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Abstract—Wireless sensor networks have been used for many demonstrate that this architecture provides a convenient way
delay-sensitive applications, e.g., emergency response and planto monitor delays and detect abnormal delays inside a wireless
automation. In such networks, delay measurement is important gengor network. It has the advantages that it does not require
for a number of reasons, e.g., real-time control of the networked lock hronizai inst ting th des t
system, and abnormal delay detection. In this paper, we propose clock synchronization or instrumenting thé Sensor nodes 1o
a measurement architecture using distributed air sniffers, which measure delays, and hence does not consume scarce resources
provides convenient delay measurement, and requires no clock (e.g., CPU, memory, network bandwidth) of sensor nodes.
synchronization or instrumentation at the sensor nodes. One chal- On the other hand, since deploying sniffers incurs additional
lenge in deploying this architecture is how to place the sniffers deployment cost, one key challenge in designing this archi-

for efficient delay measurement. We prove the sniffer placement tect is how to bl th iff ¢ inimize thi £ Wi
problem is NP-hard and develop two algorithms to solve it. ecture IS how to place the snifiers to minimize this cost. We

Using a combination of small-scale testbed experiments and large- hence formulate and solvesaiffer placement problenwhich
scale simulation, we demonstrate that our architecture leads to places the sniffers so that (1) each pair of sensor nodes that

accurate delay monitoring and is effective in detecting abnormal can transmit to each other is monitored by one sniffer, (2)
delays, and furthermore, the number of sniffers required by our - a4ch gpjffer monitors no more tham pairs of nodes (sniffers
sniffer placement algorithms is close to the minimum required . .
value. are simple embedded devices for large-scale deployment, and
hence have limited capabilities), and (3) the number of sniffers
|. INTRODUCTION is minimized. We prove that the sniffer placement problem is
Wireless sensor networks have been used for many deldRP-hard and develop two algorithms to solve it. One is an
sensitive applications, e.g., emergency response, plant autoaggproximation algorithm that utilizes max-flow formulation;
tion and control, and health care. In such networks, measurithg other is a simple heuristic algorithm.
the delays inside the network is important for a number of We evaluate the feasibility and effectiveness of the proposed
reasons. It is important for real-time control: control strategiegchitecture using a combination of small-scale testbed experi-
for the networked system need to be designed and adjusteents and large-scale simulation. The small-scale experiments
based on communication delays [1]. It is also important falemonstrate that our architecture obtains accurate delay mea-
detecting abnormal delays so that they can be correctedsttements and is effective in detecting abnormal delays. The
maintain the normal operation of the network. large-scale simulation evaluates the performance of the two
When nodes in a network have synchronized clocks, obtasniffer placement algorithms, and show that the number of
ing the delay from one node to another is simple: the sendsniffers required by both algorithms is close to the minimum
places a timestamp when sending a packet, the receiver plaesgiired value.
a timestamp when receiving the packet, and the differenceAs related work, several studies (e.g., [4], [5]) have success-
of the two timestamps is one instance of the delay. Clodully utilized sniffers in infrastructure-based wireless LANs
synchronization is, however, a challenging task in large-scdte network management and characterization. Single-hop
sensor networks. Although numerous solutions have been pirdrastructure-based wireless LANs, however, differ funda-
posed (see survey [2] and the references therein), they typicatigntally from multi-hop wireless sensor networks as in our
require a large number of message exchanges, which conswseiting. Furthermore, none of the these studies addresses how
the scarce energy of the sensor nodes. One way to eliminatetthplace sniffers for delay measurement. Several recent studies
need of clock synchronization is using half of the RTT betwearse sniffers in wireless sensor networks [6], [7]. Their focuses
two nodes as the one-way delay. This, however, may leadare on code debugging and performance monitoring, not on
inaccurate estimates given the asymmetric communicationmonitoring delays and placing sniffers as in our study. Our
sensor networks [3]. max-flow based algorithm is inspired by [8], which determines
In this paper, we propose an architecture that uses how to choose centers from a set of nodes in a network (each
sniffers for delay measurement in wireless sensor networkenter serves a group of nodes). However, our problem differs
The sniffers are placed at distributed locations, each pdsm that in [8] in important ways. First, in our problem, the
sively listening to packet transmissions in its neighborhoadonitoring is over pairs of sensor nodes that can transmit
and recording the time when hearing a transmission. W each other, while the monitoring in [8] is over individual



to a sensor node (using a dashed line) if the sniffer can hear
the transmission from that node.

We next describe methodologies for per-hop delay monitor-
ing and abnormal delay detection using the above architecture.
Without loss of generality, consider a network path with a
hop connecting sensor nodes,to B. We will describe how
to measure delays and detect abnormal delays floto B
using sniffers. Our description considers two casesA(l§ an
Fig. 1. Measurement architecture using sniffers for a wireless sensor netwdfi€rmediate node: it receives packets from an upstream node
The white and shaded nodes represent sensor nodes and sniffers respectiaigl then forwards them t8; and (2) A is a source: it does

not receive any incoming packet; instead, it generates packets
and forwards them t@3.
nodes. Furthermore, in [8], the set of nodes (and hence t eD | itori
candidate centers) is given beforehand. In our problem, sniffers €lay monttoring
can be placed at any point in the sensor network (and hencdVhen A is an intermediate node, obtaining packet trans-
there are infinitely many candidate locations). mission delay fromA to B using sniffers is straightforward.

The rest of the paper is organized as follows. Section HUPPOSe an upstream node sends a packet &md a sniffer
describes the proposed delay measurement architecture uSiygfhears this transmission and records the reception time as
sniffers. Section 11l formulates the sniffer placement problen®NCe receiving the packed forwards it to3, and the sniffer
and Section IV presents two algorithms to solve it. Section Qvérhears this transmission and records the reception time as
evaluates the feasibility and effectiveness of our architectufe. Then the transmission delay of the packet frdno B is

Finally, Section VI concludes the paper and presents futufe= t' — . This is because when ignoring radio propagation
work. delay (which is negligible since the transmission range in a

sensor network is tens or hundreds of meters while the radio
propagation speed is approximatsly 108 meters per second),
A receives the packet aand B receives the packet &t Since
Consider a static sensor network that is used to suppois also the time point whed starts to transmit the packet to
a delay-sensitive application. Since the application is delaf (A starts to forward the packet immediately after receiving
sensitive, it is important to measure packet transmission delatyst’ — ¢ represents the delay from sending the packet frbm
inside the network so that real-time control strategies can teeB. Note that, in the above method, sintés determined by
adjusted (e.g., in plant automation and control), and abnorntlaé¢ relative difference of andt, the sniffer's clock does not
delays can be detected and corrected in a timely manner. need to be set to the correct wall clock time to obtain accurate
We do not assume the clocks at the sensor nodes are gpgasurement of.
chronized since clock synchronization requires a large numbeMWhen A is a source and no packets are transmittecdifo
of message exchanges, and consumes precious energysstg sniffers does not obtain the absolute delay frdnto
the sensor network. Without clock synchronization, obtaining. However, we can easily obtain relative delays from
packet transmission delay from one node to another is a chgl-B, which can be used to obtain delay variance (which
lenging task. We propose an architecture that uses sniffers irimportant for realtime control [1]) and detect abnormal
delay measurement. As we shall see, this architecture providedays (as we shall see in Section 1I-B). More specifically,
convenient ways to monitor delays and detect abnormal del®gnsider a common scenario where sources transmit packets
inside the network. periodically and embed an application-level sequence number
In the architecture, a set of sniffers are deployed at distril €ach packet In such a scenario, for a packet with sequence
uted locations inside the sensor network (we discuss wheregmberi, the packet sending time at, ¢;, is i + ¢, where
place sniffers in detail in Section Ill). Each sniffer has twdo iS @ constant and is the period of the transmission at the
network interfaces (as in [6], [7]). One interface operates &®urce. Since a sniffer does not knayy it does not know;.
the same channel as that of the sensor nodes, and is udewever, when the sniffer overhears the packet transmitted
to listen to packet transmissions from nearby sensor nod&8m A to B at timet;, it can treatt; — it as a relative delay
The other interface operates on a non-interfering chann@l this packet (we assume the sniffer knows the perio@dnd
and is used to communicate with other sniffers and a sen@tains the sequence numberfrom the overheard packet).
(e.g., for reporting abnormal delays). The reason for usiddie quantityt; —ir, is a relative delay because (1) it ignores
a non-interfering channel is that packet transmissions frofie constanto, and (2)ir andt; are according to the clocks
this interface do not interfere with the traffic inside the sens@f 4 and B, respectively, which are not synchronized (and
network. Fig. 1 illustrates this architecture, where the whiteéence may have clock skew and offset). As the sniffer obtains

nodes represent sensor nodes, and the shaded nodes represent o _
This is a common scenario in wireless sensor networks: for many monitor-

Sn'ﬁer_s- In the figure, two sensor nodes are_conneCted bY i@ applications, sources transmit packets periodically, and sequence number
edge if they can transmit to each other; a sniffer is connectac common technique to differentiate packets from a source.

Il. DELAY MEASUREMENT USING SNIFFERS



a sequence of relative delays framto B, it can adjust the monitoring and abnormal delay detection methodologies using
delays by removing clock skew and offset in an online mannthis architecture indeed provide accurate results. On the other
(e.g., using the technique in [9]). For théh packet, letd; hand, a key challenge in deploying this architecture is how
be the adjusted delay after removing clock skew and offsettim place the sniffers for effective monitoring. We formulate
t. —iT. Thend; is the absolute delay of theth packet from and solvesniffer placement problerm Sections Ill and 1V,

A to B shifted by a constant. respectively.

As per-hop delays (absolute or relative delays) are being
obtained, depending on the requirements of the application, a
sniffer may (selectively) transmit the delays to other sniffers In our proposed architecture, sniffer placement needs to
and/or to a server (using the interface that operates on gaisfy several constraints. First, as we have seen in Section I,
channel not interfering with sensor nodes). Or it may onkgach sniffer needs to monitor the transmission giaér of
obtain statistics of the delays, and transmit these statistisensor nodes to obtain per-hop delays. Secondly, each sniffer
Two basic statistics, mean and standard deviation, can ray only be able to monitor a limited number of sensor node
obtained using the following method at little computation anplairs (we assume sniffers are simple embedded devices for
storage overhead [10]. Consider a sequence of defdyk; ,, large-scale deployment). Last, since deploying sniffers incurs
whered; is thei-th delay measurement. Lgt and 6 denote additional cost, it is desirable to minimize the number of
respectively the current estimates of the mean and standaniffers.
deviation. They are updated when a new delay measurement igVe formulate the sniffer placement problem as follows. It
obtained. Defines,, = Y1, d;, andW,, = >°"" | (d; — 1)%.  places the sniffers inside a sensor netowrk so that (1) any two
After obtaining the latest delay observatiat,, S, andW,, sensor nodes that can transmit to each other is monitored by
are updated as: at least one sniffer, (2) each sniffer monitors at mespair
of nodes, and (3) the total number of sniffers is minimized.

Ill. SNIFFER PLACEMENT PROBLEM

Sn = Sno1tdn The first constraint assumes that any pair of nodes that can

W, = Wai+((n—1)dn— Sn1)*/(n(n—1)). transmit to each other can potentially communicate in the
Then the mean and standard deviation are updated as sensor network (and hence needs to be _monito_red). This is
S, /n, and6? = W, /(n — 1). because thg netW(_)rk topology changes with traffic demands,
and dynamic routing protocols (such as [13]) can render

B. Abnormal delay detection dynamic topologies. The second constraint takes account of

Abnormal delay detection can be modeled as a change-pditt limited capability of the sniffers. We refer to as the
detection problem: when the distribution of the delays chang@@ximum allowed workloacr workload constraint If a
(we assume the original delays are normal), we say the del&pffer overhears the transmission from more thapairs of
become abnormal. Whe# is an intermediate node, as showodes, it only processes the packets franpairs. The last
earlier, a sniffer obtains a sequence of absolute delays ftorrfonstraint aims at minimizing the cost for deploying sniffers.
to B, and can apply an online change-point detection algorithmMore formally, consider a wireless sensor network deployed
to these delays to detect a change point. WHeis a source, in a two-dimensional area, and let denote the transmission
a sniffer obtains a sequence of relative adjusted delays ftonfange of sensor node;. As in many studies, we assume that
to B. Since these delays only differ from the absolute delayide coverage regionof n;, R;, is a circular area, centered
by a constant, the sniffer can still apply an online change-poiat the node, with the radius of. We assume that a sniffer
detection algorithm to these delays to detect a change poifaced at any point in the coverage regionnpfcan overhear

Many techniques have been developed for online chandge transmission from;. Furthermore, we assume that=
point detection [11], [12]. Different online detection tech?,Vi. Therefore, two nodes can transmit to each other if their
niques may prove effective for different abnormal scenariodistance is less than and a sniffer can overhear a sensor node
We illustrate how we detect abnormal delays that are caugélis distance to the sensor node is less thaiihe goal of the

by congestion in Section V-A. sniffer placement problem is to determine the locations of the
sniffers, and assign pairs of sensor nodes to sniffers to satisfy
C. Summary the three requirements stated earlier. When a sniffeonitors

The sniffers placed for delay measurement can also be useplair of nodesp; andn;, we denote it ag(n,;,n;) = s, and
for other purposes. For instance, they can monitor sensor nodefer to ¢ as theassignment functian
and discover abnormal nodal behaviors [7]. For instance, aWe prove that the sniffer placement problem is NP-hard
sniffer may raise an alarm when it stops hearing from a sengproof is found in the Appendix). In Section IV, we develop
node for a while. We only focus on monitoring delays in thigfficient approximate algorithms to solve this problem.
paper.

In summary, our proposed architecture uses existing traffic
inside the sensor network for delay measurement. It is simplen this section, we first propose a pre-processing algorithm
requiring no clock synchronization or instrumentation at thdat determines candidate sniffer locations (since a sniffer
sensor nodes. As we shall see (in Section V), our delagn be placed anywhere in a sensor network, the number of

IV. SNIFFER PLACEMENT ALGORITHMS
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Fig. 2. lllustration of virtual graph. Fig. 3. lllustration of the max-flow formulation.

candidate sniffer locations is infinite). We then present twalgorithms consider airtual graph constructed as follows.
algorithms to solve the sniffer placement problem. We first map each pair of sensor nodes that can transmit to
- . . . each other to airtual node We then connect a virtual node

A. Determining candidate sniffer locations and a candidate sniffer usingvértual edgeif the sniffer can

We develop the following algorithm to determine a set ghonitor the pair of sensor nodes that correspond to the virtual
candidate sniffer locations, denoted/asinitially, L is empty. node. Fig. 2 shows an example virtual graph (it is the virtual
We then consider each pair of sensor nodgsandn;, in the  graph for the example in Fig. 1), where the white dashed nodes
network. If n; andn; can transmit to each other (i.e., theiand shaded nodes represent respectively the virtual nodes and
distance is less thar), then the boundaries of their coverag@andidate sniffers, and the dashed lines represent the virtual
regions,R; and R;, must intersect at two points, and we ad@édges. Letl” denote the set of virtual nodes. Letv) = s
these two intersection points tb. Algorithm 1 summarizes denote that sniffes € S. monitors virtual nodey € V. It is

this algorithm. equivalent to the assignment functigr(n;,n;) = s, where
n; andn; are the pair of sensor nodes corresponding.to
Algorithm 1 Determine Candidate Sniffer Locations Therefore, we only need to assign sniffers to the virtual nodes
1. L=0 to obtain assignment in the original problem.
2: for Vn;,n;,i # j do We next present the algorithms for sniffer placement in
3: if n; andn; can transmit to each othénen detail. Both algorithms run in iterations to determine a set
4: The boundaries oR?; and R; intersect at two points, of sniffers, S C S., and the assignment functiog, Initially,
denoted ag, andp, the set of snifferss, is empty. In each iteration, the algorithms
5: L=LU{p1,p} add a sniffer intoS. The iteration continues until all virtual
6: endif nodes are monitored. These two algorithms differ in that one
7: end for is based on a max-flow formulation, and the other uses a

simple heuristic. We refer to them adax-flow and Max-
We next show that the above algorithm for determiningegreeSniffer Placement Algorithm, respectively.
candidate locations is sufficient. That is, suppSsds the set 1) Max-flow Sniffer Placementfhis algorithm uses a max-
of sniffers in an optimal solution. Then, for any sniffee $*, flow formulation and is inspired by [8]. We construct a max-

we can find a candidate location inthat corresponds to the flow graph as follows. First, we construct a bipartite graph,
location ofs. where one set in the graph is the candidate sniffer Sgt,

Theorem 1:Vs € S*, there exists a locatiohe L so that and the other set is the virtual node set, A nodes € S,
the set of sensor node pairs monitoredsbyan be monitored is connected to a node € V if s can monitorv (i.e., s
by a sniffer located at. can overhear the transmission of the pair of sensor nodes
Proof: Without loss of generality, suppose the set dforresponding te); the capacity of edges, v) is 1. We further
sensor node pairs that are monitoredsbis X = {(n;,n,)}. @dd a super source and a super sink. The super source is
Then s must be in the intersection region dt; and R;, connected to each candidate sniffer with the capacityvof
VY(n;,n;) € X. Let B denote the boundary of this intersectiort his limits that a sniffer monitors at most virtual nodes
region. Then there exist j such that(n;,n;) € X, and one (i-€.,w pairs of sensor nodes). Each sensor node is connected
intersection point of the boundaries Bf and R;, denoted as 10 the super sink with the capacity f Fig. 3 illustrates the
I, is on B. Then! can monitor all the pairs iX, and/ € L Max-flow graph thus constructed. Lgtdenote the maximum

by Algorithm 1, thus proving our claim. m ntegral flow of this graph. Then it is easy to see that all
) ) the virtual nodes are monitored if and only jf = |V|.
B. Sniffer placement algorithms Furthermore, the assignment function can be easily obtained

We develop two algorithms for sniffer placement. Botlirom the max-flow solution: if the amount of flow from sniffer
algorithms use Algorithm 1 to determine a set of candidateto virtual nodev is positive, i.e.,f(s,v) > 0, we assigns
sniffer locations, and place a sniffer at each candidate locatimmonitorv. In the following, we refer to a max-flow graph
to construct a candidate sniffer sef,. Furthermore, both thus constructed a&'(S.,V, E,w,1,1), where the first two



elements represent the sets of candidate sniffers and virtapkrations in one iteration. In each iteration, the algorithm
nodes, respectively; the third element represents the setficdt constructs grapli/(S. UV, E), whereS. and V' are the
edges that connects candidate sniffers and virtual nodes; thierent set of candidate sniffers and virtual nodes, respectively,
last three elements represent the capacity of an edge from they) € E if s can monitorv, Vs € S.,Vv € V. It then
super source to a sniffer, the capacity of an edge from a sniffds the sniffer with the maximum degree into the sniffer set
to a virtual node, and the capacity of an edge from a virtuéience the name Max-degree Sniffer Placement Algorithm).

node to the super sink, respectively.

Algorithm 2 Max-Flow Sniffer Placement

The intuition is that a candidate sniffer with a larger degree
can monitor more virtual nodes, and hence may reduce the
number of sniffers needed. More specifically, suppobas the

1. Place a sniffer at each candidate location to construct@ximum degree. The algorithm adel$o the sniffer set, and

candidate sniffer sef.
S=0,E=90
: for Vs € S.,Vv € V do
if s can monitorv then
E=FEU{(s,v)}
end if
end for
: repeat
Se=5:\8
for Vs € S. do
Construct max-flow grapl*(S U {s},V, E,w,1,1)
Let f; denote the maximum integral flow of
end for
s = argmaxes, fs
S=SuU{s}
: until all virtual nodes are monitored
- for Vs € S;Vv € V do
if fs(s,v) > 0 then
p(v) = s
end if
: end for
: Return (S, ¢)
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assigns to monitor a set of virtual nodes thatcan monitor,
denoted asV(s). If more thanw virtual nodes are invV(s),

it assigns thew virtual nodes with the lowest degrees $o
(the intuition is that virtual nodes with larger degrees may be
able to be monitored by other candidate sniffers). Afterwards,
it adjusts S, and V: line 13 removess from S., and line

14 removes all virtual nodes that are monitored frbimThe
iteration continues until all virtual nodes are monitored.

Algorithm 3 Max-Degree Sniffer Placement
1: Place one sniffer at each candidate location to construct
candidate sniffer sef,
225=10
3: repeat
4:  Construct graplz(S. UV, E), edge(s,v) € E if s can
monitorv € V, Vs € S.,Vv € V
Suppose that € S. has the maximum degree
S=5SU{s}
N(s) ={v | s can monitorv,v € V'}
if IN(s)] <w then
p(v) = s,Yv € N(s)
10. else
11: Assign sniffers to w virtual nodes inN (s) that have
the lowest degrees

The Max-flow Sniffer Placement algorithm is presented in2:
Algorithm 2. Line 1 places a sniffer at each candidate locatiofs:
to construct a candidate sniffer sét,. Line 2 initializes the 14

end if
Se = 8.\ {s}
Remove all virtual nodes that are monitored frém

sniffer set,S, to be an empty set. Lines 3-7 add a set of edgess: until all virtual nodes are monitored
E, between candidate sniffers and virtual nodes: it adds as: Return(S, ¢)

edge(s,v) whens € S. can monitorv € V. In each iteration
(lines 9-15), the algorithm selects a candidate snisfer .S,
ands ¢ S so thatS U {s} produces the maximum integral
flow in the max-flow graplG(SU{s},V, E,w, 1,1), and adds
this sniffer into the sniffer set. This process continues unglf
all virtual nodes are monitored. Last, lines 17-21 record tl'b%

as&gnmgnt function. . . _delay monitoring and abnormal delay detection; the other on
Following the result in [8], we have the following aPProXi-gyajuating the sniffer placement algorithms.

mation ratio result (the proof is similar to that in [8]; detailed

proof is omitted): A. Evaluation of measurement methodologies

Theorem 2:The Max-flow Sniffer Placement algorithm has We use testbed experiments to evaluate our methodologies
approximation ratio ofin |V|, whereV is the set of virtual for delay monitoring and abnormal delay detection. Our test-
nodes. bed consists of eight TelosB motes, as illustrated in Fig. 4.

2) Max-degree Sniffer Placemenflgorithm 3 describes All the motes use B-MAC [14], the default MAC protocol
this algorithm. Line 1 places a sniffer at each candidate TinyOS. Due to limited space (the testbed is deployed in
location to construct candidate sniffer s&t, Line 2 initializes an office), we separate the sensor nodes in a few meters, as
the sniffer set,S, to be an empty set. Lines 4-16 describe thmarked in Fig. 4. Correspondingly, the power level at each

V. PERFORMANCE EVALUATION

In this section, we evaluate the feasibility and effectiveness
our delay measurement architecture. Our evaluation is
two aspects: one on evaluating the methodologies for



| 4 m | motes.

For hop (n4,ng), sinceny is an intermediate node, the
T (ny shiffer can obtain the absolute delays on this hop. We indeed
1m ® observe that the delays from the sniffer have mean and

standard deviation close to those fram the means aré3.2
L and 12.8 ms, respectively, and standard deviations are both
(0o QY 2.8 ms. For each packet, we obtain the difference of the delay

measurements from the sniffer and from. We observe that
98.4% of packets have differences of 0, 1, or -1 ms, verifying
the accuracy of the measurements from the sniffer (again the
error of +1 ms are due to the time granularity of 1 ms at the
motes). For the.6% of the packets with larger differences, we
suspect that they are caused by measurement noise at either

Fig. 4. Testbed setting: node) is the sink, nodes is a sniffer.

mote is set to a low level (it is set to 3, i.e-25 dBm). Node
ng is the sink. Nodes is the single sniffer in the testbed. It .
e sniffer or the sensor node.

can overhead packet transmissions from all the nodes in % Abnormal delav detectionWe next evaluate the eff
testbed. Last, a source sends a packet every two seconds; %a P1 ormal delay detectionive next evajuate the etiec-
e

packet carries an application-level sequence number. For A of the methodology that detects abnormal delays (see

. . . ection 1I-B). Abnormal delays in a sensor network can be
of experiments, we fix the route from a source to the sink. ) y
due to many reasons. We focus on abnormal delays caused

1) Delay monitoring: To evaluate the delay monitoringy,, congestion in the network. In particular, we look at two
methodology presented in Section II-A, we compare per-hQRenarios: (1jparallel sources where nodes:; and ns are
delays obtained using this methodology with those 0bta'”§8urces, both sending packets via nodesns, andn, to the

by instrumenting the sensor nodes. More specifically, cqnsidﬁﬁk’ and (2)tandem sourceswheren; andn, are sources,
the delay on a network hop from sensor nodléo B. This |, "sends its packets via nodes, ns, andn, to the sink, and

per-hop delay contains two components: the delay at nbde,  gengs its packets via nodes andn, to the sink. In both
and the radio propagation delay for sending a packet fomgeanarios, we emulate the occurrence of abnormal delays as

to B. When ignoring the latter (which is negligible), the perzy o5 At the beginning, the transmissions of the two sources
hop delay equals to the delay & which can be obtained 5o ot synchronized. Then after a certain time point, they are

by instrumentingA to record two timestamps: one is wheryy ,opronized (by sending a synchronization signal from node
A starts to transmit a packet (or receives a packet when_ it

- ) " . - ng 10 the two sources), which leads to congestion and hence
is an mterme_dlate node_), and the other is v_vh%mecelv_es @ abnormal delays.
signal that this packet is actually sent out into the air. Then For each source, the sniffer obtains per-hop delays (the

the difference of these two timestamps is one instance of iy 1,5 delays are relative delays), and maintains the current
delay atA. ) estimates of the mean and standard deviation of the delays.
We next present evaluation results. In our testbed, we |&dt ;, and & denote respectively the current estimates of the
n3 be a source, and transmit$00 packets vian, t0 the mean and standard deviation of the delays on a hop. They
sink, ng. This scenario leads to two network hof&s, n4),  are updated using the method in Section I1-A that incurs little
Wwhereng is a source, antha, no), wheren, is an intermediate giorage and computation overhead. We explore two change-
node. We instruments andn, to obtain the delays on hopspgint detection methods. The first change-point detection
(n3,n4) and(ny, no) respectively, and compare them with thenethod raises an alarm after observing two consecutive delays
measurements at the sniffer. that are larger tham + 36 (we use two consecutive large
For hop(ns,n4), sincens is a source, the sniffer can onlydelays instead of a single one to reduce false alarms). The
obtain relative delays (it regards the transmission time of teecond method is a non-parametric CUSUM method [12]. In
packet with sequence numbeéras ir, 7 = 2 seconds, and particular, we definel; = d; — a, whered; denotes the-th
uses the method in [9] to remove clock skew and offset in tlglay observation, andis chosen so that; is negative (with
delays on the fly). As described in Section II-A, these relativsigh probability) before a change point (we use-= i + 36).
delays differ from the absolute delays by a constant. From qust
measurements, the relative delays from the sniffer have mean yi = (yic1 +di) " y0 = 0,
of 5.0 ms and standard deviation 8 ms; the delays obtained
by instrumentingn; have mean ofi2.0 ms and standard where(x)" equals tor whenz > 0, and equals to 0 otherwise.
deviation of2.8 ms. Thus, we confirm that the delays from th@his method updateg after each delay observation and raises
sniffer and fromns indeed have the same standard deviatiomn alarm wheny; > h, whereh > 0 is a threshold, and we
(since they are off by a constant). Furthermore, for eaclseh = 1.256.
packet, we obtain the difference of the delay measurementdo systematically evaluate the performance of our abnormal-
from the sniffer and fromms. We observe that these differenceslelay detection methods, in both scenarios (i.e., parallel and
are indeed close to a constant: they dfet-(1) ms, and the tandem sources), for each source, we constiug00 delay
error of £1 ms are due to the time granularity of 1 ms at theequences on each hop as follows. We first run experiments



when the two sources are not synchronized, and obtain a 100
sequence ofl0,000 delays on each hop, which represents
normal delays. We then run experiments when the two sources
are synchronized to obtain a sequencel@f000 delays on
each hop, which represents abnormal delays. Afterwards, we
construct delay sequences using samples from the normal
and abnormal delay observations. In particular, each sequence
contains 250 normal delay observations (chosen from the
normal delay observation sequence, starting from a random 10
position) followed by 500 abnormal delay observations (cho- 80 90 100 110 120 130 140
sen similarly from the abnormal delay observation sequence). Transmission range (m)
For a delay sequence, our change-point detection meth@g@ss. Number of needed sniffers versus transmission range under Max-flow
stop and raise an alarm after detecting that the delay Hmsed algorithm and random uniform deployment.
become abnormal. A detection $siccessfuif it is within the
range of abnormal delays; a detection ifalse alarmif it is 100
within the range of normal delays; andaise negativeccurs 90
if no alarm is raised at the end of a delay sequence. Our 80
performance metrics are detection ratio, false positive ratio, 70
false negative ratio, and detection delay (the delay from the 60
change point to when an alarm is raised). igt
We observe the two change-point detection methods are 30
both effective. For both methods, the sniffer successfully 20
detects that the hop delays become abnormal: for all the hops, 10
the detection ratios are close to 1 (ab®&3%), the false 10 20 30 40 50 60 70 80 90100
positive ratio is close to 0 (less thanl% ), and the false Maximum allowed workload
negative ratio is close to O (less than7%). Furthermore, Fig. 6. Number of needed sniffers versus maximum allowed worklaad,
the detection delay is short: it ranges from 7 to 33 delayder Max-flow based algorithm and random uniform deployment.
observations.

Number of sniffers needed

b

Number of sniffers needed

next only present the results of the Max-Flow based algorithm
under uniform random deployment.

We evaluate the performance of the two placement al-Fig. 5 plots the number of needed sniffers as the transmis-
gorithms using simulation (for large-scale evaluation). Wsion range increases from 80 to 140 meters; 10, or 20. The
consider 100 sensor nodes deployed 308 m x 500 m results from the Max-flow based algorithm and the minimum
area using uniform random or grid uniform deployment. Inumber of needed sniffers are plotted in the figure (for a
uniform random deployment, the sensor nodes are deploygiden transmission range, the minimum number of needed
uniformly at random in the area. In grid uniform deploymengniffers is the average number of virtual nodes divideduby
one sensor node is uniformly randomly placed in each grid (o&., when all sniffers monitot virtual nodes). We observe
50 m x 50 m), and hence the node distribution is more evethat the results from our algorithm are close to the minimum
than that in uniform random deployment. The transmissiagquired values. For smaller transmission ranges, our results
range of all the sensor nodes is the same, varied from 80 to Iiffer slightly more from the minimum values than for larger
meters (corresponding to the transmission range of mote-clagmsmission ranges. This is because when the transmission
sensor nodes; we choose the minimum transmission rangea&fge is small, the network is not sufficiently dense for the
80 m because the network is disconnected when using a lowaiffers to achieve the maximum allowed workload; as the
value). A sniffer is allowed to monitor at most pairs of transmission range increases, the network becomes denser and
sensor nodes. The performance metric we use isitheber more sniffers achieve the maximum allowed workload. This
of sniffers needed~or each setting, we make 10 independei confirmed by workload distribution from our algorithm. For
runs using randomly generated seeds. The results below iagtance, whenw = 20, the fraction of sniffers that have
averaged over 10 runs; the 95% confidence intervals are tighé maximum workload increases frog6% to 90% as the
and hence omitted. transmission range increases fr@mto 140 m.

We find that for all the settings, the Max-Flow based We also observe from Fig. 5 that far = 10 and 20,
algorithm only slightly outperforms the Max-Degree basethe number of needed sniffers increases with transmission
algorithm: the maximum relative difference ™% and 12% range. This is because a larger transmission range leads to
under uniform random and grid random deployment, respex-denser network with more sensor node pairs (and more
tively. Furthermore, for both algorithms, the results undefirtual nodes) to be monitored, which leads to more needed
uniform random and grid random deployments are similar. Vémiffers. The above results are for small valuesugf we

B. Evaluation of sniffer placement algorithms



observe an opposite trend for larger valuesoFig. 6 depicts set of nodesC' denote the set of centers, adfy, ¢) denote
the impact of the maximum allowed workload;, on the the distance fronw to ¢, v € V, ¢ € C. The goal is to
number of needed sniffers. We observe that, although fiind a subset of centers}” C C and |C'| = K, so that
small values ofw, a larger transmission range leads to momax,cy min.cc d(v, ¢) is minimized.
needed sniffers; a® increases, the number of needed sniffers Our reduction is by showing that if we have an optimal
decreases more dramatically for a larger transmission ranglgorithm, A, for the sniffer placement problem, then we can
In particular, whenw = 40, all transmission ranges lead todevise an optimal algorithmd, for the K-center problem.
a similar number of needed sniffers, and afterwards, a lardarthe K-center problem, suppos®| =n and |C| = m. We
transmission range can lead to less needed sniffers. Thioider the distance from a node to a center in non-decreasing
because a larger transmission range leads to a denser netwandier and denote them a§ < dy... < d,,,. Then for a
which, although leads to more virtual nodes to be monitoregiven d;, the corresponding sniffer placement problem is as
can take advantage of larger allowed workloads to reduce floows. The sensor node set 18, the candidate sniffer set
number of needed sniffers. is C, and a sniffer can monitor a sensor node if and only
Last, we observe from Fig. 6 a diminishing gain wheiff its distance to the sensor node is within. This instance
increasingw for all transmission ranges: the number o€an be solved usingl,, and letS; denote the set of sniffers
needed sniffers decreases dramatically at first, and then lesghe optimal solution. We devise an algorithaty, for the
dramatically afterwards. The above results indicate that tfi&-center problem as follows. It uses; to solve the sniffer
capability of the sniffers need to be carefully chosen: thegilacement problem by using increasingly largg’s. That is,
maximum allowed workload needs to be sufficiently large sbstarts withd;, and then used,, and so on. The minimum
that the number of needed sniffers is small, while deploying so that|S;| < K is an optimal solution for the{-center
very capable sniffers may not be cost effective because of f@blem C’ = S;, max,cy min.ccr d(v, ¢) = d;). We hence
diminishing gains. have proved that the sniffer placement problem is NP-hard.
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