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Abstract—Smart grid is envisioned to incorporate local dis-
tributed power generation for better efficiency and flexibility.
Distributed generation, when not used carefully, however, may
compromise the stability of the grid. Recently, researchers have
proposed innovative architectures (e.g., microgrid, LoCal grid)
that virtualize a local generator as a constant load, source, or zero
load to the grid, thus offering great promise to connect distributed
generation into the grid without sacrificing its reliability. In fact,
intuitively, using these architectures, distributed generation may
enhance the stability of the power grid. In this paper, we develop
a simulation model to quantify how much distributed generation
can mitigate cascading failures. Applying this model to IEEE
power grid test cases, we find that local power generation, even
when only using a small number of local generators, can reduce
the likelihood of cascading failures dramatically.

I. INTRODUCTION

The electric grid is of vital importance to our daily life
and work. With careful control and management, it has been
operating with great reliability and robustness. However, large-
scale cascading failures did occur, as evidenced by the most
recent in 2003 when 50 million people in the U.S. Northeast
and Southeastern Canada lost power for up to several days [1].
Maintaining power system reliability and reducing the risk of
cascading blackouts is a critical issue.

Smart grid is envisioned to improve the efficiency, relia-
bility, and flexibility of the current grid while reducing the
rate at which additional electric utility infrastructure needs to
be built [2]. To make this vision a reality, many advanced
technologies need be incorporated into the current grid, leading
to fundamental changes in the architecture of the grid. For in-
stance, with distributed power generation (by local generators
and renewable energy sources), the power grid is transformed
from a centralized infrastructure with one-way power flow
(from the centralized power plants to distributed loads) to a
distributed infrastructure with two-way power flows.

Distributed generation, when not used carefully, may com-
promise the stability of the grid [3], [4]. Recently, innovative
architectures (e.g., microgrid [5], LoCal grid [6]) have been
proposed to virtualize a local generator as a constant load,
source, or zero load to the grid, greatly simplifying its impact
on the grid, and hence offering great promise to connect
distributed generation into the grid without sacrificing the
reliability of the grid. Indeed, when using these architectures,
as loads are being served locally, less power flows inside
the grid infrastructure. Therefore, intuitively, the stability and
reliability of the grid can be enhanced. In this paper, we inves-
tigate whether this is indeed the case, and quantify how much

improvement can be realized through distributed generation
without any upgrade to the current grid infrastructure.

We focus our study on how distributed generation affects
the likelihood of cascading failures, where the failures are
triggered by an initial event (e.g., a transmission line failure),
and then propagates inside the grid, leading to catastrophic
large-scale blackouts. In particular, we develop a simulation
model that investigates the vulnerability of the power grid
to cascading failures as we gradually increase the number of
local generators. Applying this model to IEEE power grid test
cases, we find that local power generation, even when only
introducing a small number of local generators into the grid,
can reduce the likelihood of cascading failures dramatically.
We also find diminishing gain from increasing the number of
local generators: the benefits is dramatic at the beginning and
less dramatic afterwards.

As related work, cascading failures in power grids have
been analyzed and modeled in many studies (e.g., [7], [8],
[9], [10], and see [11] for a review). Many methods have
been proposed to mitigate and prevent cascading failures, e.g.,
using advanced decision techniques [12], [13], [14], [15], and
combining monitoring and control tools [16], [17]. However,
most existing studies consider traditional power grid with
centralized generators and one-way power flow, while our
study is in the context of smart grid, with the focus on how
distributed generation mitigates cascading failures.

The rest of the paper is organized as follows. Section II
presents the problem setting, and describes some background
on power grid and cascading failures. Section III presents our
methodology in investigating the benefits from local genera-
tion. Section IV describes simulation results over IEEE power
grid test cases. Finally, Section V concludes the paper and
presents future work.

II. PROBLEM SETTING AND BACKGROUND

In this section, we describe problem setting, and some
background on power grids and cascading failure. The key
notation is summarized in Table I for easy reference.

Consider an electric grid with n busses and m transmission
lines. The busses are generators, load centers or substations.
In addition to these n busses, there is a slack bus, at which the
grid imports power from or exports power to a neighboring
grid. With distributed generation, a bus can generate power to
serve its load locally. Henceforth, we refer to the generators in
the original grid as central generators, and a bus that generates
power to serve its local load as a local generator. Adopting
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the architectures proposed in existing studies (e.g., [5], [6]),
we assume a local generator virtualizes itself as a constant
source, load, or zero load to the grid.

Let Pi denote the amount of power generated by bus i.
When bus i is a central or local generator, Pi > 0; otherwise
Pi = 0. Let Li denote the load at bus i. It is positive when
bus i has load and zero otherwise. Let Qi = Pi − Li. Then
Qi is the actual power injection from bus i to the grid: when
Qi > 0, bus i injects power into the grid, when Qi < 0, bus
i takes power out of the grid, and when Qi = 0, bus i is self-
sustained. The total generation and load of the grid needs to
be balanced, i.e.,

∑n
i=1 Qi+Qs = 0, where Qs is the amount

from the slack bus, and the sign of Qs indicates whether the
grid imports power from or exports power to a neighboring
grid.

Let fl denote the active power flow in line l. It is pos-
itive when flow is in the direction of “from” node to “to”
node, and negative otherwise. The capacity of a line can be
defined as the thermal limit, the voltage drop limit, or the
steady-state stability limit [18], [19]. Of them, the steady-state
stability limit is a practical estimate of line loadability and
is relatively easy to estimate from the IEEE power grid test
cases. Therefore, as in [9], we use the steady-state stability
limit to represent the capacity of a line. More specifically, let
fc
l denote the capacity of line l. It is estimated as 0.475/xl,

where 1/xl is the susceptance of line l. For convenience, let
f be a vector denoting the flows over all the lines. That is,
f = [f1, . . . , fm]T . Similarly, let fc be a vector denoting the
capacity for all the lines. That is fc = [fc

1 , . . . , f
c
m]T .

Individual links have circuit breakers to protect them from
excessive local flows. For simplicity, we use a deterministic
model for protection tripping. In particular, as in [9], we
assume line protections for line l trip when |fl| > 1.25fc

l ,
and refer to the value 1.25fc

l as the protection trip point.
For convenience, we define fn

l = fl/f
c
l to represent the

loading of line l. Let vector fn = [fn
1 , . . . , f

n
m]T represent the

loading for all the lines. Then

fn = f/fc, (1)

where the division is element-wise. We also use vector norms
to represent the maximum loading and total loading (in abso-
lute value) of the grid. In particular,

|fn|∞ = max(|fn
1 |, . . . , |fn

m|), (2)

|fn|1 =
m∑
i=1

|fn
i |. (3)

A. Estimating line power flows

We can use AC or DC power flow equations to estimate
the line power flows. AC power flow equations are non-
linear equations modeling the flows of both active and reactive
powers, while DC power flow equations are linear equations
modeling active power only. Assuming small voltage deviation
(desirable for normal operation of the grid), DC power flow

TABLE I
KEY NOTATION.

Notation Definition
n Number of busses
m Number of transmission lines
Pi Amount of power generated by bus i
Li Amount of load at bus i
Qi Actual power injection from bus i to the grid
f Amount of active power flow in the transmission

lines, f = [f1, . . . , fm]T

fc Capacity of transmission lines, fc = [fc
1 , . . . , f

c
m]T

fn Loading of transmission lines, fn = [fn
1 , . . . , fn

m]T

equations provide a good approximation of their AC counter-
parts. For simplicity, we use DC power flow equations in this
paper.

DC power flow equations can be found in many textbooks
on power systems (e.g., [18], [19]). For completeness, we also
describe them below. Let us first define some notation:

• Let Q be a vector denoting the actual power injection
from busses. That is, Q = [Q1, . . . , Qn]

T .
• Let A0 denote the edge-node incidence matrix (i.e., rows

are lines and columns are nodes), where an item aij = 1
if line i exits bus j, aij = −1 if line i enters bus j, and
aij = 0 otherwise.

• Let A be a matrix reduced from A0. It is A0 with the
column associated with the slack bus removed.

• Let C denote line property matrix. It is a diagonal matrix.
More specifically, C = diag(1/xi) where 1/xi is the line
susceptance of line i.

• Let B denote bus susceptance matrix, B = AT CA.
Using the above notation, the DC power flow equations are

f = CAB−1Q. (4)

B. Cascading failures

One transmission line outage may lead to a cascading
sequence of line outages since when one line trips, its power
flow redistributes to other lines in the grid, and may cause
them to be congested and tripped. We obtain the evolution
of cascading failures as follows [9]. Suppose a line, l, that
connects bus i to j is tripped. Let f′ be the vector of line
flows after the outage of line l. Then

f′ = C′AB′−1Q, (5)

where C′ is the line property matrix after the line outage,
obtained by setting the l-th entry in C to be zero (i.e., assuming
infinite impedance), and B′ is the bus susceptance matrix
after the line outage, B′ = AT C′A. After obtaining f′, we
check whether the flow in a line exceeds its protection trip
point. If so, then this line trips, and we recalculate the power
flow as described earlier. This procedure repeats until the grid
breaks apart into disconnected islands, which generally lead to
widespread blackout, or the outages self limit and stop before
the grid breaks up.

We judge whether the grid breaks up or not by looking
at the rank of the current bus susceptance matrix (i.e., B′).
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maximize:
n∑

i=1

Pi (6)

subject to:
f = CAB−1Q (7)
Q = P − L (8)
L = yL′ (9)
y > 0 (10)
|f| ≤ γfc (11)
n∑

i=1

Pi = β
n∑

i=1

Li (12)

Pi > 0, bus i is a central generator (13)
Pi = 0, bus i is not a generator (14)

Fig. 1. Determine the amount of load and generation at each bus in the
original power grid (i.e., before adding local generators), where β > 0, γ >
0, L′

i ∈ (0, 1],∀i are given beforehand.

More specifically, the grid breaks up when this matrix loses
rank [20] (indeed, we need this matrix to be full rank and
hence invertible to solve the power flow equations (4)).

III. BENEFITS FROM DISTRIBUTED GENERATION

We develop a simulation model to investigate the benefits
of using local generators in the power grid. This simulation
model first determines the amount of load and generation at
each bus in the original grid. It then adds k local generators
to the grid, and these local generators and central generators
jointly serve the loads in the grid. Afterwards, it simulates
transmission line failure in both the original grid and the new
grid with local generators to investigate their vulnerabilities
to cascading failures. More specifically, each simulation run
is as follows:

• In the original grid, for each bus i, we randomly generate
a number, L′

i, uniformly in (0, 1]. We then solve the linear
programming (LP) problem in Fig. 1 to determine the
actual load, Li, for each bus i, and the amount of power
generated by each central generator.

• Suppose we add k local generators to the original grid.
We randomly choose k load busses as local generators,
and determine the amount of power generated by each
local generator. After that, we solve the LP program in
Fig. 2 to determine the amount of power generated by
each central generator.

• In the original grid, we randomly pick a line and trip it out
of service. We then follow the procedure in Section II-B
to determine whether cascading failures caused by this
line outage self limits or causes the grid to break up. We
repeat the above process to simulate cascading failures in
the new grid with local generators.

minimize: |fn|∞ (15)
or

minimize:
|fn|1
m

(16)

subject to:
fn = f/fc (17)
f = CAB−1Q (18)
Q = P − L (19)
|f| ≤ γfc (20)
n∑

i=1

Pi = β

n∑
i=1

Li (21)

0 ≤ Pi ≤ P 0
i , bus i is a central generator (22)

Pi = 0, bus i is not a generator (23)

Fig. 2. Determine the amount of power generated by the central generators
after adding local generators, where β > 0, γ > 0, Li, ∀i, and the amount
of power generated by each local generator are given beforehand.

We make multiple simulation runs using independently gen-
erated seeds and use the percentage of runs ending up in grid
breakup as the metric to measure the vulnerability of the grid
with and without local generators.

We next describe the two LP problems in more detail.
The LP problem in Fig. 1 determines the load and power
injection at each bus in the original grid. In this problem,
β > 0, γ > 0, and L′

i for each bus i are given beforehand.
The variables to be determined are y (and hence the actual
load Li = yL′

i at each bus i), and the amount of power
generated by each central generator. In our simulations, we
set γ close to 1.25 so that the most loaded line is close to
its protection trip point since we are interested in cascading
failures. The objective function maximizes the total amount of
power that is generated by the central generators. Since power
generation and demand have to be balanced, this optimization
problem also maximizes the total amount of load that is
supported by the grid. Constraints (7) to (10) specify how to
calculate the flows inside the grid. Constraint (11) states that
the amount of flow on each line is below γ times its capacity.
Constraint (12) specifies the relationship between the total
amount of power generation and load; the difference between
these two quantities is compensated through the slack bus.
Last, constraints (13) and (14) state that only central generators
generate power.

The LP problem in Fig. 2 determines the amount of power
generated by each central generator in the new grid (with
local generators) so that the robustness of the new grid is
maximized. In this problem, β > 0, γ > 0 are given
beforehand, using the same values as those in the original
grid. The load for each bus i, Li, takes the same value as
in the original grid. The amount of power generated by a
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TABLE II
IEEE POWER SYSTEM TEST CASES.

Test case busses Lines Load busses Central generators
IEEE 14 14 20 9 4
IEEE 57 57 80 50 6
IEEE 118 118 186 64 53

local generator i, Pi, is pre-determined. In our simulation,
we choose Pi uniformly randomly in [1 − ϵ, 1 + ϵ]Li, ϵ > 0
to match its load Li since in many cases in practice, the
primary goal of a local generator is to serve its load locally.
The variables to be determined in the optimization problem
are the amount of power generated by each global generator.
The objective function is minimizing the maximum or average
line loading (corresponding to objective function (15) and (16),
respectively). The rationale for choosing these two objective
functions is that when the line loading is low, the grid is not
congested, and hence is more resilient to cascading failures.
Constraints (17) to (21) specify how to calculate the flows
inside the grid and the constraints on the flows. In Constraint
(22), P 0

i is the amount of power generated by a central
generator i in the original grid (obtained by solving the LP
problem in Fig. 1). This constraint specifies that the central
generators in the grid are not upgraded to a higher capacity.
Note that this optimization problem may not have feasible
solutions. In our simulation, we found that only a very small
fraction of the problem instances (less than 4%) have no
feasible solutions. For those instances, slightly adjusting the
value of β (by 1%) leads to feasible solutions.

In addition to the optimization problem in Fig. 2, we also
investigate an idealized case where we are free to choose
the amount of power generated by the local generators. The
idealized case has less constraints than the problem in Fig. 2
(it does not have the constraint that the amount of power
generated by each local generator is given beforehand), and
hence provides a lower bound for each objective function
in Fig. 2. This idealized case is guaranteed to have feasible
solutions (since it has at lease one feasible solution where each
central generator i generates an amount of P 0

i ).

IV. SIMULATION RESULTS

We now investigate the benefits from using local generators
in the power grid through simulation. Our simulation uses
three IEEE power system test cases, IEEE 14 bus, IEEE
57 bus, and IEEE 118 bus [21]. These test cases all use
a centralized one-way power flow architecture. Each test
case contains one slack bus, several generator busses (central
generators), and the rest are load busses. Properties of these
test cases are summarized in Table II.

For each test case, we first look at the case with no local
generators and solve the LP problem in Fig. 1. We then
gradually increase the number of local generators, and solve
the LP problem in Fig. 2. For each setting, we make 100
simulation runs. Each run differs in the amount of loads at
the busses. The results we present are the average of these
simulation runs. We set β = 1.0, i.e., the grid is self-sustained

power network, and set γ = 1.25 × 0.99 so that the most
loaded line is close to its protection trip point, since we
are interested in cascading failures. For local generators, we
choose ϵ = 0, 0.1 or 0.2. In addition, we investigate the
idealized case where the amounts of power by local generators
are not given beforehand. In the following, we only present
the results under IEEE 57 bus and 118 bus test cases; results
for 14 bus test case exhibit similar trend as IEEE 57 bus.

A. Minimize maximum line loading

Fig. 3 plots the results as we increase the number of local
generators from 0 to 49 when the objective function is mini-
mizing the maximum line loading (i.e., objective function (15))
for IEEE 57 bus test case. The results with zero local generator
are for the original grid. Fig. 3(a) plots the maximum line
loading for ϵ = 0, 0.1 and 0.2, and the idealized case. The
confidence intervals are tight and hence omitted. As expected,
for each setting, the idealized case has a lower maximum line
loading than the other cases. When ϵ = 0, the amount of power
generated by a local generator matches its load exactly; while
a larger ϵ allows a larger deviation from the load. Results under
the three different values of ϵ are very similar, indicating that
ϵ has little impact on the result. For all the cases, we observe
that the maximum line loading decreases monotonically as we
increase the number of local generators. In particular, when
most of the load busses are local generators, the maximum
line loading is close to zero. This is expected, since in this
case, most loads are served locally and hence the amount of
flow inside the grid is very low.

Fig. 3(b) plots the fraction of runs ending up in grid breakup
versus the number of local generators. We only present results
for ϵ = 0.2 and the idealized case (the trends for ϵ = 0 and
0.1 are similar). In general, we observe that the fraction of
breakup instances decreases as we increase the number of
local generators. In particular, even placing a small number of
local generators dramatically decreases the likelihood of grid
breakup. For instance, the fraction of grid breakup decreases
from around 0.5 in the original grid to 0.3 when using five
local generators. These results demonstrate that using local
generators can significantly enhance the robustness of the grid
to cascading failures. Fig. 3(c) plots the average number of
tripped lines versus the number of local generators. We again
observe the benefits of using local generators: the number
of tripped lines decreases when increasing the number of
local generators; and even a small number of local generators
dramatically decreases the number of tripped lines.

Fig. 4 plots the results for IEEE 118 bus as we increase the
number of local generators from 0 to 61. Fig. 4(a) shows a
similar trend as Fig. 3(a): the maximum line loading decreases
as we increase the number of local generators. However, unlike
Fig. 3(a), the max line loading in Fig. 4(a) does not approach
to zero. This is due to the large number of central generators
in the IEEE 118 bus test case (nearly half of the busses are
central generators) and Constraint (22): after solving the LP
in Fig. 1, the amount of power generated by many central
generators is zero, and Constrain (22) forces the generated
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Fig. 3. Simulation results for minimizing the maximum line loading using the IEEE 57 bus test case.
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Fig. 4. Simulation results for minimizing the maximum line loading using the IEEE 118 bus test case.
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Fig. 5. Simulation results for minimizing the average line loading using the IEEE 57 bus test case.

amount at these central generators remain zero while solving
the LP in Fig. 2. Therefore, even for a large number of
local generators, the maximum line loading does not approach
zero. For the same reason, although the percentage of grid
breakup decreases sharply (see Fig. 4(b)) when increasing the
number of local generators, it does not approach zero even
with 61 local generators. Last, Fig. 4(c) shows a more dramatic
decrease in the number of tripped lines than Fig. 3(c). This
is due to the much larger number of transmission lines in the
IEEE 118 bus case than the IEEE 57 bus case.

B. Minimize average line loading

Fig. 5 plots the results when the objective function is min-
imizing the average line loading (i.e., objective function (16))
for IEEE 57 bus test case. Again the results for zero local
generator are for the original grid. In general, we observe
similar trends as those in Fig. 3, indicating that the objective
function of minimizing the average line loading is another
effective way to enhance the robustness of the grid towards
cascading failures. However, we also observe from Fig. 5
that a very small number of local generators may not lead to
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Fig. 6. Simulation results for minimizing the average line loading using the IEEE 118 bus test case.

benefits. In particular, when there is a single local generator,
the average line loading and the fraction of grid breakup
are higher than those without local generators as shown in
Figures 5(a) and (b), respectively. On the other hand, we again
observe a diminishing gain from increasing the number of
local generators in decreasing the percentage of grid breakup
and the number of tripped lines. Fig. 6 plots the results for
IEEE 118 bus, which shows similar trends as Fig. 5.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a simulation model to quantify
how much distributed generation can mitigate cascading fail-
ures as we gradually increase the number of local generators
in the power grid. Applying this model to IEEE power grid
test cases, we find that local power generation can reduce
the likelihood of cascading failures dramatically. We also
find diminishing gain from increasing the number of local
generators: the benefits is dramatic at the beginning and less
dramatic afterwards.

As future work, we will design other models to quantify the
benefits of using local generation. For instance, how much it
helps to increase the amount of load that can be supported by
the power grid while still maintain the robustness of the grid.
Furthermore, we will develop models that consider AC flows
and voltage fluctuation (due to bidirectional power flows).
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