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Abstract— For applications involving data transmission from

multiple sources, an important problem is: when the sources

use multiple paths, how to maximize the aggregate sending rate

of the sources using application-layer techniques via TCP? We

develop an application-level distributed rate controller to solve

this problem. Our controller utilizes the bandwidth probing

mechanisms embedded in TCP and does not require explicit

network knowledge (e.g., topology, available bandwidth). We

theoretically prove the convergence of our algorithm in certain

settings. Furthermore, using a combination of simulation and

testbed experiments, we demonstrate that our algorithm provides

efficient multipath data transfer and is easy to deploy.

I. I NTRODUCTION

A wide range of applications require data transmission

from geographically distributed sources to one or multiple

destinations using the Internet. For instance, in the Engineering

Research Center (ERC) for Collaborative Adaptive Sensing of

the Atmosphere (CASA) [1], multiple X-band radar nodes are

placed at geographically distributed locations, each remotely

sensing the local atmosphere. Data collected at these radar

sites are transmitted to a central or multiple destinations using

a state-wide public network for hazardous weather detection.

In another example, high-volume astronomy data are stored at

multiple geographically distributed locations (e.g., the Sloan

Digital Sky Survey data [2]). Scientists may need to retrieve

and integrate data from archives at several locations for

temporal and multi-spectra studies using the Internet (e.g., via

SkyServer [3]). In yet another example, an ISP places multiple

data monitoring sites inside its network. Each monitoring site

collects traffic data and transmits them to a central location

for analysis and network diagnosis.

A crucial factor for the success of the above applications is

efficient data transfer from multiple sources to one or multiple

destinations. In these applications, the sources and destinations

typically have high access bandwidths while non-access links

may limit the sending rate of the sources as indicated by

recent measurement studies [4]. This is clearly true in CASA:

the sending rates of the radar nodes are constrained by low-

bandwidth links inside the state-wide public network. When

the bandwidth constraints are inside the network, using mul-

tiple paths (e.g., through multihoming or an overlay network)

between a source and destination can provide a much higher

throughput [5], [6]. The problem we address is:when the

sources use multiple paths, how to maximize the aggregate

sending rate of the sources?More specifically, the problem is

as follows. Consider a set of sources with their corresponding

destinations. Each source is allowed to spread data onk (k ≥
2) given network paths. We restrict the source to use no more

than k paths since data splitting involves overheads (e.g.,

meta data are required in order to reassemble data at the

destination). The problem we address is how to control the

sending rate on each path in order to maximize the aggregate

sending rate of the sources.

In this paper, we useapplication-layertechniques running

on top of TCP to solve the above problem. We take this

approach due to several reasons. First, these applications re-

quire reliable data transfer which makes TCP a natural choice.

Second, since TCP is the predominant transport protocol in

the current Internet, application-layer approaches via TCP are



easy to deploy. Furthermore, all applications in the Internet are

expected to be TCP friendly [7] and using TCP is by definition

TCP-friendly. Our main contributions are:

• We develop a distributed algorithm for application-layer

multipath data transfer. This algorithm utilizes the band-

width probing mechanisms embedded in TCP and does

not require explicit network knowledge (e.g., topology,

available bandwidth).

• We analyze the performance of our algorithm in scenarios

where multiple paths between a source and destination

are formed using an overlay network, which has been

shown to be an effective architecture for throughput

improvement [6]. We prove that rate allocation under our

controller converges to maximize the aggregate sending

rate of the sources in settings with two logical-hops and

a single destination.

• Using a combination of simulation and testbed experi-

ments, we demonstrate that our scheme provides efficient

multipath data transfer and is easy to deploy.

As related work, the studies of [8], [9], [10] consider

multipath routing at the network layer, as an improvement to

the single-path IP routing. We, in contrast, consider multipath

data transfer at the application level, without any change

to IP routing. Hence, our approach is readily deployable

in the current Internet. The studies of [11] and [12] focus

on data uploading and replication respectively, allowing a

source to use multiple paths inside an overlay network. They

developcentralizedalgorithms to minimize the transfer time.

Our focus is on developing efficientdistributed algorithms

to maximize the aggregate sending rate of the sources. A

number of studies [13], [14], [15], [16], [17], [18], [19], [20]

develop multipath rate controllers based on an optimization

framework [21], [13]. These algorithms require congestion

price feedback from the network and are difficult to realize

in practice. Our emphasis is on efficient application-level

approaches that are easy to implement.

The rest of this paper is organized as follows. Sec-

tion II presents the problem setting. Section III presents our

application-level rate control algorithm. Section IV presents

a performance evaluation usingns-2 simulator. Section V

describes experimental results of our multipath rate controllers

in a testbed. Finally, Section VI concludes this paper and

describes future work.

II. PROBLEM SETTING

In this section, we formally describe the problem setting.

Consider a set of sourcesS, each associated with a destination.

Let D denote the set of destinations. Each source is given

k (k ≥ 2) network paths and spreads its data over the paths.

We denote bypath ratethe rate at which a source sends data

over a path. The sum of the path rates associated with a source

is thesource rate. For ease of exposition, we index a source’s

paths as paths1 to k. For sources, let xsj denote its path rate

on thej-th path andxs denote its source rate,xs ≥ 0, xsj ≥ 0.

Then,xs =
∑k

j=1 xsj . Let ms be the maximum source rate

of sources, referred to as thedemandof the source. Then

xs ≤ ms. This maximum source rate may come from the

bandwidth limit of the source or the data generation rate at

the source.

For ease of exposition, we only consider sources using

multiple paths; including sources using a single path in the

problem formulation is straightforward [22]. LetL denote the

set of links in the network. The capacity of linkl is cl, l ∈ L.

Let Lsj denote the set of links traversed by thej-th path of

sources. The path-rate control in the network can be stated

as an optimization problemP:

P : maximize:
∑

s∈S

xs (1)

subject to: xs =
k∑

j=1

xsj , xsj ≥ 0, s ∈ S (2)

0 ≤ xs ≤ ms, s ∈ S (3)
∑

s,j:l∈Lsj

xsj ≤ cl, ∀l ∈ L (4)

where (4) describes the link capacity constraints.

Note that the above source rate,xs, and path rate,xsj , refer

to the actual sending rates that sources sends into the network.

It is important to differentiate them from the sending rates

that a source sets at the application-level. Letysj denote the

sending rate that sources sets at the application-level on path

j, referred to asapplication-level path rate. Thenxsj ≤ ysj

since the actual sending rate into the network is fundamentally

limited by the underlying transport protocol (e.g., TCP). When

developing an application-level rate contoller, we only have

control overysj and our goal is to maximize
∑

s∈S

∑k
j=1 xsj .
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Fig. 1. Illustration of an overlay network. In this example,k = 2.

The multiple paths from a source to a destination can be

formed using multihoming or an overlay network. Our perfor-

mance study in this paper focuses on the latter scenario, which

can effectively improve throughput [6]. More specifically, the

overlay network we consider in this paper is formed by the

set of sourcesS, the set of destinationsD, and a set of relays

R. A source selectsk (k ≥ 2) overlay paths (i.e., network

paths via one or multiple relays) and spreads its data over

the overlay paths, as illustrated in Fig. 1. The sources and

destinations have high access bandwidth (e.g., through well-

connected access networks or multihoming [23]). The relays

are placed (e.g., using techniques in [24]) such that multiple

overlay paths do not share performance bottlenecks.

Overlay networks where each overlay path contains a single

relay are of special interest to us. This is because routing in

this type of overlay networks is very simple. Furthermore,

recent studies have shown that using a single relay on overlay

paths provides performance close to those using multiple

relays [25], [24], [26]. Henceforth, we refer to this type

of overlay network astwo-logical-hop overlay network. Our

performance evaluation focus on this type of overlay network

(see Section IV).

III. A PPLICATION-LEVEL MULTIPATH RATE CONTROL

We now describe our application-level multipath rate control

algorithm. A key difference between our application-level ap-

proach and a transport-level approach (e.g., by modifying TCP

directly) is: the sending rate that a source sets at the application

level may be higher than that actually going into the network

(since the actual sending rate is fundamentally limited by the

underlying transport protocols). Next, we first describe our

algorithm, and then describe a convergence property of our

algorithm. At the end, we briefly describe how to realize our

algorithm using TCP.

psj(n) = psj(n− 1), j = 1, . . . , k
ysj(n) = ysj(n− 1), j = 1, . . . , k
βsj(n) = βsj(n− 1), j = 1, . . . , k
g = gs(n− 1)
if (xsg(n− 1)/ysg(n− 1) < 1− δ) {

ysg(n) = (ysg(n− 1)− ε)/(1 + βsg(n− 1))
psg(n) = psg(n− 1)/2

Normalizepsj(n), j = 1, . . . , k s.t.
∑k

j=1
psj(n) = 1

βsg(n) = βsg(n− 1)/γ
Randomly select one path (other thang), recorded asgs(n)

}
else{

psg(n) = min(2psg(n− 1), 1)

Normalizepsj(n), j = 1, . . . , k s.t.
∑k

j=1
psj(n) = 1

βsg(n) = βsg(n− 1)α
Randomly select one path, recorded asgs(n)

}
g = gs(n)
z = ysg(n)
ysg(n) = min(ysg(n)(1 + βsg(n)) + ε, ms)
if (ysg(n) == ms) {

βsg(n) = max((ysg(n)− ε)/z − 1, 0)
}
if (

∑k

j=1
ysj(n) > ms) {

Normalizeysj(n), j = 1, . . . , k, j 6= h

s.t.
∑k

j=1
ysj(n) = ms

}

Fig. 2. Application-level multipath rate control: sources determines its

application-level path rates in then-th control interval,s ∈ S, βsj(n) ≥
0, α > 1, γ > 1.

A. Application-level control algorithm

The basic idea of our algorithm is: based on an initial valid

rate allocation (i.e., satisfying the link capacity constraint (4)),

each source independently probes for paths with spare band-

widths through the bandwidth probing mechanisms embedded

in TCP and increases its sending rates on those paths.

We now detail our algorithm (as shown in Fig. 2). Each

source divides time into control intervals (the lengths of the

control interval for different sources need not to be the same).

For a source, since the sending rates of the multiple paths are

correlated (the sum not exceeding the demand), in each control

interval, the source probes network bandwidth by randomly

selecting one path and increasing its path rate by a certain

amount. In then-th control interval, letpsj(n) represent the

probability that sources chooses to probe pathj, and letgs(n)

denote the path that sources selects for bandwidth probing.

Let ysj(n) denote the application-level path rate that source

s sets on pathj, and let xsj(n) denote the actual sending



rate that sources sends into the network on pathj. Note

that xsj(n) ≤ ysj(n). Our goal is to maximize the sum of

the actual sending rates of the sources through controlling the

application-level path rates. Initially,ysj(0) andpsj(0) can be

set to any valid values. Furthermore, sources is associated

with a rate increment termon path j in the n-th control

interval, denoted asβsj(n), βsj(n) ≥ 0.

We next describe our rate adjustment algorithm, inspired

by the Bertsekas’ bold step strategy used with the subgradient

method [27]. At the beginning of a control interval, a source

performs two steps to adjust its application-level path rates,

path selection probabilities and rate increment terms (if a

quantity is adjusted in neither step, it is kept to be the

same as that in the previous interval.). In the first step, the

source adjusts the above quantities based on whether the rate

increment on the selected path in the previous control interval

is successful or not (to be defined shortly). In the second step,

the source randomly selects a path and increases the sending

rate on that path.

The first step is detailed as follows. We first define how

to determine whether a rate increment is successful or not.

Suppose sources chooses pathg in the n-th control interval.

Then we say that the rate increment in then-th control

interval is successful iffxsg(n)/ysg(n) ≥ 1 − δ. That is,

increasing the application-level sending rate to a value that

can be achieved by the network is considered a success and

vice versa. Hereδ is a small positive constant, chosen to

accommodate measurement noises and network delay. If the

rate increment on a path is not successful, the sending rate

of this path is reduced to the original value (i.e., before

the rate increment), the probability to choose this path is

halved, and the rate increment term associated with this path

is divided by a constantγ > 1. Otherwise, the probability

to choose this path is doubled and the rate increment term is

multiplied by a constantα > 1. Intuitively, we increase the

rate-increment speed for a path after a success and decrease

the speed after a failure. This adaptive increment is important

for fast convergence as to be demonstrated in Section IV. In

principle, we can adjust the probability to choose a path in a

similar manner as that for the rate adjustment. However, we

find that the above simple probability adjustment works well

(see Section IV).

We now describe the second step in detail. Suppose source

s chooses pathg in the n-th control interval. Then the

sending rate of this path is increased to the minimum of

ysg(n)(1 + βsg(n)) + ε and the demandms, where ε > 0

is a small constant. If the minimum isms, the corresponding

rate increment termβsg(n) is adjusted accordingly to reflect

the actual rate increment compared to the rate in the previous

control interval.

The detailed algorithm is depicted in Fig. 2. The normal-

ization of the path rates in the algorithm is to ensure that the

sum of the path rates not exceeding the demand of the source.

Similarly, the normalization of the path selection probabilities

is to ensure that the sum of the probabilities is1. We explore

the choice of the parameters (includingα, γ, βsj(0), s ∈ S,

j = 1, . . . , k) in Section IV.

Our scheme runs in a distributed manner — each source

independently adjusts the path rates based on localized infor-

mation. It does not require explicit network knowledge (e.g.,

topology, available bandwidth) or any additional support from

the network. Note that our algorithm essentially uses MIMD

(Multiplicative Increment Multiplicative Decrement) rate ad-

justment whenβsj(0) > 0 and AIAD (Additive Increment

Additive Decrement) whenβsj(0) = 0. However, even under

the more aggressive MIMD rate adjustment, for each source,

our control algorithm does not lead to a throughput higher

than that allowed by the underneath transport-level controller

(e.g., TCP) on a path, and hence does not introduce further

congestion into the network.

B. Convergence properties

As mentioned in Section II, we are especially interested in

two-logical-hop overlay networks since recent findings have

demonstrated the benefits of using such overlay networks [25],

[24], [26]. We prove that our scheme converges to maximize

the aggregate source rate when all sources have the same

destination in two-logical-hop overlay networks, as stated in

the following theorem. The proof is found in the Appendix.

Theorem 1:When assuming perfect congestion detection,

our application-level rate controller converges to maximize

the aggregate source rate when all sources have the same

destination and each overlay path allows a single relay when

βsj(0) = 0, ∀s ∈ S, j = 1, . . . , k.

The above convergence result is forβsj(0) = 0,

under which the rate increment/decrement is simply by



adding/substracting the small constant,ε. We have not been

able to prove that the algorithm converges whenβsj(0) > 0.

However, simulations results in Section IV demonstrate that

our algorithm converges much faster whenβsj(0) > 0 than

whenβsj(0) = 0. Indeed, the theoretical convergence property

of the Bersekas’ bold step strategy, although used extensively

in a wide range of applications (e.g., scheduling, multi-object

tracking), are not well understood [27].

C. Realization on top of TCP

The above application-level multipath rate control algorithm

can run on top of any transport-level rate controllers. We now

briefly describe how to realize this algorithm on top of TCP.

When using TCP, a source establishes a TCP connection to the

receiver on each path. When there are multiple logical hops

on a path (e.g., in an overlay network), a TCP connection

is established on each logical hop. The TCP receiver of one

logical hop is the TCP sender of its next logical hop; when

one logical hop is saturated, it back-pressures its previous hop

(implicitly through TCP) such that the throughput on a path

is the minimum throughput over all logical hops on the path.

The actual sending rate of the source,xsj(n), can be measured

at receiver and fed back to the sender (e.g., using a separate

TCP connection). We have implemented our algorithm in both

ns-2simulator and our testbed (see Sections IV and V). More

implementation details are discussed in Section V.

IV. PERFORMANCE EVALUATION

We now evaluate the performance of our application-level

rate controller through simulation using thens-2 simulator.

Our evaluation is in an overlay network with a single receiver

(i.e., all sources transmit to the same receiver). Furthermore,

there are two logical-hops (i.e., a single relay) from a source

to a destination. The first hop is from a source to a relay;

the second hop is from a relay to a receiver. We assume that

the second hops are congested (they are more likely to be

shared by multiple sources and hence congested). Each source

is givenk overlay paths by randomly selectingk relays. Our

performance metric is the aggregate source rate normalized

by the aggregate source demands, i.e.,
∑

s∈S xs/
∑

s∈S ms,

referred to asnormalized aggregate source rate. We stress

that the aggregate source rate is the effective sending rate into

the network (not that set at the application-level).
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Fig. 3. Impact of the initial rate increment terms and comparison of our

scheme with a simple rate adjustment scheme.

We now describe our settings in more detail. The number

of paths for each source,k, is 2, 3 or 4. We index the relays

in decreasing order of their bandwidths to the receiver. The

bandwidth from thej-th relay to the receiver is set to be

proportional to1/jb, where0 ≤ b ≤ 1. We refer tob as the

skew factor. Whenb = 0, all relays have the same bandwidth

to the receiver. Asb increases, the bandwidth distribution

among the relays becomes more skewed. Letar represent relay

r’s bandwidth to the receiver. Letf =
∑

r∈R ar/
∑

s∈S ms,

that is,f represents the ratio of network bandwidth over the

aggregate source demands. We varyf from 0.6 to 3. We set

|S| = |R| = 100 and ms = 1.2 Mbps or 6 Mbps (higher

values of demands lead to very long running time inns-2).

Each packet is500 bytes. The the round-trip propagation delay

on each logical hop is set to20 ms whenms = 1.2 Mbps and

5 ms whenms = 6 Mbps (the shorter value is to ensure that

the TCP throughput on one path can reach6 Mbps).

In our rate adjustment, the length of the control interval for

a source is0.4 second. The small constant value,ε is set to0.5

Kbps,α andγ are both set to 1.1 or 1.1 and 2.0 respectively.

The threshold to detect whether a rate increment succeeds or

not, δ, is set to0.03. We set the initial increment termβsj(0)

to 0.1 or 0; all the paths use the same value. The initial rates

on all paths for a source are set to 0. For each source, the

initial path selection probability is set to1/k.

We first look at the impact of the initial value of the

rate increment term,βsj(0). Recall that whenβsj(0) > 0,

our rate adjustment is essentially MIMD with adaptive rate



k b = 0 b = 0.5 b = 1
f = 0.6 f = 1.0 f = 1.6 f = 3.0 f = 0.6 f = 1.0 f = 1.6 f = 3.0 f = 0.6 f = 1.0 f = 1.6 f = 3.0

2 20 60 80 20 20 20 60 20 20 20 20 20
3 20 60 80 20 40 50 80 20 50 50 50 30
4 20 60 80 20 50 70 90 20 60 60 100 60

TABLE I

CONVERGENCE TIME(IN SECONDS) UNDER DIFFERENT SETTINGS, ms = 1.2 MBPS, α = 1.1, γ = 2.0.

increment terms; whenβsj(0) = 0, the rate adjustment is

AIAD by simply adding or substracting the small constant,

ε. Fig. 3 plots the normalized aggregate source rate using

βsj(0) = 0.1 and βsj(0) = 0, where k = 2, ms = 1.2

Mbps, α = 1.1 and γ = 2.0 (the results underα = γ = 1.1

are similar). We have proved that the rate adjustment under

βsj(0) = 0 converges to maximize the aggregate source rate.

This is confirmed by the simulation results: we observe that the

normalized aggregate source rate converges to a value close

to 0.8, the optimal value obtained fromcplex [28]. The slight

difference between the simulation result and the optimal value

maybe due to packetized network flows, network delays, and

bursty packet transmission. Whenβsj(0) = 0.1, we observe

that the normalized aggregate source rate also converges to a

value close to0.8. Furthermore, the convergence rate under

βsj(0) = 0.1 is much faster (almost seven times faster) than

that underβsj(0) = 0.

In Fig. 3, we also plot the result whenβsj(n) ≡ 1,

which leads to an MIMD rate adjustment with a constant

multiplicative increment/decrement term of2. We observe

that this type of rate adjustment leads to more fluctuations

and furthermore does not maximize the aggregate source rate.

Therefore, it is important to adjust the rate increment terms to

achieve convergence and maximize the aggregate source rate.

For each setting that we explore, our algorithm under

βsj(0) = 0.1 converges to obtain a normalized aggregate

source rate close to that obtained underβsj(0) = 0 at a

much faster convergence rate. Table I lists the convergence

time underβsj(0) = 0.1 for various values of skew factor,b,

and the ratio of network bandwidth over the aggregate source

demands,f , whenms = 1.2 Mbps,α = 1.1 andγ = 2.0 (the

results underα = γ = 1.1 are similar). We observe that all of

the convergence times are within2 minutes. The convergence

time is very short when the network bandwidth is much lower

than the source requirement (e.g., whenf = 0.6) or when

there is a large amount of extra bandwidth in the network

(e.g., whenf = 3.0). Using more paths may lead to a slower

convergence under certain settings (e.g., whenb = 0.5 and

b = 1, i.e., the relay-receiver bandwidths are skewed). Last,

the convergence speed whenms = 6 Mbps is similar to that

whenms = 1.2 Mbps, indicating that our scheme can be used

for applications with high bandwidth demands.

V. TESTBEDEXPERIMENTS

To demonstrate the practicality of our application-level

controller, we have implemented it on top of Linux. We next

briefly describe our implementation and preliminary results in

a local testbed. We stress that the purpose of this section is

to demonstrate that our scheme is easy to deploy not to to

present an extensive evaluation of our scheme in a testbed.

In our implementation, a TCP connection is established on

each logical hop from a source to a receiver. The receiver

reassembles data over multiple paths from a source according

to application-level sequence numbers that are embedded in

the packets. Each packet is1008 bytes. A relay has an

application-level buffer to hold5 or 10 packets. Furthermore,

the TCP sender and receiver socket buffers at the relay are

set to hold5 or 10 packets. The small buffers (at both the

application and transport level) are to avoid excessive buffering

at the relays. Data coming into the relay are buffered and

then forwarded to the next hop. A full buffer at the relay

suppresses the sending rate of the previous hop. Refinement

of our implementation (e.g., how to set the size of the TCP

socket buffers and the application-level buffer) is left as future

work.

Our local testbed contains two sources, three relays and

a receiver, as shown in Fig. 4. These hosts are connected

by routers. Sources1 sends data to relaysr1 and r2, which

forward incoming data to the receiver. Similarly, sources2

sends data via relaysr2 and r3. The routers are configured

so that the source rates are only constrained on the second



logical hop, i.e., from the relays to the receiver. This bandwidth

limitation is through serial ports connecting two routers. We

do not emulate network delays in our testbed. Instead, we use

relatively low link bandwidths so that the round trip time of

the TCP connections from the relay to the receiver ranges from

tens to hundreds of milliseconds.

We have performed a set of preliminary experiments in

our testbed. The demands of sourcess1 and s2 are 250

and 300 Kbps, respectively. The bandwidths from the relays

to the receiver are varied to create different settings. In all

of the settings, our controller obtains rate allocations as we

expected. In the interest of space, we only describe the results

in one setting in detail. In this setting, the bandwidths from

relays r1, r2 and r3 to the receiver are256, 256 and 56

Kbps, respectively. The length of the control interval for a

source is the duration to send20 packets at the maximum

source rate (i.e., 0.645 and 0.538 second for sourcess1 and

s2 respectively); the small constant,ε, is 1 packet and the

threshold to decide whether a rate increment is successful,δ,

is 0.1. The initial rate increment term is 0 (i.e.,βsj(0) = 0,

s = s1, s2, j = 1, 2). For each source, the initial path selection

probability is 0.5 for each path. The TCP socket buffers and

the application-level buffer of the relays are set to hold 10

packets. Initially, sources1 sets the application-level path rates

on the two paths to be both half of its demand; sources2 sets

application-level path rates to be10 and6 packets per control

interval. Fig. 5 plots the throughput of each source measured

at the receiver versus time. Each data point is averaged over 2

seconds. We observe that sources1 gradually moves data from

the path via relayr2 to that via relayr1. Consequently, source

s2 increases its path rate on the path via relayr2 and obtains

the maximum sending rate in approximately 10 seconds. This

demonstrates that our scheme can effectively discover spare

network bandwidth to improve the aggregate source rate.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we developed an application-level multipath

rate controller via TCP. Our controller utilizes the band-

width probing mechanisms embedded in TCP and does not

require explicit network knowledge (e.g., topology, available

bandwidth). We theoretically prove the convergence of our

algorithm in certain settings. Furthermore, using a combination

of simulation and testbed experiments, we demonstrate that our

`

`
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Relay r2

Relay r3
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Fig. 4. Illustration of the testbed.
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algorithm provides efficient multipath data transfer and is easy

to deploy.

As future work, we are pursuing the following directions:

(1) performance evaluation in more general settings (with

multiple receivers and/or bandwidths constrained on the first

logical hop); (2) more systematic study of our scheme in a

larger testbed under more realistic conditions.
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APPENDIX

PROOF OFTHEOREM 1

Proof: When βsj(0) = 0, we refer to our

application-level rate controller asA-AIAD since the rate

increment/decrement under this condition is simply by

adding/substracting the small constant,ε. We prove this the-

orem by first transforming the rate control problem into a

network flow problem [29]. We construct a directed graph

G = (V, E) to represent the network we consider as follows.

The vertex setV contains the set of multipath sourcesS, the

set of relaysR, the destinationd and an additional vertexb,

referred to as theorigin. We use(u, v) to represent a directed

edge fromu to v, ∀u, v ∈ V. Furthermore, letcuv denote the

capacity on the directed edge(u, v). The origin b and each

sources ∈ S is connected by a directed edge(b, s) with the

capacity as the demand of the source, that is,cbs = ms. If

sources ∈ S selects a relayr ∈ R, then s is connected to

r by a directed edge(s, r). The capacity of the edge(s, r),

csr, is the available bandwidth on the path froms to r. A

relay r ∈ R is connected to the destinationd by a directed

edge(r, d). The capacity of the edge(r, d), crd, is the available

bandwidth on the path from the relay to the destination. In the

directed graphG, if two verticesu and v are not connected,

i.e., (u, v) /∈ E , thencuv = 0.

Let f(u, v) be the network flow from vertixu to v. We

next describe the how to set the initial value of the flow

between two verticesu and v, ∀u, v ∈ V. Let x0
sj denote

the initial rate allocation on thejth path of sources, s ∈
S, j = 1, 2, . . . , k. Then f(b, s) =

∑k
j=1 x0

sj . That is, the

flow from the origin to sources is the source rate of this

source. Letrsj denote the relay used by thejth overlay path

of sources. Then f(s, rsj) = x0
sj . That is, the flow from a

source to its selected relay is the sending rate on that overlay

path. On the edge from a relayr to the destinationd, the flow

f(r, d) =
∑

s

∑k
j=1 1(rsj = r)x0

sj , where1(·) is the indicator



function. That is, the flow from a relay to the destination is

the aggregate sending rate over all sources that uses that relay

to the destination. The flows of all other edges are0.

We next show that A-AIAD has positive probability to find

augmenting pathsin the residual network[29]. For complete-

ness, we briefly describe residual network and augmenting

path. Given a flow networkG = (V, E) and the flows between

two vertices, a residual networkGf induced by these flows is

Gf = (V, Ef ), whereEf = {(u, v ∈ V × V : cf (u, v) > 0},
where cf (u, v) is the residual capacityof edge (u, v), i.e.,

cf (u, v) = cuv − f(u, v). Given the residual networkGf , an

augmenting path is a path from the originb to the destination

d in Gf . By the definition of residual network, each edge along

an augmenting path can admit positive flow without violating

the capacity of this edge.

We represent an augmenting path by the sequence of ver-

tices along the path. LetP = (b, si1 , ri1 , . . . , sin , rin , d) be an

arbitrary augmenting path in the residual network, wheren ≥
1. Since edge(b, si1) can admit positive flow, sourcesi1 is not

satisfied. Letcf (P) be the minimum residual capacity along

this path. That is,cf (P) = min{cf (u, v), (u, v) ∈ P}. Under

perfect detection of network congestion, a source increases its

sending rate on a path iff there is spare bandwidth on that path.

We next prove that, with perfect congestion detection, there

is a positive probability for A-AIAD to find this augmenting

path and increase the flow on the path bycf (P). We prove

this by induction onn.

• Case 1(n = 1). In this case, when using A-AIAD,

there is a positive probability that sourcesi1 increases

its sending rate on the path fromsi1 to the destination

via relayri1 by the amount ofcf (P).

• Case 2 (n > 1). We first show that it is suffi-

cient to consider augmenting paths in which sources

sin , sin−1 , . . . , si2 are all satisfied. Suppose sourcesin

is not satisfied. Then there is an augmenting path of

(b, sin , rin , d). From Case 1, when using A-AIAD, there

is a positive probability forsin to increase its path rate

on (sin , rin , d) until it is satisfied or the path rate cannot

be increased any more (i.e., either path(sin , rin) or

path (rin , d) is saturated). The former case is desired.

In the latter case, pathP is not an augmenting path any

more (so we do not need to consider pathP any more).

Similarly, we only need to consider augmenting paths

in which sourcessin−1 , . . . , si2 are all satisfied. When

sourcessin , sin−1 , . . . , si2 are all satisfied, the aggregate

source rate can be increased bycf (P) when A-AIAD

adjusts the sending rates in the following manner: source

sin
gradually shifts its data from the path(sin

, rin−1 , d)

to path(sin , rin , d), thus leaving spare bandwidth on the

path of (rin−1 , d) and allowing sourcesin−1 to shift its

data from (sin−1 , rin−2 , d) to (sin−1 , rin−1 , d), ..., and

allowing sourcesi1 to increases its sending rate on the

path of (si1 , ri1 , d). This sequence of rate adjustment

leads to a rate increment ofcf (P) in the aggregate source

rate.

Since pathP is arbitrary, we have proved that A-AIAD can

find any augmenting path in the residual network. UC-maxmin

continues the process of finding an augmenting path and

adjusting rate along that augmenting paths until no augmenting

path can be found. This is equivalent to the Ford-Fulkerson

algorithm in maximum network flow [29]. Suppose at time

T , no augmenting path can be found. Then the maximum

aggregate source rate is reached [29]. We prove that later

rate changes of A-AIAD does not lower the aggregate source

rate (hence the rate allocation converges) by considering the

following two cases:

• Case 1: all relay bandwidths are fully utilized at time

T . The rate allocation does not change in this case, and

hence A-AIAD converges.

• Case 2: not all relay bandwidths are fully utilized at

time T . If a relay is not selected by any source, it

can be removed without affecting the rate allocation.

Therefore, without loss of generality, we assume each

relay is selected by at least one source. Consider an

arbitrary relayr with spare bandwidth and an arbitrary

sources that selects relayr. If source s is satisfied,

it may shift its data from other paths to path(s, r, d).

However, by the assumption, the shifting occurs iff there

is still spare bandwidth on path(s, r, d), which does not

affect the sending rate of any other source, and hence

does not reduce the aggregate source rate. If sources

is not satisfied, then there is no spare bandwidth on

the path of(s, r). Otherwise, the sending rate of source

s can be increased, which contradicts with that the

maximum aggregate source rate has been reached. Under



the assumption of perfect bandwidth detection, sources

does not increase the rate on path(s, r, d) and hence does

not affect the aggregate source rate.


