the air. Then
the difference of these two timestamps is one instance of the
delay atA.

We next present evaluation results. In our testbed, we let
n3 be a source, and transmits1500 packets vian4 to the
sink, n0. This scenario leads to two network hops:(n3, n4),
wheren3 is a source, and(n4, n0), wheren4 is an intermediate
node. We instrumentn3 andn4 to obtain the delays on hops
(n3, n4) and(n4, n0) respectively, and compare them with the
measurements at the sniffer.

For hop(n3, n4), sincen3 is a source, the sniffer can only
obtain relative delays (it regards the transmission time of the
packet with sequence numberi as iτ , τ = 2 seconds, and
uses the method in [9] to remove clock skew and offset in the
delays on the fly). As described in Section II-A, these relative
delays differ from the absolute delays by a constant. From our
measurements, the relative delays from the sniffer have mean
of 5.0 ms and standard deviation of2.8 ms; the delays obtained
by instrumentingn3 have mean of12.0 ms and standard
deviation of2.8 ms. Thus, we confirm that the delays from the
sniffer and fromn3 indeed have the same standard deviation
(since they are off by a constant). Furthermore, for each
packet, we obtain the difference of the delay measurements
from the sniffer and fromn3. We observe that these differences
are indeed close to a constant: they are (7 ± 1) ms, and the
error of±1 ms are due to the time granularity of 1 ms at the

motes.
For hop (n4, n0), since n4 is an intermediate node, the

sniffer can obtain the absolute delays on this hop. We indeed
observe that the delays from the sniffer have mean and
standard deviation close to those fromn4: the means are13.2
and 12.8 ms, respectively, and standard deviations are both
2.8 ms. For each packet, we obtain the difference of the delay
measurements from the sniffer and fromn4. We observe that
98.4% of packets have differences of 0, 1, or -1 ms, verifying
the accuracy of the measurements from the sniffer (again the
error of±1 ms are due to the time granularity of 1 ms at the
motes). For the1.6% of the packets with larger differences, we
suspect that they are caused by measurement noise at either
the sniffer or the sensor node.

2) Abnormal delay detection:We next evaluate the effec-
tiveness of the methodology that detects abnormal delays (see
Section II-B). Abnormal delays in a sensor network can be
due to many reasons. We focus on abnormal delays caused
by congestion in the network. In particular, we look at two
scenarios: (1)parallel sources, where nodesn1 and n5 are
sources, both sending packets via nodesn2, n3, andn4 to the
sink, and (2)tandem sources, wheren1 and n2 are sources,
n1 sends its packets via nodesn2, n3, andn4 to the sink, and
n2 sends its packets via nodesn3 andn4 to the sink. In both
scenarios, we emulate the occurrence of abnormal delays as
follows. At the beginning, the transmissions of the two sources
are not synchronized. Then after a certain time point, they are
synchronized (by sending a synchronization signal from node
n6 to the two sources), which leads to congestion and hence
abnormal delays.

For each source, the sniffer obtains per-hop delays (the
first-hop delays are relative delays), and maintains the current
estimates of the mean and standard deviation of the delays.
Let µ̂ and σ̂ denote respectively the current estimates of the
mean and standard deviation of the delays on a hop. They
are updated using the method in Section II-A that incurs little
storage and computation overhead. We explore two change-
point detection methods. The first change-point detection
method raises an alarm after observing two consecutive delays
that are larger than̂µ + 3σ̂ (we use two consecutive large
delays instead of a single one to reduce false alarms). The
second method is a non-parametric CUSUM method [12]. In
particular, we definẽdi = di − a, wheredi denotes thei-th
delay observation, anda is chosen so that̃di is negative (with
high probability) before a change point (we usea = µ̂ + 3σ̂).
Let

yi = (yi−1 + d̃i)+, y0 = 0,

where(x)+ equals tox whenx ≥ 0, and equals to 0 otherwise.
This method updatesyi after each delay observation and raises
an alarm whenyi ≥ h, whereh > 0 is a threshold, and we
useh = 1.25σ̂.

To systematically evaluate the performance of our abnormal-
delay detection methods, in both scenarios (i.e., parallel and
tandem sources), for each source, we construct1, 000 delay
sequences on each hop as follows. We first run experiments

7

when the two sources are not synchronized, and obtain a
sequence of10, 000 delays on each hop, which represents
normal delays. We then run experiments when the two sources
are synchronized to obtain a sequence of10, 000 delays on
each hop, which represents abnormal delays. Afterwards, we
construct delay sequences using samples from the normal
and abnormal delay observations. In particular, each sequence
contains 250 normal delay observations (chosen from the
normal delay observation sequence, starting from a random
position) followed by 500 abnormal delay observations (cho-
sen similarly from the abnormal delay observation sequence).

For a delay sequence, our change-point detection methods
stop and raise an alarm after detecting that the delay has
become abnormal. A detection issuccessfulif it is within the
range of abnormal delays; a detection is afalse alarmif it is
within the range of normal delays; and afalse negativeoccurs
if no alarm is raised at the end of a delay sequence. Our
performance metrics are detection ratio, false positive ratio,
false negative ratio, and detection delay (the delay from the
change point to when an alarm is raised).

We observe the two change-point detection methods are
both effective. For both methods, the sniffer successfully
detects that the hop delays become abnormal: for all the hops,
the detection ratios are close to 1 (above98.3%), the false
positive ratio is close to 0 (less than0.1%), and the false
negative ratio is close to 0 (less than1.7%). Furthermore,
the detection delay is short: it ranges from 7 to 33 delay
observations.

B. Evaluation of sniffer placement algorithms

We evaluate the performance of the two placement al-
gorithms using simulation (for large-scale evaluation). We
consider 100 sensor nodes deployed in a500 m × 500 m
area using uniform random or grid uniform deployment. In
uniform random deployment, the sensor nodes are deployed
uniformly at random in the area. In grid uniform deployment,
one sensor node is uniformly randomly placed in each grid (of
50 m × 50 m), and hence the node distribution is more even
than that in uniform random deployment. The transmission
range of all the sensor nodes is the same, varied from 80 to 140
meters (corresponding to the transmission range of mote-class
sensor nodes; we choose the minimum transmission range of
80 m because the network is disconnected when using a lower
value). A sniffer is allowed to monitor at mostw pairs of
sensor nodes. The performance metric we use is thenumber
of sniffers needed. For each setting, we make 10 independent
runs using randomly generated seeds. The results below are
averaged over 10 runs; the 95% confidence intervals are tight
and hence omitted.

We find that for all the settings, the Max-Flow based
algorithm only slightly outperforms the Max-Degree based
algorithm: the maximum relative difference is7% and 12%
under uniform random and grid random deployment, respec-
tively. Furthermore, for both algorithms, the results under
uniform random and grid random deployments are similar. We

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 80 90 100 110 120 130 140

N
um

be
r

of
 s

ni
ffe

rs
 n

ee
de

d

Transmission range (m)

w=10, MF
w=10, min
w=20, MF
w=20, min

Fig. 5. Number of needed sniffers versus transmission range under Max-flow
based algorithm and random uniform deployment.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 s

ni
ffe

rs
 n

ee
de

d

Maximum allowed workload

r=140
r=120
r=100

r=80

Fig. 6. Number of needed sniffers versus maximum allowed workload,w,
under Max-flow based algorithm and random uniform deployment.

next only present the results of the Max-Flow based algorithm
under uniform random deployment.

Fig. 5 plots the number of needed sniffers as the transmis-
sion range increases from 80 to 140 meters,w = 10, or 20. The
results from the Max-flow based algorithm and the minimum
number of needed sniffers are plotted in the figure (for a
given transmission range, the minimum number of needed
sniffers is the average number of virtual nodes divided byw,
i.e., when all sniffers monitorw virtual nodes). We observe
that the results from our algorithm are close to the minimum
required values. For smaller transmission ranges, our results
differ slightly more from the minimum values than for larger
transmission ranges. This is because when the transmission
range is small, the network is not sufficiently dense for the
sniffers to achieve the maximum allowed workload; as the
transmission range increases, the network becomes denser and
more sniffers achieve the maximum allowed workload. This
is confirmed by workload distribution from our algorithm. For
instance, whenw = 20, the fraction of sniffers that have
the maximum workload increases from36% to 90% as the
transmission range increases from80 to 140 m.

We also observe from Fig. 5 that forw = 10 and 20,
the number of needed sniffers increases with transmission
range. This is because a larger transmission range leads to
a denser network with more sensor node pairs (and more
virtual nodes) to be monitored, which leads to more needed
sniffers. The above results are for small values ofw; we

8

observe an opposite trend for larger values ofw. Fig. 6 depicts
the impact of the maximum allowed workload,w, on the
number of needed sniffers. We observe that, although for
small values ofw, a larger transmission range leads to more
needed sniffers; asw increases, the number of needed sniffers
decreases more dramatically for a larger transmission range.
In particular, whenw = 40, all transmission ranges lead to
a similar number of needed sniffers, and afterwards, a larger
transmission range can lead to less needed sniffers. This is
because a larger transmission range leads to a denser network,
which, although leads to more virtual nodes to be monitored,
can take advantage of larger allowed workloads to reduce the
number of needed sniffers.

Last, we observe from Fig. 6 a diminishing gain when
increasing w for all transmission ranges: the number of
needed sniffers decreases dramatically at first, and then less
dramatically afterwards. The above results indicate that the
capability of the sniffers need to be carefully chosen: their
maximum allowed workload needs to be sufficiently large so
that the number of needed sniffers is small, while deploying
very capable sniffers may not be cost effective because of the
diminishing gains.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an architecture that uses dis-
tributed sniffers for delay measurement in wireless sensor
networks. We demonstrated that this architecture provides
convenient ways for delay monitoring and abnormal delay
detection. Furthermore, we developed two algorithms for snif-
fer placement inside the architecture. Using a combination of
testbed experiments and simulation, we demonstrated that our
architecture leads to accurate delay monitoring, and is effective
in detecting abnormal delays. Furthermore, the number of
sniffers required by our sniffer placement algorithms is close
to the minimum required value.

As future work, we plan to expand our testbed for a
larger scale evaluation of our measurement methodologies. For
sniffer placement, we plan to consider more practical issues,
e.g., in the presence of obstacles, a sniffer may not be able to
hear packet transmissions from a sensor node even when it is
within the transmission range of that node.

ACKNOWLEDGMENT

This work was partially supported by NSF awards CNS-
0821597, CNS-0709005, NSF CAREER awards 0644188 and
0746841, and Qualtech Systems Incorporated. We thank the
anonymous reviewers for helpful comments.

APPENDIX

Theorem 3:The sniffer placement problem is NP-hard.
Proof: We prove this theorem by reducing a known NP-

hard problem, geometricK-center problem [15] to the sniffer
placement problem. In geometricK-center problem, we are
given a constantK, a set of nodes to be served, a set of
candidate centers, and the distance from a center to a node
(the distances satisfy triangular inequality). LetV denote the

set of nodes,C denote the set of centers, andd(v, c) denote
the distance fromv to c, v ∈ V , c ∈ C. The goal is to
find a subset of centers,C ′ ⊆ C and |C ′| = K, so that
maxv∈V minc∈C′ d(v, c) is minimized.

Our reduction is by showing that if we have an optimal
algorithm,As, for the sniffer placement problem, then we can
devise an optimal algorithm,AK , for the K-center problem.
In the K-center problem, suppose|V | = n and |C| = m. We
order the distance from a node to a center in non-decreasing
order and denote them asd1 ≤ d2 . . . ≤ dmn. Then for a
given di, the corresponding sniffer placement problem is as
follows. The sensor node set isV , the candidate sniffer set
is C, and a sniffer can monitor a sensor node if and only
if its distance to the sensor node is withindi. This instance
can be solved usingAk, and letSi denote the set of sniffers
in the optimal solution. We devise an algorithm,AK , for the
K-center problem as follows. It usesAs to solve the sniffer
placement problem by using increasingly largerdi’s. That is,
it starts withd1, and then usesd2, and so on. The minimum
di so that|Si| ≤ K is an optimal solution for theK-center
problem (C ′ = Si, maxv∈V minc∈C′ d(v, c) = di). We hence
have proved that the sniffer placement problem is NP-hard.

REFERENCES

[1] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked
control systems,”IEEE Control Systems Magazine, vol. 21, pp. 84–99,
2001.

[2] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks: a
survey,” IEEE Network, vol. 18, no. 4, 2004.

[3] J. Zhao and R. Govindan, “Understanding packet delivery performance
in dense wireless sensor networks,” inSenSys, 2003.

[4] A. P. Jardosh, K. N. Ramachandran, K. C. Almeroth, and E. M. Belding-
Royer, “Understanding congestion in IEEE 802.11b wireless networks,”
in IMC, 2005.

[5] Y.-C. Cheng, M. Afanasyev, P. Verkaik, P. Benko, J. Chiang, A. C. Sno-
eren, S. Savage, and G. M. Voelker, “Automating cross-layer diagnosis
of enterprise wireless networks,” inProc. of ACM SIGCOMM, (Kyoto,
Japan), August 2007.

[6] F. Dressler, R. Nebel, and A. Awad, “Distributed passive monitoring in
sensor networks,” inProc. of IEEE INFOCOM, 2007. poster.

[7] M. Ringwald, K. Romer, and A. Vitaletti, “Passive inspection of sensor
networks,” inDCOSS, 2007.

[8] J. Bar-Ilan, G. Kortzars, and D. Peleg, “How to allocate network
centers?,”J. Algorithms, vol. 15, 1993.

[9] L. Zhang, Z. Liu, and C. Xia, “Clock synchronization algorithms for
network measurements,” inProc. of IEEE INFOCOM, 2002.

[10] D. M. Hawkins, P. Qiu, and C.-W. Kang, “The changepoint model
for statistical process control,”Journal of Quality Technology, vol. 35,
October 2003.

[11] M. Basseville and I. Nikiforov,Detection of Abrupt Changes: Theory
and Application. Prentice Hall, 1993.

[12] B. E. Brodsky and B. S. Darkhovsky,Nonparametric Methods in
Change-Point Problems. Springer-Verlag New York, January 1993.

[13] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges
of reliable multihop routing in sensor networks,” inSenSys, November
2003.

[14] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access
for wireless sensor networks,” inSenSys, 2004.

[15] T. Feder and D. Greene, “Optimal algorithms for approximate cluster-
ing,” in STOC, pp. 434–444, 1988.

