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Abstract—Simplified trusted nodes (STNs) are a form of
trusted node for quantum key distribution (QKD) networks
which do not require running a full QKD stack every instance
(i.e., they do not need to run error correction and privacy
amplification each session). Such systems hold the advantage that
they may be implemented with weaker computational abilities,
than regular TNs, while still keeping up with key generation rate
demands. The downside is that noise tolerance is lower. However,
to get a better understanding of their suitability in various
scenarios, one requires practical, finite-key security bounds for
STN networks. So far, only theoretical asymptotic bounds are
known. In this work we derive a new proof of security for
STN chains in the finite key setting. We also derive a novel cost
function allowing us to evaluate when STNs would be beneficial
from a computational cost perspective, compared with regular
TN networks.

I. INTRODUCTION

Quantum key distribution (QKD) is a powerful quantum
cryptographic mechanism allowing for the establishment of
shared secret keys, secure against computationally unbounded
adversaries. This is unlike classical key distribution, where
computational assumptions are always required to prove secu-
rity. In general, QKD systems work by having Alice stream
qubits to Bob, while Bob measures these qubits. From this,
classical communication is performed to distill a final secret
key. For more information on general QKD, the reader is
referred to [1]–[3].

One of the main limitations of QKD is distance. In general,
the secret key rate degrades exponentially with distance be-
tween Alice and Bob, due to the increased chance of photon
loss [4], [5]. Quantum Networks can mitigate this issue. Such
networks consist of quantum repeaters [6]–[8] and/or trusted
nodes (TNs). The former are still difficult to implement in
practice, however they will lead to a general Quantum Internet
[9]–[11]. However, most QKD networks today consist of
trusted nodes, including most metro-area QKD networks (e.g.,
[12]–[15]). Of course, hybrid networks are also studied [16],
[17].

Trusted Nodes are QKD nodes, placed in a chain between
Alice and Bob. Each TN performs standard QKD with its
neighbors, establishing pair-wise secret keys. Finally, for Alice
and Bob to establish a shared secret key, each TN will
broadcast the parity of the secret keys it holds. Bob will take all
these parity announcements and XOR with his version of the
secret key. At this point, Alice and Bob will hold a correlated
key that is secure against third-party adversaries.

One problem with TNs, from a computational standpoint,
is that each TN must be equipped with a full QKD stack.

That is, whenever Alice and Bob wish to establish a secret
key, each TN in the chain must perform (1) Error Correction
(EC) and (2) Privacy Amplification (PA) twice (once with each
neighbor). Both processes can be computationally intensive,
especially error correction, and so this may be a bottleneck
in practical large-scale QKD network implementations. Thus,
to ensure high-speed key generation between Alice and Bob,
each TN must be equipped with the computational resources
needed to perform high-speed EC and PA. This can increase
the cost of the overall chain and places a bottleneck on the
“slowest” TN in a chain.

One way to overcome this challenge are Simplified Trusted
Nodes (STNs), introduced in [18]. Here, an STN does not
need to perform EC and PA every time Alice and Bob want
to establish a secret key. Instead, each STN simply performs
state preparations and measurements (e.g., BB84 [19] style
states and measurements), and broadcasts the parity of their
raw measurement results (as opposed to the parity of the actual
secret key after EC and PA are run as in a TN architecture).
This can be done quickly with minimal computational power,
thus placing the overall bottleneck on Alice and Bob only.
Each STN will not be required to perform the time and
computationally consuming tasks of EC and PA every single
time they are used to establish a key. Instead, they will be
immediately free to perform another QKD session with the
same, or alternative, users. STNs may also have an advantage
over TNs in security as pointed out in [20]; namely, even if an
STN is later compromised, it only stores raw key information
- to fully recover the secret key, an adversary needs both
the raw key data and the PA data sent between Alice and
Bob. However, while advantageous from a computational
perspective (and potential cost and security perspective), STN
chains have lower noise tolerances as shown, asymptotically,
in [18]. See Figure 1.

All prior work in STN security research [18], [20]–[22],
to our knowledge, has been restricted to asymptotic analyses.
To get a better understanding of the trade-offs when using
STN networks versus TN networks, we require a finite-key
security proof: that is, a bound on the number of secret key
bits that can be established when sending N qubits through the
network (as opposed to prior work which assumed N → ∞).
Such a finite key proof poses significant challenges: first we
need a bound on quantum min entropy [23], [24], as opposed
to bounding only the von Neumann entropy [25]. Second,
this bound must take into account finite key effects, along
with the parity broadcasts sent by STNs. Third, a proof must



Fig. 1. Showing a basic STN chain with two STNs. Solid line: Quantum
channel; Dashed line: Authenticated classical channel. Each neighboring pair
will perform the quantum communication portion of BB84, establishing raw
keys Ri (with the right-neighbor) and Li (with the left-neighbor). Ideally, if
there is no noise, Ri = Li+1. Each STN will broadcast the parity of its raw
keys, namely pi = Li ⊕ Ri. Bob will then take his final raw key to be the
XOR these parity strings with his L3 measurements; his raw key should, in
the absence of noise, now match R0. Alice and Bob then run error correction
(EC) and privacy amplification (PA); STNs do not need to be involved in
that final, computationally intensive, task and are instead immediately free
to perform QKD with the same, or other, end-users. Note that STNs do
need to occasionally perform local QKD with their neighbors to refresh their
authenticated key-pool - this is an issue we address later when comparing to a
regular TN network. Note that a regular TN network requires each neighboring
pair of nodes to perform EC and PA (thus each trusted node will perform EC
and PA twice) before a key is established between end users.

take into account that an adversary can attack all channels
together, potentially gaining more information than a single
channel attack. With a regular TN network, QKD is performed
individually on each channel (in particular error correction and
privacy amplification is run for each link), allowing one to
focus on attacks on a single channel only. Taken together, this
makes a finite-key security proof a challenging problem.

In this work, we derive, for the first time to our knowledge,
a finite-key security proof for an STN chain. Our proof is
general, in that it can support any number of STNs, and it
assumes Eve performs any arbitrary, general, attack. To prove
this, we derive a bound on the quantum min entropy of the
protocol using the quantum sampling framework of Bouman
and Fehr [26] along with proof techniques from sampling
based entropic uncertainty relations [27] as a foundation.
However, our proof demonstrates several new techniques that
may be beneficial to other researchers investigating chains of
communicating nodes.

Once a finite-key rate is derived, we can begin to investigate
the potential trade-offs between using STN networks and
regular TN networks. In particular, an STN chain does not
need to perform EC and PA every time Alice and Bob want
to establish a key (unlike TN networks). However, they do
need to perform EC and PA sometimes in order to replenish
their local key pools needed for authenticated communication
channels. Exactly how often they need to do this will depend
on a variety of factors. Considering this, is there really a cost
benefit to using STNs? Prior work is only asymptotic and
could not be used to accurately answer this question in more
practical finite key settings.

As a second contribution, we derive a novel cost function for
STN and TN networks which takes the computational cost of
EC and PA into account. We evaluate this cost function, using
our finite key bound, to provide evidence that shows STNs
may be more cost effective in certain scenarios, and less cost
effective in others. In particular, in low-noise scenarios, STNs
can be very cost effective; in high noise scenarios, TNs may

be a preferred choice. We comment that a similar observation
was made for satellite communication using a single STN
in [21], though, there, communication cost was used as a
metric and, furthermore, only the asymptotic scenario was
considered. Our equations will allow researchers to experiment
with various parameters, including block sizes, sampling rates,
and various failure parameters, to determine whether STNs
are a more viable option than a standard TN network. Indeed,
a regular TN network may be more costly to implement as
more expensive computational resources would be required
to “keep up” with Alice and Bob’s key generation demands.
While STNs will also need to occasionally preform EC and
PA, it may be done “in the background” and only occasionally,
with slower hardware without slowing down end-users.

Notation: We now introduce some notation that we will use
throughout this paper. First, let q ∈ {0, 1}N , then for any
i = 1, · · · , N , we write qi to mean the i’th character of q. Let
t ⊂ {1, · · · , N}, then we write qt to mean the substring of q
indexed by t, namely q = qt1qt2 · · · . We write q−t to mean
the substring of q indexed by the complement of t. We use
wt(q) to mean the Hamming weight of q, namely the number
of ones in q and we use w(q) to mean the relative Hamming
weight of q, namely w(q) = wt(q)/N .

If X is a random variable taking discrete outcomes
x1, · · · , xm, with probability p1, · · · , pm, then we write H(X)
to mean the Shannon entropy of X , defined as H(X) =
−
∑
i pi log2 pi. Note that all logarithms in this paper are

base two unless otherwise specified. If X is a two-outcome
random variable, taking outcome x1 with probability p and
outcome x2 with probability 1 − p, then H(X) = h(p),
where h(p) is the binary Shannon entropy function, namely
h(p) = −p log p− (1− p) log(1− p).

A quantum state, or density operator ρ, is a Hermitian posi-
tive semi-definite operator of unit trace, acting on some Hilbert
space H. If ρAE is a density operator acting on HA ⊗ HE ,
then we write ρE to mean the result of tracing out the A
system, namely ρE = trAρAE . Similarly for other, or more,
systems. To compress notation, given a pure state |ψ⟩, we write
[ψ] to mean |ψ⟩ ⟨ψ|. Also, given an orthonormal basis B =
{|b0⟩ , · · · , |bd−1⟩} and a word q ∈ {0, 1, · · · , d − 1}N , we
write |q⟩B to mean: |q1⟩B ⊗ |qN ⟩B = |bq1⟩ |bq2⟩ · · · |bqN ⟩. For
example, if given the Hadamard X basis of X = {|+⟩ , |−⟩},
then |100⟩X = |−,+,+⟩. Finally, we define the Bell basis
states as |ϕyx⟩, for x, y ∈ {0, 1}, as:

|ϕyx⟩ =
1√
2
(|0, x⟩+ (−1)y |1, 1⊕ x⟩). (1)

Let ρAE be a quantum state. Then the conditional quantum
min entropy is defined to be [23]:

H∞(A|E)ρ = sup
σE

max
{
λ ∈ R : 2−λIA ⊗ σE − ρAE ≥ 0

}
,

(2)
where IA is the identity operator on the A system, and where
X ≥ 0 is used to denote that operator X is positive semi-
definite. The smooth conditional min entropy [23] is defined to



be: Hϵ
∞(A|E)ρ = supσAE

H∞(A|E)σ, where the supremum
is over all density operators σAE that are ϵ-close to ρAE in
trace distance, namely, ||σAE − ρAE || ≤ ϵ. We use ||X|| to
denote the trace distance of X .

Quantum min entropy is a vital resource in quantum cryp-
tography as it directly relates to the amount of uniform
secret randomness one may extract from a given quantum
state ρAE , where Alice holds the A system and an adversary
Eve holds the E system. In particular, consider such a state,
where the A register is classical, consisting of N -bits, and
the E system is quantum (and possibly correlated with the
A system). One may choose a random two-universal hash
function f : {0, 1}N → {0, 1}ℓ, disclose the choice to Eve,
and hash the A system through f . Denote the resulting state
by σKE′ , where K is a classical register of ℓ-bits, and E′

is Eve’s original system combined with the choice of hash
function. Then, it was proven in [23] that:

||σKE′ − IK ⊗ σE′ || ≤
√
2−(H∞(A|E)ρ−ℓ) + 2ϵ, (3)

where IK is a completely mixed state of ℓ-bits. The above
process is known as privacy amplification [2]. Thus, min
entropy can be used to determine exactly how many secret
bits ℓ one can extract. In particular if one wishes the above
trace distance to be no larger than ϵPA, then, one should set
ℓ to be:

ℓ = Hϵ
∞(A|E)ρ − 2 log

1

ϵPA − 2ϵ
. (4)

There are several very useful properties of quantum min
entropy that we will use later in our proof of security. First,
given a state of the form ρAEZ =

∑
z p(z) [z]⊗ ρ

(z)
AE , then:

H∞(A|E)ρ ≥ H∞(A|EZ)ρ ≥ min
z
H∞(A|E)ρ(z) . (5)

Thus, min entropy, conditioning on classical side information
Z, is the “worst-case” entropy of each sub-event ρ(z)AE .

The following lemma, proven in [26] (based on a lemma
and proof in [23]), let’s us determine a bound on the min
entropy of a superposition state after measuring it:

Lemma 1. (From [26], based on [23]): Let M and N be
two orthonormal bases of Hilbert space HA. Let |ψ⟩AE =∑
i∈J αi |i⟩

M ⊗ |Ei⟩ be some pure quantum state. Define the
mixed state χ =

∑
i∈J [i]

M ⊗ [Ei]. Then, if a measurement is
made in the N basis of either state (producing random variable
“N”), it holds that: H∞(N |E)ψ ≥ H∞(N |E)χ − log2 |J |.

The above lemma states, informally, that so long as |J | is
“small,” a pure state will behave similarly to a mixed state, in
terms of the entropy after measuring in an alternative basis.

We will also need the following lemma, proven in [28]:

Lemma 2. (From [28]): Let ρ and σ be two quantum states
acting on the same Hilbert space such that 1

2 ||ρ− σ|| ≤ ϵ.
Let F be a CPTP map such that:

F(ρ) =
∑
x

p(x) [x]⊗ ρ
(x)
AE , and F(σ) =

∑
x

q(x) [x]⊗ σ
(x)
AE

Then, it holds that:

Pr
(
H4ϵ+2ϵ1/3

∞ (A|E)ρ(x) ≥ H∞(A|E)σ(x)

)
≥ 1−2ϵ1/3, (6)

where the probability is over the random outcome X in the
states after mapping through F .

The above lemma essentially allows one to bound the
smooth min entropy of one state, based on the min entropy of
another, assuming they are “close enough” in trace distance.
The bound also applies after, for example, a measurement is
performed (which may be modeled as the F operator).

A. Quantum Sampling

Our proof will utilize a quantum sampling framework
introduced by Bouman and Fehr in [26]. For a more detailed
review of this framework, the reader is referred to that original
source; however, for completeness, we discuss the relevant
information here.

A classical sampling strategy over words q ∈ AN (for
example A = {0, 1}) is a triple S = (PT , g, r): first a
distribution PT over subsets t ⊂ {1, · · ·N}; second a guess
function g, which outputs a real valued number based on qt
for some subset t; and, third, a target function r, which also
outputs a real valued number based on q−t. A good sampling
strategy should be one that, over the choice of random subsets
according to the given distribution, the guess value evaluated
on an observed portion of the word qt should closely match
the target value of the unobserved portion.

To put this more concretely, consider the following sampling
strategy from [26] which we denote SHW which works over
words in {0, 1}N . First, the sampling strategy chooses a subset
t of size m uniformly at random. Next, the substring qt is ob-
served and the guess function is simply the relative Hamming
weight of qt, namely g(qt) = w(qt). The target function is
also the relative Hamming weight, namely r(q−t) = w(q−t).
One would expect that, so long as the sample size is large
enough, the observed Hamming weight g(qt) should be close
to the Hamming weight of the unobserved portion of the word,
r(q−t). We will return to this example strategy later.

Given a particular subset t, a sampling strategy induces a
set of good words which are words in A for which, assuming
subset t is the one that’s actually chosen by the strategy, it
is guaranteed that the guess and target functions will be δ-
close to one-another. Formally, given a sampling strategy S
and subset t, the set of good words it induces is defined to be
the set:

GtS = {q ∈ AN : |g(qt)− r(q−t)| ≤ δ} (7)

Given these definitions, one may define the failure
probability of a given sampling strategy to be: ϵcl =
maxq∈AN Pr

(
q ̸∈ GtS

)
, where the probability is over the sub-

set chosen t, according to the sampling strategy’s specification.
Note that ϵcl depends on δ also.

Returning to our example strategy SHW. The set of good
words this strategy induces is easily seen to be:

GtHW = {q ∈ {0, 1}N : |w(qt)− w(q−t)| ≤ δ}. (8)



Then, in [26], the following lemma was proven:

Lemma 3. (From [26]): Given SHW as defined above, the error
probability is found to be:

max
q∈{0,1}N

Pr
(
q ̸∈ GtHW

)
≤ 2 exp

(
−δ2 mN

N + 2

)
:= ϵclHW

A classical sampling strategy may be promoted to a quan-
tum one in a natural way. Fix an orthonormal basis of di-
mension |A|. We label it here as simply {|0⟩ , · · · , ||A| − 1⟩},
though the basis may be arbitrary. Then, let |ψ⟩AE be some
quantum state where the A register lives in a space of
dimension |A|N (i.e., it consists of N systems, each system of
dimension |A|). The E register is arbitrary. Note this system
need not be separable and can, in fact, be arbitrary within
this space. Then, given some classical sampling strategy, the
quantum version simply chooses a subset as before, and
will measure those qudits, indexed by t in the given basis
to produce a classical word qt ∈ A|t|. The question, then,
becomes what can we say about the remaining, unmeasured,
systems?

Bouman and Fehr’s main result is to show that, essentially,
the remaining unmeasured portion must collapse to a super-
position consisting of words, with respect to the given basis,
that are δ-close in target function, to the guess g(qt).

To define this formally, fix a sampling strategy S over words
in AN and let B be a |A|-dimensional orthonormal basis. The
sampling strategy induces a set of good words Gt. Consider
the following subspace, denoted GtS,B:

GtS,B = span
{
|q⟩B : q ∈ Gt

}
⊗HE . (9)

Then, a quantum state |νt⟩ is said to be an ideal state,
with respect to the given subset t, if |νt⟩ ∈ GS,B. Note
that, given |νt⟩, if the sampling strategy actually chooses
subset t and measures those qudits indexed by t in basis
B resulting in outcome qt ∈ A|t|, it is guaranteed that the
unmeasured state must collapse to a superposition of the form:
|νtq⟩ =

∑
i∈Jq |i⟩

B |Eq,ti ⟩ , where:

Jq = {i ∈ AN−|t| : |r(i)− g(qt)| ≤ δ}. (10)

In general, these ideal states are nice to work with as they are
“well behaved” after a measurement is made. Bouman and
Fehr’s main result can be summarized in the theorem below:

Theorem 1. (From results in [26]): Let S, be a classi-
cal sampling strategy over words of length N in some d-
dimensional alphabet, with error probability ϵcl. Then, given
a quantum state |ψ⟩AE where the A register is a dN di-
mensional Hilbert space, and any d-dimensional orthonormal
basis B, there exists a collection of ideal states {|νt⟩},
indexed by possible subsets t, such that |νt⟩ ∈ GtS,B and:
1
2 ||

∑
t PT (t) [t]⊗ ([ψ]− [νt])|| ≤

√
ϵcl.

Thus, on average over subset choices, the given “real state”
|ψ⟩ should be close, in trace distance, to these ideal states
|νt⟩. How close they are depends on the analysis of a classical
sampling strategy.

Sampling Strategies: We now introduce a sampling strategy
which we will need in our proof later. Consider the follow-
ing sampling strategy which we denote by SSTN involving
p + 2 parties over words q = (r0, l1r1, l2r2, · · · lprp, lp+1) ∈
{0, 1}N × {0, 1}2N × · · · × {0, 1}2N × {0, 1}N = ΣN (we
consider liri to be two sequential N -bit strings). For notation,
given a subset t ⊂ {1, · · · , N}, then we write q[t] to mean
the following string:

q[t] := r0t ⊕
(
l1t ⊕ r1t

)
⊕ · · · ⊕ (lpt ⊕ rpt )⊕ lp+1

t . (11)

The sampling strategy SSTN then acts as follows: (1) A
subset t is chosen uniformly at random such that t ⊂
{1, 2, · · · , N} and |t| = m < N/2. (2) Next, q[t] is observed
and the relative Hamming weight is computed. This is used
as a guess for the relative Hamming weight of the unobserved
string q[−t], where −t = {1, · · · , N} \ t. This implies the set
of good words is:

GtSTN := {q ∈ ΣN : |w(q[t])− w(q[−t])| ≤ δ} . (12)

The above sampling strategy will essentially model the
sampling information we will learn in the STN network we
analyze later. The string r0 and lp+1 will represent Alice
and Bob’s information respectively, while each pair liri will
represent the data held by the i’th STN. Since STNs will
simply broadcast the parity of their data (i.e., li ⊕ ri) and
not the individual data (not li and ri separately), the sampling
strategy only has access to the XOR of these pair-wise strings.

The failure probability of this strategy is analyzed in the
following lemma:

Lemma 4. Let δ > 0, and let m ≤ N/2. Then, the failure
probability of SSTN is upper bounded by:

max
q∈ΣN

Pr
(
q ̸∈ Gt

)
≤ 2 exp

(
−δ2 mN

N + 2

)
. (13)

Proof. Fix q = (r0, l1r1, · · · , lprp, lp+1) ∈ ΣN . Then, define
a new string q̃ =∈ {0, 1}N to be q̃ = r0 ⊕ (l1 ⊕ r1) ⊕ (l2 ⊕
r2)⊕ · · · ⊕ (lp ⊕ rp)⊕ lp+1. It is clear that, for any subset t,
it holds that q ̸∈ GtSTN implies that q̃ ̸∈ GtHW , where GtHW
is defined in Equation 8. Since this is true for any subset and
since q was arbitrary, the result follows from Lemma 3.

II. SIMPLIFIED TRUSTED NODES

Simplified trusted nodes (STNs), originally introduced in
[18], act as regular trusted nodes, except they do not need
to perform any sampling, error correction, or privacy ampli-
fication whenever Alice and Bob want to establish a secret
key. We consider a chain topology where Alice and Bob
are connected through p STNs (see Figure 1). We assume
that each neighboring pair of nodes has access to a classical
authenticated channel; we also assume Alice and Bob have an
authenticated channel. We do not require every possible pair
of STN’s to share an authenticated channel, however, only
adjacent pairs in the chain. Note that, such a channel may
be implemented in an information theoretic secure way using



a small pre-shared key [2] (which must later be refreshed as
we discuss in our Evaluation section). We comment on these
issues more later.

We will analyze the finite-key setting of an STN chain.
Here, Alice and Bob wish to derive a secret key using N
rounds of communication. Let STN1,STN2, · · · ,STNp be the
p STNs. Alice will stream N qubits to STN1; these N qubits
will be prepared in either the Z or X basis. Furthermore, the
basis choice will be biased so that X basis states are sent with
probability pX ≤ 1/2. STN1 will measure the incoming qubits
in either the Z or X basis, choosing randomly, though biased
so that the X basis is chosen with the same probability pX .
This parameter pX may be optimized over by users. In parallel,
each STNi will stream N qubits to STNi+1 who will measure
them; each party choosing the Z and X bases randomly (and,
also, biasing the basis choice). Finally, the last STN, STNp,
will stream N qubits similarly to Bob who will measure in a
random basis, similar to the STNs.

Following this, neighboring parties send their basis choices
to each other and discard any of the N rounds where they did
not choose the same basis (both for sending and measuring on
a single link). It is expected that each neighboring party keeps
N(p2X + (1 − pX)2) of the N rounds. Of these kept rounds,
parties separate their data into Z rounds (where both parties
chose to send/measure in the Z basis) and X rounds.

Consider STNi: it holds data shared with STNi−1 (or Alice,
if i = 1) and also STNi+1 (or Bob, if i = p). Call the data
shared with STNi−1 the “left” data and STNi+1 the “right”
data string (each further divided into Z and X data strings).
Each STNi will send to STNi+1 (or Bob if i = p), the parity
(or the XOR) of that STN’s data - namely, STNi will send
LiZ ⊕ RiZ , where LiZ and RiZ are the left and right data
strings for the Z basis, and will similarly send LiX ⊕ RiX .
Of course, it’s possible that the bit-sizes of these two strings
are not identical - thus the right-most bits of the largest string
are simply discarded. STNi+1 will receive this message and
pass it along to STNi+2 while also repeating the above for this
STN’s own individual left and right data strings. Note that all
this classical communication is done using the authenticated
channels. The above process repeats for all STN’s until Bob
finally receives the parity strings from all p STN’s.

These parity strings, sent by the STNs, may all be of
different sizes (though they should not differ too much in
expected size), so Bob simply takes the minimum of them
all, including the size of his own measurement string, and
discards the right-most bits from all bit strings. Let n0 be the
size of the smallest parity string or his own bit string shared
with STNp for the Z basis data and m0 be the same, but for
the X basis data. He XOR’s all parity strings together with
his measurement data. For the Z measurement data, this will
constitute his raw key; for the X measurement data, this will
constitute his channel test data. Bob then sends to Alice the
sizes n0, m0 and also his X basis data string (after XOR’ing
with the STN’s X basis parity strings) using their authenticated
channel, separate from the pair-wise authenticated channels
used by the STN chain. (Though, of course, m0 may be

inferred from the actual X basis data string that’s sent).
Alice checks the number of errors in the X basis string -

ideally, the X basis data that Bob sent to her should match
exactly the X basis data she initially sent to STN1. Any non-
matching outcome is counted as an error. Assuming the error
rate is low enough (to be determined later), Alice and Bob will
next run an error correction and privacy amplification protocol
on their Z basis string to distill their final secret key. Error
correction and privacy amplification are standard processes in
QKD; for more details, we refer the reader to [2], [3]. Note
that only Alice and Bob need to perform error correction and
privacy amplification each time they want to establish a key
- the STN’s are not required for this, and are free to perform
QKD again immediately with other users or the same users -
they do not need to spend computational time and resources
on error correction and privacy amplification each time a pair
of users wants to establish a key. The STNs will need to later
refresh their authenticated channel key-pool, however this may
be done infrequently and is something we consider later in our
Evaluation section.

III. SECURITY ANALYSIS

We now compute the key-rate of the STN chain network
discussed in the previous section. We will actually analyze
an entanglement-based (EB) version, which we denote

∏EB

where, instead of the prepare and measure based system where
Alice and STN1 communicate; STN1 and STN2 communicate,
and so on (with the adversary Eve probing each link in
arbitrary manners), we instead consider the case where Eve
is allowed to prepare all qubits utilized by the network,
entangling them arbitrarily with her ancilla, and sending the
correct number of qubits to each party respectively. We will
also make additional simplifications to the protocol which can
only benefit Eve. To prove that security of this entanglement
based version (which we will formally define below) will
imply security of the prepare and measure version, denoted∏PM, discussed in the previous section, we will actually
derive several intermediate protocols, building towards the
final entanglement based one. Once the entanglement-based
protocol is defined, we will show how the min entropy of the
system can be computed, giving us an immediate lower-bound
on the key-rate of the protocol.

Reduction to an Entanglement Based Protocol: We will
show how

∏PM can be simplified to an entanglement based
version where (1) Eve prepares all quantum states and (2)
there are no mismatches in basis measurements. To do so,
we will construct three intermediate protocols, denoted

∏EB
0 ,∏EB

1 and
∏EB

2 . From the last protocol, we will derive the final
entanglement based version, denoted

∏EB. For each step, we
will show that security of each newly derived protocol implies
security of the previous.

For the first step of our reduction: we may replace the steps
where a node (a node being Alice, Bob, or an STN) chooses
to send one of four qubit states to its right-most neighbor with
the following: A node will create a Bell pair |ϕ00⟩ = 1√

2
(|00⟩+



|11⟩), and keep one qubit local, while sending the other qubit
to that node’s right-most neighbor. Later, parties will choose
either the Z or X basis to measure their respective particles
in. It is not difficult to see that this will be mathematically
identical to

∏PM. We call this protocol
∏EB

0 Next, we allow
Eve to create the initial state, creating a new protocol

∏EB
1 :

(1) Let N be the total number of rounds of the network used
to establish a secret key (specified by Alice and Bob), and p
the total number of STNs in the network chain.
(2) Eve prepares a quantum state |ψ⟩AT 1T 2···TpBE , where the
A and B registers consist of N qubits each, while each T i

register consists of 2N qubits each. The A and B registers
are sent to Alice and Bob respectively, while the T i register
is sent to STNi, for i = 1, 2, · · · , p.

• For notation, we will divide each 2N qubit T i register
into two, N -qubits registers, Li and Ri; that is, T i =
LiRi. The Li register will simulate the N qubits received
from the node to the left of STNi in the

∏EB
0 version of

the protocol, while the Ri register will simulate the stored
N qubits from the Bell pairs sent to the party to the right.

• To further simplify notation, we will also refer to the A
register as R0 (i.e., A = R0) and the B register as Lp+1.
This allows us to talk about “link i” which consists of
registers Ri and Li+1, for i = 0, · · · , p.

• Ideally, if Eve is “honest,” the state she prepares should
consist of N independent Bell states on each link, unen-
tangled with Eve’s ancilla E. Of course, Eve may prepare
any state; furthermore we do not assume the state has any
iid structure to it (i.e., we prove security against arbitrary,
general, attacks).

(3) For every i’th link, consisting of RiLi+1, for i = 0, · · · , p,
the party to the left (the i’th party, with Alice being party 0)
and to the right (the i+1’th party, with Bob being party p+1),
will choose strings Θi,Ψi ∈ {0, 1}N respectively such that
each bit of Θi and Ψi are chosen independently at random
with Pr

(
Θij = 1

)
= Pr

(
Ψij = 1

)
= pX for every j. Θi will

represent the measurement basis choice for Ri (with a one in
index j implying an X basis measurement of qubit j, while
a zero indicates a Z basis measurement); Ψi represents the
same, but for Li+1. Note, no measurements are performed
yet.
(4) Let reji ∈ {0, 1}N be a string such that rejij = 1 if
Θij ̸= Ψij (and zero otherwise). This represents the string of
rejected qubits (if rejij = 1, then qubit j will be measured in
opposite bases and so must be rejected). Thus, all qubits where
rejij = 1 are discarded from both left and right registers on
each link (i.e., they are simply traced out). Each link i now
consists of N i qubits, where N i = N − wt(rejj).
(5) Parties now measure the remaining N i qubits using the
basis indicated in their (now matching) choice strings Θi and
Ψi. This data is split into Z and X measurement strings. Let
mi be the total number of X basis measurements on this link
and ni be the total number of Z basis measurements.

(6) Each STN will send the parity (XOR) of their Z and
X measurement strings to their right-most neighbor who will
ultimately continue to forward the information to Bob as in∏PM.
(7) Bob will XOR the received parity strings to his respective
Z and X measurement strings. If (as is likely) these strings
are not of equal length, he will take the smallest size and
discard anything to the right of the cut off point. He will
then send his X measurement results (XOR’d with the STN’s
parity strings) to Alice for error checking. Ideally, her X basis
measurement results will match his sent value. Alice counts
the relative number of errors in this X basis string and if this
number (the noise) is too high (to be discussed), she aborts.
Otherwise, Alice’s Z basis measurement string will be used
as her raw key while Bob’s Z basis string, XOR’d with the
STN’s Z basis parity strings, will be used as his raw key.
(8) Alice and Bob run error correction and privacy amplifica-
tion as normal.

We wish to simplify the above protocol even further. Notice
that the overall raw key size cannot exceed Ñ = miniN

i =
N − maxi wt(rej

i) bits, due to the fact that the small-
est consistent measurement results (by that, we mean, mea-
surement results resulting from instances where neighboring
parties chose the same basis) are a bottleneck of the entire
chain. Other qubits, beyond this range, are discarded in a
deterministic manner. Furthermore, the discarding of rejected
systems leaves all parties with a mixed state (even before all
nodes measure in their respective basis). Thus, it would be
better for Eve if parties always agreed on the correct basis
choice (i.e., there were no mismatches), and, instead, Eve
simply prepared a smaller, but pure, state initially. That is,
Eve will prepare a pure state where each Ri and Li+1 register
holds Ñ qubits and each link will choose a subset Θi, setting
Ψi = Θi. Such a system can only give Eve more information
than the mixed state that would result in

∏EB
1 above.

Of course, we have the following problem: what should
we set the register sizes Ñ to be now? In an actual run of
the protocol

∏EB
1 , this size depends on random choices of

all honest parties (Alice, Bob, and the p STNs). However,
importantly, Eve cannot control directly the size of Ñ - instead
it is independent of her initial state. Furthermore, since Ñ
depends only on the largest wt(reji), we may also find a
lower-bound on Ñ using Hoeffding’s inequality, treating rejj

as a random variable where Pr(rejij = 1) = 2pX(1 − pX).
The expected value of wt(reji) is simply 2NpX(1− pX).

Let ϵabort > 0 be given, and define β to be:

β =

√
ln 2

ϵabort

2N
. (14)

Then, by Hoeffding’s inequality, we find:

Pr
(
|N i −N(1− 2pX(1− pX))| ≥ βN

)
≤ ϵabort (15)

Since the above is true for every link i, if we set Ñ = N(1−
2pX(1 − pX) − β), it will hold that, except with probability
at most (p+1)ϵabort, the size of each system, after discarding



rejected rounds in
∏EB

1 , will be no smaller than Ñ . We may,
therefore, adjust the above protocol so that parties abort the
entire protocol if it ever holds that N i < Ñ . It is also clear
that the key-rate will be lowest when each N i attains this
minimum value (any larger value of N i can only increase the
key-rate of the actual protocol).

Given all this, we create a new EB protocol, denoted
∏EB

2 .
This protocol is identical to

∏EB
1 except for the following

changes: (1) We change step 2 so that Eve prepares a state
|ψ⟩AT 1···TpB where, now, each register A = R0, Li, Ri,
and B = Lp+1 consists of Ñ qubits exactly. (2) Step 3 is
changed so that each link i simply agrees on a subset Θi (since
both left and right parties on a link will always agree on the
same subset for their measurements now). However, to ensure
the distribution of bases remains the same after “discarding”
the rejected signals in

∏EB
1 , we take Θi ∈ {0, 1}Ñ and the

probability that Θij = 1 is now p2X/(1 − 2pX(1 − pX) − β).
(3) Finally, Step 4 is removed since there are no longer
any rejected qubits. Instead, Eve is preparing a smaller state
simulating the worst case rejection strings.

There is one more modification we will make to simplify the
security analysis. Consider a particular link i and basis choice
Θi ∈ {0, 1}Ñ . Let mi = wt(Θi) and ni = Ñ−mi be the size
of the X and Z basis measurement data on link i. Let m0 =
minim

i and n0 = mini n
i. Note that any measurement data

larger than this value is simply discarded in a deterministic
way by discarding any qubits after the cutoff point. Making
the same arguments as before, it is to Eve’s benefit if these
strings are all of equal size, but the smallest possible value.
We can use Hoeffding’s inequality and add an additional abort
case as we did when moving from

∏EB
1 to

∏EB
2 to create a new

protocol
∏EB (the actual protocol we’ll analyze), where each

link chooses a random measurement subset ensuring that the
number of X basis measurements is exactly m0 in all links.
Of course, we must also ensure that the number of Z basis
measurements is n0 in all links - this can be done by further
shrinking the total number of qubits Eve sends to all parties.
In particular, we use Hoeffding’s bound to ensure, expect with
probability ϵabort, that:

m0 = Ñ

(
p2X

1− 2pX(1− pX)− β
− β′

)
(16)

and:

n0 = Ñ

(
1− p2X

1− 2pX(1− pX)− β
− β′

)
. (17)

Above:

β′ =

√
ln 2

ϵabort

2Ñ
. (18)

Of course, since we are ensuring the number of one’s in
each Θi to be fixed at m0, this is equivalent, now, to having
each link i choose a random subset Θi ⊂ {1, 2, · · · ,m0+n0}
of size |Θi| = m0. This subset will index which qubits to
measure in the X basis, while any qubit not indexed by this
subset will be measured in the Z basis. Of course, we also

now assume that Eve creates an initial state where each party
Li and Ri, now receives:

N0 := m0 + n0 = N(1− 2pX(1− pX)− β)(1− 2β′) (19)

qubits. Finally, we can reduce the protocol further by having
all parties agree on a single subset. In practice, each link will
have it’s own sampling subset Θi. However, having only a
single subset chosen (say, Alice choosing a subset and sending
it to everyone) can only benefit the adversary as there will be
potentially less uncertainty for Eve; it can also easily be shown
equivalent to the multi-subset case if all parties randomly
permute their data. Thus, we conclude with one final change
to the protocol, namely only a single random subset is chosen
of size m0 and all parties measure this subset.

This is the final protocol we will actually analyze. From
our above discussion and analysis it is clear that the key-
rate of

∏EB will serve as a lower-bound on the key-rate of
protocol

∏EB
0 (and, consequently, of the actual protocol

∏PM).
The total failure probability of

∏PM will be, so far, at most
2(p+ 1)ϵabort.

Key-Rate Analysis:
We now derive a bound on the key-rate of

∏EB (which will
imply a lower bound on the key-rate of

∏PM). Our main result
is described in the following theorem:

Theorem 2. Let ϵ > 0 be given. Let |ψ⟩R0T 1T 2···TpLp+1E

be the state Eve creates, where T i = LiRi and Li, and Ri

consists of N0 qubits each. Assume a subset Θ ⊂ {1, · · · , N0}
is chosen of size m0 uniformly at random. Each link i, consist-
ing of registers LiRi+1, for i = 0, · · · , p, will measure their
qubits, indexed by Θ, in the X basis, producing outcomes ri,
and li+1. Each STN broadcasts the parity of their measurement
outputs, namely qi = li ⊕ ri+1, for i = 1, · · · , p. Let:

q = r0 ⊕ (l1 ⊕ r1)⊕ · · · ⊕ (lp ⊕ rp)⊕ lp+1. (20)

Ideally, if there is no noise, it should hold that q is the zero
string.

After this, parties measure the remainder of their systems
in the Z basis. Each STN will broadcast the parity of their
Z basis measurement results. Let P i be the random variable
determining STNi’s parity broadcast for Z basis states and
P = P 1 · · ·P p. Let AZ be the random variable determining
Alice’s Z basis measurement of the remaining R0 qubits.

This entire experiment, conditioning on a particular subset
Θ being chosen, and a particular X basis outcome and
broadcast of χ = r0, q1, · · · , qp, lp+1, can be modeled as a
density operator ρAEP (Θ, χ) (tracing out Bob and the STN’s).
Then, except with probability at most 2ϵ1/3, it holds that:

H4ϵ+2ϵ1/3

∞ (AZ |EP )ρ(Θ,χ) ≥ n0 (1− h (w(q) + δ)) (21)

where the probability is over the subset choice and the
observed χ, and where:

δ =

√
N0 + 2

m0N0
ln

2

ϵ2
. (22)



Proof. Let |ψ⟩R0T 1T 2···TpLp+1E be the state Eve creates. It is
not difficult to see that the sampling process used in

∏EB is the
strategy SSTN discussed in Section I-A and analyzed in Lemma
4. Using Theorem 1, we can construct ideal states |νΘ⟩ such
that: |νΘ⟩ ∈ GΘ

STN,X , where GΘ
STN,X is defined in Equation

12 (it is the set of good words induced by SSTN using the X
basis in the spanning set definition) and, furthermore:

1

2

∣∣∣∣∣
∣∣∣∣∣∑

Θ

PT (Θ) [Θ]⊗
(
[ψ]−

[
νΘ

])∣∣∣∣∣
∣∣∣∣∣ ≤

√
ϵclSTN = ϵ, (23)

where the last equality follows from our choice of δ and
Lemma 4.

We will analyze the ideal state, defined as
∑

Θ PT (Θ) [Θ]⊗[
νΘ

]
, and compute the min entropy there. Equation 23 and

Lemma 2 will allow us to promote the ideal state analysis to
the real state.

Parties choosing a subset Θ is equivalent to measuring
the subset register and observing a particular Θ. In the ideal
state, this causes the system to collapse to |νΘ⟩. An X basis
measurement is performed on all qubits indexed by Θ (in each
Li and Ri register). Each STN broadcasts the parity of their
measurement result. Let q = r0Θ⊕(l1Θ⊕r1Θ)⊕· · ·⊕(lpΘ⊕rpΘ)⊕
lp+1
Θ be the result of XOR’ing all measurement results. Since

these are ideal states, by Equation 12, the post-measured state
collapses to a state of the form:

|νtq⟩ =
∑

(r0,··· ,lp+1)∈Jq

|r0, l1r1, · · · , lprp, lp+1⟩X |Et,qr0,··· ,lp+1⟩

(24)
where:

Jq =
{
(r0, l1r1, · · · , lprp, lp+1) ∈ Σn0 :∣∣w (

r0 ⊕ (l1 ⊕ r1)⊕ · · · ⊕ (lp ⊕ rp)⊕ lp+1
)
− w(q)

∣∣ ≤ δ}.

(See, also section I-A for more details on the quantum sam-
pling framework we are using here.)

At this point, parties will measure their remaining qubits in
the Z basis, and each STN will broadcast the parity of their
Z basis measurement results. Bob will take these broadcasts
and XOR to his Z basis measurement result, yielding his raw
key; Alice’s raw key is simply her direct measurement result.
We are interested in computing a bound on the quantum min
entropy of Alice’s measurement result, given Eve’s system and
all the parity broadcasts.

Let’s consider a single STN: instead of measuring imme-
diately in the Z basis and broadcasting the result, we can
equivalently assume each STN will apply a double CNOT
to their Li and Ri registers, XORing their results (in the
computational basis) into a “blank” ancilla. Then, the STN
will measure this ancilla to produce the parity message.

More specifically, consider STNi and qubit j (out of n0).
Namely, we are considering the j’th qubits in both registers Li

and Ri. Ordinarily, the STN will measure this system in the
Z basis, XOR the results classically, and broadcast that bit.
However, instead, we may consider delayed measurements:
the STN may equivalently prepare a blank ancilla in a |0⟩

state, apply a CNOT operation using the j’th qubit in Li as
the control and the new ancilla as the target, followed by a
second CNOT, this time using the j’th qubit in Ri as the
control and, again, the same ancilla as target. Thus, it will
map |x, y⟩Li

jR
i
j
|0⟩P i

j
to |x, y⟩Li

jR
i
j
|x⊕ y⟩P i

j
, where x and

y are single bits (note this definition is with respect to the
computational, Z basis). Measuring the ancilla at this point
and then later measuring the Li and Ri registers in the Z
basis, will produce the same system as if STNi had simply
measured the Li and Ri registers in the Z basis and computed
the XOR classically.

Given the action of this unitary operation on Z basis states,
namely |x, y⟩ |0⟩ 7→ |x, y⟩ |x⊕ y⟩, its action on X basis
states (which is what Equation 24 is written in), is found
to be |a, b⟩XLi

jR
i
j
|0⟩ZP i

j
= 1

2 (|00⟩ + (−1)a |01⟩ + (−1)b |10⟩ +
(−1)a⊕b |11⟩) |0⟩ which maps to:

1

2
(|00⟩+ (−1)a⊕b |11⟩) |0⟩+ (−1)a

1

2
(|01⟩+ (−1)a⊕b |10⟩)

=
1√
2
|ϕa⊕b0 ⟩Li

jR
i
j
|0⟩P i

j
+

(−1)a√
2

|ϕa⊕b1 ⟩Li
jR

i
j
|1⟩P i

j
,

where |ϕyx⟩ = 1√
2
(|0, x⟩ + (−1)y |1, 1⊕ x⟩). Above, we are

denoting this new register as P i since it will store STNi’s
parity broadcast.

Of course, the above map is applied to all n0 qubits; the
action on such a basis state is easily seen to be:

|li, ri⟩LiRi |0⟩P i 7→
∑

ci∈{0,1}n0

(−1)c
i·li

√
2n0

|ci⟩P i |ϕl
i⊕ri
ci ⟩

LiRi ,

(25)
where, above, we permuted the P i and LiRi registers only
for clarity in our subsequent presentation and where ci · li is
the bit-wise modulo two dot product, namely ci · li = ci1l

i
1 ⊕

· · ·⊕cin0
lin0

. Furthermore, by |ϕl
i⊕ri
ci ⟩

LiRi , we mean |ϕl
i
1⊕r

i
1

ci1
⟩⊗

|ϕl
i
2⊕r

i
2

ci2
⟩ ⊗ · · ·

All STNs apply this delayed measurement map; due to
linearity, the joint system |νtq⟩ (Equation 24) evolves to a state
we denote |ζtq⟩ which is found to be:

|ζtq⟩ =
1√
2n0·p

∑
c1,··· ,cp∈{0,1}n0

|c1 · · · cp⟩P

⊗
∑

(r0,··· ,lp+1)∈Jq

(−1)c·l |r0⟩X |ϕl
1⊕r1
m1 ⟩ · · · |ϕl

p⊕rp
cp ⟩ |lp+1⟩X

⊗ |Et,qr0,··· ,lp+1⟩ , (26)

where c · l = c1 · l1 + · · ·+ cp · lp.
At this point, the STN’s will measure their respective

P registers and broadcast the message result (the
message being the parity of their measurements or, in
this case, the parity of what their measurements will
eventually be since we are working with a delayed
measurement setup now). This cause the state to
collapse to the mixed state

∑
c [c] ⊗

[
ζtq,c

]
, where ζtq,c =∑

(r0,··· ,lp+1)∈Jq (−1)c·l |r0⟩X |ϕl
1⊕r1
c1 ⟩ · · · |ϕl

p⊕rp
cp ⟩ |lp+1⟩X



⊗ |Et,qr0,··· ,lp+1⟩ where the sum over c is actually over
c = (c1, · · · , cp), where each ci ∈ {0, 1}n0 . Note we are
disregarding the normalization term which may be absorbed
into Eve’s vectors.

Let’s consider a particular parity broadcast c and the post
measured state |ζtq,c⟩ defined in the equation above. We may
re-write these states in the following form |ζtq,c⟩ ∼=∑
l1,r1,··· ,lp+1∈{0,1}n0

(−1)c·l |ϕl
1⊕r1
c1 ⟩ · · · |ϕl

p⊕rp
cp ⟩ |lp+1⟩X

⊗
∑

r0∈Jq(l1⊕r1,···lp⊕rp,lp+1)

|r0⟩X |Et,qr0,··· ,lp+1⟩ .

=
∑

x1,x2,··· ,xp,lp+1∈{0,1}n0

|ϕx
1

c1 ⟩ · · · |ϕx
p

cp ⟩ |lp+1⟩X

⊗
∑

r0∈Jq(x1,··· ,xp,lp+1)

|r0⟩X |F t,q(c, r0, x1, · · · , xp, lp+1)⟩ ,

(27)

where Jq(x1, · · · , xp, lp+1) =

{r0 ∈ {0, 1}n0 : |w(r0⊕x1⊕· · ·⊕xp⊕ lp+1)−w(q)| ≤ δ}
(28)

and |F t,q(c, r0, x1, · · · , xp, lp+1)⟩ =∑
l1,r1∈{0,1}n0

: l1⊕r1=x1

· · ·
∑

lp,rp∈{0,1}n0

: lp⊕rp=xp

(−1)c·l |Et,qr0,l1,··· ,lp+1⟩ . (29)

Now, returning to the general mixed state
∑
c [c] ⊗

[
ζtq,c

]
,

each STN will measure their Li and Ri systems in the Z
basis and Bob will measure his register (the Lp+1 register)
in the Z basis. Since we care only about Alice’s system at
this point, we will then discard the system. Of course, this is
mathematically equivalent to simply tracing out these systems
from |ζtq,c⟩ immediately. Doing so leads the mixed state:

∑
c

[c]⊗
∑

x1,··· ,lp+1

P

 ∑
r0∈Jq(x1,··· ,xp,lp+1)

|r0⟩X |F t,q(c, r0, x1, · · · )⟩


(30)

where P (|z⟩) = [z] At this point a measurement of Alice’s
register (R0) is made. Equation 5, along with Lemma 1, can
be used to show:

H∞(A|EP ) ≥ min
c,x1,··· ,xp,lp+1

(n0−log2 |Jq(x1, · · · , xp, lp+1)|).
(31)

It is not difficult to show that:

|Jq(x1, · · · , xp, lp+1)|
≤ |{i ∈ {0, 1}n0 : w(i) ≤ w(q) + δ}| ≤ 2n0h(w(q)+δ),

where the last inequality follows from the well-known bound
on the volume of a Hamming ball.

This completes the analysis of the ideal state. Thanks to
Equation 23, this ideal state is ϵ-close to the real one; Lemma
2, then allows us to complete the proof (taking the random
variable X in that lemma to be the subset chosen and the
observed q).

The above gives us a bound, with high probability, on
the quantum min entropy of Alice’s raw key conditioned on
Eve’s side information, and also conditioning on a particular
run of the protocol (i.e., conditioning on an actual X basis
observation being made). Using Equation 3, this leads us di-
rectly to a key-rate expression for an STN chain. In particular,
let ϵPA = 9ϵ + 4ϵ1/2, then except with probability at most
ϵfail = 2ϵ1/3 + 2(p + 1)ϵ (where the last term is due to the
abort conditions in the event subsets are too small as discussed
earlier in our reductions), the final secret key size will be:

ℓSTN = n0 (1− h(w(Q) + δ))− λEC − 2 log
1

ϵ
(32)

where λEC is the error correction leakage and n0 and m0 can
be found on Equations 17 and 16.

IV. EVALUATIONS

Now that we have a finite-key bound for the STN chain, we
can evaluate. While our key-rate proof applies to any noise
scenario, will evaluate assuming each link in the chain is a
depolarization channel with parameter Q. In this case, the Z
or X basis noise in each individual link is simply Q (which we
call the link-level noise). Of course, an STN network cannot
determine the link-level noise, since no sampling is done at the
link level. Instead, we need to determine the expected value of
w(q), where q is the “additive” error in each link. Namely, we
need to determine the probability of an error between Alice
and Bob after each STN transmit their parity bits.

It is not difficult to see in a chain with p STN’s (thus p+1
total links), an error can only occur if there are an odd number
of errors in the total chain. For instance, in a chain with three
links, if there is an error in one link but not two, there will be
an error in the entire chain. However, if there is an error in
two of the links, those errors will “cancel out” when the parity
measurements are transmitted and XOR’d together. Thus, it is
not difficult to see that the expected value of w(q) is simply:

w(q) =

⌈ p+1
2 ⌉−1∑
i=0

(
p+ 1

2i+ 1

)
Q2i+1(1−Q)p−2i (33)

This allows us to evaluate our key-rate equation as derived
in Equation 32. Key-rates are compared with a chain using
regular trusted nodes (denoted simply “TN” where, recall, such
trusted nodes perform a full QKD stack of sampling, error
correction, and privacy amplification). For a TN chain with p
regular TNs, we simply use the standard BB84 finite key rate
equation from [24], namely:

ℓBB84 = ℓTN = n0(1− h(Q+ µ))− λEC − 2 log
2

ϵ′
(34)

where, note, above the entropy depends on the link level
noise Q and not the total noise w(q). Above, we have: µ =√

n0+m0

n0m0

m0+1
m0

ln 2
ϵ′ . For our evaluations, we set ϵ = 10−30,

ϵabort = 10−10, and ϵ′ = 10−10. This provides an error and
failure probability on the order of 10−10 for both our STN
result and the above TN result. We set λEC = h(w(q) + δ)
for the STN case, and λEC = h(Q+ µ) for the TN case.



Fig. 2. Left: Comparing the finite key-rates of an STN chain (bottom three:
blue, yellow, and green), with a regular TN chain (top: red) as the total number
of signals, N , increases. Here, we set the link level noise to be Q = 2% and
pX = 0.2 for all tests. Note that as the number of STNs in the chain increases
while the link-level noise remains constant, the total key-rate degrades. This
is known to happen asymptotically as shown in [18]. Regular TN networks
are limited only by the link level noise and so the number of trusted nodes
is irrelevant in this case. Right: Comparing a regular TN chain with an STN
chain consisting of two STNs as the link level noise Q increases. Here we
compare N = 106 and N = 108 total signals. We set pX = .2 as before.

Fig. 3. Left: Showing how the total noise (Equation 33) increases as the link
noise (Q) increases. For a regular TN, the total noise depends only on a single
link’s noise level; as the number of STN’s increases, the total noise increases
drastically. Once the total noise surpasses 11%, it is impossible for a key to
be distilled given our key-rate expression (or the asymptotic rate from [18]).
Right: Evaluating the finite key-rates of an STN chain with three STNs for a
fixed link level noise of Q = 2% but varying pX .

Figure 2 shows a comparison in key-rates between an STN
chain and a TN chain. Note that the noise tolerance of an
STN network is significantly lower than a regular trusted
node network. However, looking at Equation 33, this is not
surprising; indeed as the link-level noise increases, the total
noise between Alice and Bob in an STN chain may increase
dramatically, as shown in Figure 3 (Left).

Furthermore, this decrease in key-rate as the number of
STNs increases is not unique to our proof and was discovered,
at least in the asymptotic case, in [18]. Of course, the finite
key results cannot be better than asymptotic results. Note that
we are the first to derive a finite key security proof for an
STN chain, so we cannot compare the finite key results to
other work in STN chains.

Of course, in finite key settings, multiple parameters affect
performance. In addition to the total number of signals sent,
the value of pX will also greatly affect key-rates. This is shown
in Figure 3 (Right). Note that for small values of pX , higher
key-rates are possible for larger N , however for larger values
of pX , the overall key-rate will be lower, but one will attain
a positive key-rate for smaller N .

A. Cost Comparison

Despite the fact that STN chains provide lower noise toler-
ances, there are still potential benefits to using STN networks

if the noise is “low enough.” In particular, since each STN
does not need to run EC and PA every time a key is derived
for Alice and Bob, there may be cost savings in running an
STN network. To formally argue this, we derive a novel cost
function for a QKD chain consisting of STNs or TNs. Our
cost function will take into account the cost of running EC
and PA; to be fair, it must also take into account the fact that
an STN chain, though not always required to perform such
operations, will occasionally need to do so, to replenish their
secret key pools for the authenticated channel.

Let’s consider the cost of running a TN first. Alice and Bob
wish to use the TN chain to establish a shared secret key. To
do, so N qubits are transmitted pair-wise, leading to a secret
key of size ℓTN = ℓTN (N,Q), where ℓTN is from Equation
34 and we use ℓTN (N,Q) to show it’s dependence on N and
the link noise Q (the additional ϵ factors do not contribute
significantly for large N and so we do not explicitly write
them out, though they do appear in our evaluation of ℓTN of
course). To produce this key, Alice and Bob both run EC and
PA. Furthermore, to produce this key, each pair of TN’s must
run EC and PA twice (one with their neighbor to the left and
one with their neighbor to the right). We will use EC(N,Q)
to be the cost of running these EC and PA processes when the
total number of signals sent was N and with a noise in the
raw key of Q. We will assume that some of this key is used to
replenish each TN’s pre-shared key for authentication and so
they do not need to do any further computation beyond this.
In this case, the cost of running a TN chain is:

CTN =
cost

secret key bits
=

(2p+ 2)EC(N, q)

ℓTN (N,Q)
(35)

For the STN the case is more involved. When Alice and
Bob want to establish a secret key, they will send N qubits
through the chain. Then, only Alice and Bob will run EC and
PA, leading to a secret key size of ℓSTN = ℓSTN (N,w(q), p),
where ℓSTN is from Equation 32 (note the additional depen-
dence on p). The STN’s do not need to perform EC and PA for
this key; however they did use up some of their shared secret
key pool for their authenticated classical communication (see
Figure 1). This key pool cannot be refreshed immediately as
it could with the TN case, since the STNs did not perform a
full QKD operation (they did not perform EC and PA). This
key-pool will need to be refreshed sometime.

Let’s assume that each STN starts with k secret key bits
for their authenticated communication. Let’s also assume that
for Alice and Bob to establish a secret key using N rounds of
the STN chain, this will require c(N)-bits to be used from the
secret key pool of each STN (this number does not depend
on the noise of the channel, since the communication cost
depends only on the number of rounds used, N ). After Alice
and Bob use the STN network J times (each time establishing
a secret key of size ℓSTN (N,w(q), p)), each STN has a secret
key pool of size k − Jc(N). Once this is “low enough”,
each STN must, independently, run pairwise QKD with their
neighbors, sending N rounds of qubits, and performing EC
and PA with each neighbor. After this, each STN will now



Fig. 4. Comparing the cost per secret key bit of STN chains (Solid Lines,
Equation 36) and regular TN chains (Dashed Lines, Equation 35) as the
number of signals per key establishment round (N ) increases. Left: Link level
noise Q = 2%; Right: Link level noise Q = 1%. In both, we have pX = 0.2.
Note that STNs are more cost effective, according to our cost function above,
for lower levels of noise than the comparably sized TN chain.

have an additional ℓBB84(N,Q) key bits in their secret key
pools for authentication. We will assume that the STN’s will
perform this pair-wise QKD whenever they have c(N) bits
remaining in their secret key pools and, so, they must do this
after the J = (k − c(N))/c(N)’th round.

Summarizing, the STN’s do not need to perform any EC or
PA for J key establishments of the network. During these J
rounds, Alice and Bob have established J×ℓSTN (N,w(q), p)
secret key bits; of course these users must be performing EC
and PA for each of their J secret keys. Finally, only after the
J’th key is established do the STN’s need to perform their
own QKD establishment with their adjacent neighbors. This
will provide them with additional key bits for their pool based
on the link-level noise. Note that Alice and Bob must also do
this to refresh their shared keys with their neighboring STN’s.
This leads to a final cost function of:

CSTN =
2J × EC(N,w(q)) + (2p+ 2)EC(N,Q)

J × ℓSTN (N,w(q), p)
(36)

If we assume k = ℓBB84(N,Q) = ℓTN (N,Q), then

J =
ℓBB84(N,Q)− c(N)

c(N)
(37)

To evaluate and compare, we set c(N) = log2N , since
information theoretic authentication generally requires a loga-
rithmic number of secret keys [29]. We also set EC(N,Q) =
N , that is, we will simply assume the cost of EC and PA
are linear in the number of rounds. Of course other scenarios
may be evaluated. Note that the “cost,” as we evaluate it, is
a unit-less function in our case: it may be related to running
time, memory usage, etc. Users of a STN/TN network should
modify this to suite their needs. Our results are shown in
Figures 4 and 5. It is clear from these figures that STN chains
may be much more cost effective in low-noise scenarios;
however, in high noise scenarios (i.e., high link-level noise),
regular TNs may be more cost effective.

V. CLOSING REMARKS

In this paper, we derived a new proof of security for an STN
chain in the finite key setting. To our knowledge, this is the
first time a finite-key security proof has been achieved for an
STN chain. Our proof methods may have broad application to
other QKD networking scenarios. We also evaluate the STN

Fig. 5. Comparing the cost per secret key bit of STN chains (Solid Lines)
and regular TN chains (Dashed Lines) as the link level noise Q increases.
Here, we set the number of signals for each key establishment round to be
N = 1010 and pX = 0.2. These figures again demonstrate that STNs may
be more cost effective, for lower levels of noise, than the comparably sized
TN chain.

network performance in a variety of scenarios and compare
with a regular TN network. Finally, we derive a new cost
function to more effectively compare STN and TN networks.

In general, STNs have lower noise tolerances, however they
may be more cost effective in some scenarios. Since STNs do
not need to perform error correction and privacy amplification
every time end-users want to establish a secret key, they can
be equipped with slower computational hardware. Our cost
function demonstrates that for low levels of noise STNs can
be much more cost effective in the long run, when compared
to regular TN networks. There may also be security benefits to
STN chains as explained in [20]. Overall, our work in deriving
a new finite-key proof of security for STNs can be beneficial to
further research into developing a cost-effective QKD network.

Many interesting future problems remain. Dealing with
channel loss and imperfect sources would be interesting. We
suspect our proof methods can be suitably adapted to handle
this case, perhaps combined with decoy state methods [30]–
[32], though a full proof we leave as future work.
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