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Abstract— Quantum conference key agreement (CKA) is useful
for many applications that involve secure communication or
collaboration among multiple parties. While CKA over quantum
networks can be achieved using pairwise quantum key distribu-
tion, a more efficient approach is to establish keys among the
parties directly through multipartite entanglement distribution.
Existing studies on multipartite entanglement distribution, how-
ever, are not designed for CKA, and hence do not aim to optimize
key rate. In this paper, we first develop an efficient 3-party CKA
strategy based on a closed-form expression that we derive for
estimating errors. We then develop a general strategy for N-
party CKA that accounts for estimated key rates on individual
network paths. For both cases, we use multipath routing to
improve key rate. We evaluate our approach in a wide range
of settings and demonstrate that it achieves high key rate and
degrades gracefully when increasing the number of parties.

I. INTRODUCTION

Quantum conference key agreement (CKA), or multiparty
quantum key distribution (QKD), extends pairwise QKD to
allow multiple parties to establish a common information-
theoretic secret key. It is useful for many applications, in-
cluding secure multiparty communication, distributed crypto-
graphic applications, and quantum secure multi-party compu-
tation [1]. When the multiple parties are at geographically
distributed locations, long-distance quantum networks provide
a mechanism to connect them using intermediate quantum
repeaters. While CKA can be achieved through pairwise QKD,
which first establishes pairwise secret keys and then uses
secure communication to establish a common key among all
the parties, this process is inefficient [2]. A more efficient
alternative is distributing multipartite entanglement directly to
the multiple parties over a quantum network to establish keys
among these parties.

Existing experimental studies [3], [4] have demonstrated the
feasibility of CKA through multipartite entanglement distribu-
tion over small-scale quantum networks. Efficient CKA over
large-scale quantum networks, however, faces many challenges
due to limitations of near-term technologies such as lossy and
noisy quantum channels, limited quantum memory with short
lifetime, and probabilistic entanglement swapping operations.
To improve key rate, an important building block is efficient
multipartite entanglement distribution over quantum networks.
While this problem has been explored in recent studies [S]—
[9], their designs do not target CKA, and hence they do not
optimize key rate. Specifically, the studies in [5], [6] aim

to minimize the number of consumed entangled pairs under
idealized conditions, with no consideration of loss and noise.
The study in [7] considers a more realistic noisy quantum net-
work setting, and develops a multi-objective routing algorithm
considering both entanglement generation rate and fidelity. The
study in [8] develops multipath routing techniques to improve
entanglement throughput, without taking quantum link fidelity
into account, however fidelity is important for CKA since key
rate is affected heavily by fidelity. The study in [9] maximizes
the expected multipartite entanglement generation rate under
given fidelity constraints.

In this paper, we develop efficient CKA strategies for
general network topologies, while incorporating the various
constraints in near-term quantum networks. We start with
3-party CKA. In this setting, we first derive a closed-form
expression for estimating errors, and then use it to estimate
key rate and develop an efficient CKA strategy. For general N-
party CKA, we develop an approach that directly incorporates
the estimated key rates of individual network paths into the
design. For both cases, we use multipath routing, specifically
multiple trees for connecting the N parties, to improve key
rate. While multipath routing is also used in [8], our design
differs significantly from [8] in that we explicitly consider
fidelity and aim to maximize key rate for CKA.

We evaluate our proposed approach in a wide range of set-
tings. The evaluation results show that our approach achieves
high key rate and degrades gracefully when increasing the
number of parties. Furthermore, it significantly outperforms
several baselines: it achieves up to 223% higher key rate than
a fixed multi-tree algorithm, and achieves up to 85% higher
key rate than a hop-count strategy in heterogeneous settings.

The rest of the paper is organized as follows. In Section
I, we present background and network model. In Sections
III and IV, we develop 3-party and N-party CKA strategies,
respectively. In Section V, we present our evaluation results. In
Section VI, we briefly review related work. Last, Section VII
concludes the paper.

II. BACKGROUND AND NETWORK MODEL

A. N-party CKA Protocol

We use the N-BB84 protocol in [10] for CKA among N
parties. The N parties are denoted as Alice, A, and a set of
Bobs, By, ...,Bn_1. The goal of the protocol is to establish
a common secret key among all /N parties. In the rest of the
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Fig. 1: Illustration of entanglement fusion.

paper, we refer to A as the leader, since it leads the error
correction among the IV parties (see below).

This protocol contains two stages: quantum and classical
information processing stages. In the quantum information
processing stage, the protocol starts with distributing multi-
partite entangled N-GHZ states, % 10)EN + [1)®N), over
the quantum channel to the N parties. All parties perform local
measurements, either in Z or X basis, based on a preshared
key, on their respective quantum systems.

In the classical information processing stage, the parties
reveal a random sample of the collected data over the authenti-
cated classical channel for parameter estimation. Specifically,
this process estimates ()4 p,, i.e., the Z basis quantum bit
error rate (QBER) between A and B;, i = 1,...,N — 1, as
well as Qx, i.e., the X basis QBER across all IV parties. At
this point, the raw keys held by the N parties are partially
correlated and partially secret. In order to correct the errors in
the raw keys, A performs pairwise error correction with each
B; to create shared raw keys among the N parties. At last,
through privacy amplification, the shared raw key is turned
into shared secret key for the NV parties.

Let r denote the key rate, i.e., the length of the shared
secret key divided by the number of N-GHZ states distributed
among the N parties. The study in [10] presents a finite-key
expression for r, which converges to

rzl—H(QX)_m?XH(QA’Bi) ) M

where H(z) = —zlogz — (1 — x)log(1 — x) is the binary

entropy function. In this paper, we focus on asymptotic results,
and use the above asymptotic key rate.

B. Network Model

The above CKA protocol requires the distribution of N-
GHZ states to the N parties prior to initiating the protocol. We
assume that the N-GHZ states are distributed using a quantum
network that connects the N parties.

Consider a quantum network that contains a set of nodes
and edges. Among them, the N nodes that will perform N-
party CKA are referred to as terminal nodes or terminals,
denoted as 711, ..., Ty, and the rest of the nodes are quantum
repeaters. As in [11]-[13], we assume that the nodes have
synchronized clocks and the network operates in rounds. An
edge that connects two nodes represents a fiber link, which
can be noisy and lossy. We assume that each node has a
quantum memory capable of storing one qubit for each of its
connected edges. In addition, all qubits can only be stored for a
single network round due to short quantum memory coherence
time [14], after which it is discarded. The memory may also be
noisy, causing the state to decohere with a certain probability.

Each network round is divided into three phases (see below).
After a sufficient number of rounds, classical post-processing
is conducted among all the terminal nodes to obtain secret key.

Phase 1. This phase distributes link-level bipartite entangle-
ment over each link in the network. Specifically, each pair
of connected nodes, u and v, attempts to share half of an
entangled pair with each other over the fiber link. This process
succeeds with probability p, ., which decays exponentially
with distance [15]-[17]. In addition, due to noise in the link,
memory system, or both, even when entanglement is estab-
lished successfully between u and v, we assume a depolarizing
channel with parameter -, ,. That is, the entanglement may
depolarize and become a completely mixed state. Thus, at the
end of this phase, with probability p,, ., each pair of neighbors
u, v share the state

I
Pu,v = Yu,v |(I)+> <(I)+| + (1 - ’Yu,v)z 5 (2)
where |®1) = % (|00) 4+ |11)) and I is the identity matrix.

Otherwise, with probability 1 — p,, ,,, the neighbors share the
vacuum state (i.e., they share no state). We assume nodes are
able to determine whether they have a vacuum or not, while
they cannot determine if the state is the desired Bell state |®™)
or a completely mixed state.

Phase 2. In this phase, a routing algorithm is executed (see
§III and §IV) to create N-GHZ state among the terminals.
We focus on routing algorithms that use global information,
assuming that link-level entanglement status is known through
classical communication. Specifically, the routing algorithm
will determine a routing tree, where the leaves of the tree are
terminal nodes, and internal nodes can be quantum repeaters
or terminal nodes.

Each internal node of the tree performs entanglement fusion
to create an entanglement state among its neighbors [18].
When entanglement fusion at each internal node succeeds, an



N-GHZ state is created successfully among the N terminal
nodes. As in [9], we use two types of fusions, fusion-and-
retain where the node performing the fusion retains a single
qubit that is part of the resulting N-GHZ state, and fusion-
and-discard where the node is not part of the resulting state.
In our context, if an internal node is a terminal node, it
performs fusion-and-retain; otherwise, it performs fusion-and-
discard. One example is in Fig. 1, where terminal T, shares
entanglement with three neighbors, and performs fusion-and-
retain, while quantum repeater R; shares entanglement with
two neighbors and performs fusion-and-discard.

Henceforth, we refer to the above two types of fusion
operations simply as fusion; the meaning is clear depending on
whether a node performing fusion is a terminal or not. Fusion
is a probabilistic operation. Let ¢, denote the probability that
the fusion operation at node u succeeds.

Phase 3. With N-GHZ state shared among the terminals, each
terminal conducts the quantum portion of CKA protocol (see
§II-A). At the end of this phase, all remaining qubits in the
system are discarded, as we assume quantum memories can
only store qubits for a single network round. The network then
repeats the above three phases for the next round.

Post-processing. When the network has been running for a
sufficient number of rounds, post-processing is executed. Here,
error correction and privacy amplification are run among all
terminal nodes, generating secret key material. As we are
interested only in the asymptotic performance in this paper,
we assume perfect error correction and use asymptotic key
rates for the N-party CKA protocol. Our main performance
metric is the final key rate, namely Eq. (1).

III. 3-PARTY CKA

In this section, we consider CKA with N = 3; CKA for
general N is deferred to §IV. We focus on Phase 2 of each
network round, i.e., designing routing algorithms to maximize
the resultant key rate. These algorithms take a snapshot of the
network as input, where each link in the snapshot represents
successful link-level entanglement after Phase 1.

A. Estimating Error Rates and Expected Key Rate

In general, a routing tree for three terminal nodes can be
represented as a star, with a center node, u, connecting the
three terminal nodes, as shown in Fig. 2a. A special case of
the above is that the center node u coincides with a terminal
node, e.g., as in Fig. 2b.

Let Pr,, = (T,v1,..., vk, u) denote the path from terminal
node T to center node u. Let g7, denote the probability that
all the fusion operations along path Pr ,, succeed. Then g7, =
%, q,,, where g,, is the probability that the fusion at node
v; succeeds. Then with probability gz, nodes T" and u share
the following state

I
pru=7p |27) (@ + (1 —p) 1’
where vp = VT,vl%k,qu;f’Yvi,va and vy, .- is the depolar-
izing parameter for link (v,v").

A3)

Fig. 2: 3-GHZ state distribution for 3-party CKA: (a) shows the
general case where a center node (repeater) connects three terminal
nodes, forming a star/tree; (b) shows a special case where the center
node is a terminal, and hence the topology simplifies into a line.

After determining the leader in a network round (see below),
the leader is denoted as A, and the other two terminals are
denoted as By and Bj. Let 4, denote the depolarizing
parameter for the path between leader A and w; similarly,
define vp, 4, ¢ = 1,2. Both 4, and vypg, , can be obtained
based on per-link depolarizing parameter as described earlier.
In the special case in Fig. 2b where u = Bs, we have
VYBa,u = 1.

To estimate the key rate in Eq. (1), we need to estimate the
Z and X basis error rates. For a given center u, let QE:)Bi

denote the Z basis error rate, and Qg?) denote the X basis
error rate. We derive them for the 3-party case as follows:

(u) 1- YAuYB;,u

AB; — 2 ) (4)
u 1- ;U i iU
QW — L27a 2H VBiu 5)

The derivation is based on the stabilizer formalism [19] and is
found in a longer version [20]. Note from Eq. (4) that QE:)B,
depends on the choice of the leader A, while from Eq. (75);

¥ ) does not depend on leader selection (it is simply related
to the depolarizing parameters on the paths from center node
u to each of the terminals).

Given the above estimated error rates, the expected key rate
when using u as the center node is

r =g, lH qT,u] ri. ©6)
T

where g, is the success probability of the entanglement fusion
at center node u, and the product of the probabilities in the
bracket represents the success probability of fusion on each
path between a terminal 7" and u, and rangx is the maximum
key rate that can be obtained for the given 3-GHZ state with
u as the center node, which depends on the leader selection
in the CKA protocol. Specifically, to determine the leader,
we consider each terminal as the leader A, and compute
H( S?Bi) accordingly. To find the leader that yields the
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Fig. 3: 3-party CKA: (a) Finding one star using the proposed
algorithm. (b) Repeatedly running the algorithm until no more star
is found yields two stars.

highest key rate, we choose A such that max; H( Ef)B) is

minimized, resulting in the maximum key rate for center u as

ri = 1= HQY) —minmax H(QY). @

max

B. Center Selection and Multipath Routing

In each network round, we select the center node using a
method similar to the shortest-star algorithm in [7]. Intuitively
the paths from the terminals to the best center node are the
paths that yield the highest key rate. We refer to such paths as
the shortest paths. Additionally, the paths to the center node
must be disjoint due to entanglement being a resource that
can only be used once. This means that our paths to the best
center will be the shortest possible disjoint paths. We consider
each node as a center, and check if shortest disjoint paths exist.
This results in the following algorithm.

1. Each terminal finds all shortest paths to each other node

in the network.

2. Each node u in the network is considered as the center
node. If disjoint paths from the terminals to that center
node do not exist, the node is ignored. Otherwise, the
expected key rate, ("), of that center node is computed
(see Eq. (6)).

3. The node that yields the highest key rate is chosen as the
center node.

Running the above algorithm results in a star with the three
terminals at the tip of the star. In the special case where a
terminal is selected as the center node, our graph is a line
with the remaining two terminals located at each end. One
example is shown in Fig. 3a for a grid topology, where the
edges represent successful link-level entanglements after Phase
1. The resulting star from the routing algorithm is marked in
purple in Fig. 3a. If we remove all edges used in the star in
Fig. 3a, and re-run the above algorithm, we are able to find
another star/line (marked in orange) as seen in Fig. 3b. We
repeat this process of greedily finding stars until no more star
can be found. Henceforth, we refer to the above algorithm as
multi-star algorithm. We leave the complexity analysis of this
algorithm to future research.

IV. N-ParTY CKA

For N-party CKA, unlike 3-party CKA, multi-star routing
is no longer the best strategy. For example, when there are 5

terminals in a grid topology, it is not even possible to connect
the nodes via a central node since each node has at maximum
a degree of 4. Instead, for N-party CKA, we design a multi-
tree routing algorithm to maximize its key rate. In the special
case that a routing tree is a star, we can estimate the Z and
X basis error rates as in Eq. (4) and Eq. (5), respectively. For
general tree topology, we were not able to derive closed-form
error rate expressions, and estimate the error rates numerically
using density matrices for a given network setting [19]. Once a
routing tree is determined and the N-GHZ state is distributed
to the terminals, we use a similar method to determine the
leader for error correction as in the 3-party case.

A. Multi-tree Routing Algorithm

Classically finding the minimum cost tree that connects
N terminals is an NP-hard problem known as the Steiner
tree problem [21]. In the classical setting, the cost of a tree
is determined by the sum of the weights of the paths that
make up the tree. The study in [8] presents multipath routing
algorithms based on Steiner trees for distributing N-GHZ
states. Their algorithm, however, assumes the fidelity of all
the links to be perfect, and focuses on routing for optimizing
entanglement generation rate. As such, their approximation
algorithm weights edges equally, and weights paths only by the
number of links that they contain. Our design below weights
edges and paths proportional to their key rate, allowing us to
find routing trees that are better suited for CKA. As we shall
see (§V), our algorithm significantly outperforms the algorithm
in [8] for key rate in CKA.

Our design is based on the Steiner tree approximation algo-
rithm in [21] and retains the efficient runtime of O(|V||E|?),
with V, E denoting the vertices and edges respectively. It
consists of the following five main steps (see illustration in
Fig. 4):

1. For a given snapshot of the network (i.e., after Phase 1 in
a network round), find the shortest path (shortest in terms
of negative key rate) between each pair of terminals.
Construct graph G;. Each vertex of (G; is a terminal, and
each edge connects a pair of terminals, where the weight
of the edge is the negative key rate of the associated
shortest path.

2. Find the minimum spanning tree of G;. Since the weight
of each edge represents the negative key rate, the mini-
mum spanning tree will connect terminals by paths with
maximal key rates.

3. Construct subgraph G where each edge of the minimum
spanning tree is replaced by the shortest path (select one
arbitrarily if multiple paths exist). If G is a Steiner tree,
then we are done (i.e., we can skip steps 4 and 5). This
is the case for the example in Fig. 4.

4. Find the minimum spanning tree of Gs.

5. Delete edges in the minimum spanning tree until the only
leaf nodes are terminal nodes.

After using our algorithm to find a tree to distribute an

N-GHZ state, there may still be residual entanglement. One
example is shown in Fig. 5a. As in the 3-party case, we



(a) Initial snapshot of G.

(b) Subgraph G;.
Fig. 4: Nlustration of the proposed routing algorithm for N-party CKA. (a) Given a snapshot of our graph G, first we find the shortest path

between each pair of terminals. (b) Next construct graph GG1, where each edge is the shortest path between terminals. (c) Find the minimum
spanning tree of G'1. (d) Replace each edge in G by its corresponding shortest path.
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Fig. 5: Running the proposed routing algorithm results in finding one
tree in (a). Repeatedly running the algorithm until no tree is found
yields two trees in (b).
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Fig. 6: Results for 3-party CKA for random graphs: multi-star vs.
multi-tree algorithm.

remove all the edges that have been used in the tree from the
graph, and repeatedly run our routing algorithm until no more
tree is found. This process leads to another tree as shown in
Fig. 5b. Henceforth, we refer to the above algorithm as multi-
tree algorithm, which has runtime of O(|V||E}?).

B. Multi-tree vs. Multi-star Algorithm

The multi-tree algorithm for the general N-party setting can
be used for 3-party case. However, for the 3-party case, the
multi-star algorithm can significantly outperform the multi-
tree algorithm. One example is in Fig. 6, which shows the key
rates obtained by the two algorithms for random graphs for 3-
party CKA (see more details on evaluation settings in §V-A).
It shows the results for two settings, both homogeneous (and
hence we omit subscript for each parameter): p = q = 0.85

10.72 4 .
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(c) Min. spanning tree of G. (d) Outputted Steiner Tree

Fig. 7: Placement of terminals in a 7 x 7 grid. (a) ¢ (Bet) layout.
(b) A (Dalet) layout. (c) T (Giml) layout with A, B and C; parties
D, E, and F' added for N =4,5,6.

and p = ¢ = 0.95, while varying v parameter for a link from
0.97 to 1. We see a large gap between the multi-star algorithm
and the multi-tree algorithm. This is because the multi-star
algorithm finds more stars and stars with higher key rates. For
example, when v = 1, the multi-star algorithm finds 0.3 more
stars/trees per round on average than the multi-tree algorithm.

V. PERFORMANCE EVALUATION

In this section, we evaluate our proposed approaches for
CKA using extensive simulations. We first present the evalu-
ation setup, and then the results.

A. Evaluation Setup

We consider two different choices of routing strategies. The
first choice is between fixed routing and dynamic routing. In
fixed routing, the routing algorithm is run once prior to link-
level entanglement establishment (Phase 1). This results in a
fixed star/tree being chosen; and if a single link in the pre-
chosen path fails to generate entanglement, then entanglement
distribution will fail in that round. In dynamic routing, in
each round, the routing algorithm is run on a snapshot of
the graph after link-level entanglement establishment (Phase
1), where link-level entanglement success is assumed to be
global knowledge (obtained via classical communication). The
second choice is between single-tree vs. multi-tree routing. In
single-tree routing, the routing algorithm finds a single tree for
distributing entanglement, while in multi-tree routing, multiple
trees/stars are found as described in §III and §IV. The fixed
strategies are presented as a baseline to show how dynamic
strategies that leverage global information of link-state success
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Fig. 8: Results for various 3-party routing schemes for 3-party CKA in three layouts, 7x7 grid, p = g = 0.85.
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Fig. 9: Key rate when varying N from 3 to 6 for dynamic multi-tree
scheme, p = ¢ = 0.85, incremental T (Giml) layout in 7x7 grid.

(after Phase 1) can greatly improve the key rate. Additionally,
single-tree vs. multi-tree routing is intended to highlight how
utilizing as many resources as possible can improve the key
rate. In the rest of this section, for ease of exposition, we refer
to multi-star and multi-tree algorithms both as multi-tree; if it
is for 3-party CKA, then the results are obtained using the
multi-star algorithm due to its better performance.

We consider both grid and random graph topologies. The
grid topologies are used to gain insights into how varying
different parameters impacts the key rate. Random graph
topologies are used to evaluate the routing algorithms under
more realistic settings.

We choose to vary several parameters and examine how
they impact the key rate. Specifically, link-level entanglement
success probability p is set to 0.85 or 0.95, entanglement
swapping success probability ¢ is also set to 0.85 or 0.95,
and channel noise parameter vy is varied from 0.97 to 1.0,
with step size of 0.005. The number of parties, NNV, is varied
from 3 to 6. We consider both homogeneous settings where
each link/node in the network has the same parameter (§V-B
and §V-C), and heterogeneous settings (§V-D).

B. Results for Grid Topologies (Homogeneous Setting)

We explore two grid topologies: 7x7 and 11x11. For both
of them, we examine three 3-party layouts. Based on the
locations of the terminals, we refer to them as € (Bet), A
(Dalet), and T (Giml) layouts due to their similarities to letters
in the Phoenician alphabet. Fig. 7 shows these three layouts

in the 7 x 7 grid; the layouts in the 11 x 11 grid are in a
similar manner. For both In 7x7 and 11x11 grids, we further
incrementally add terminals to the T (Giml) layout to form
the setup for N =4, 5, and 6.

We next present the results for the 7x7 grid. In Fig. 8,
we compare the performance of four routing algorithms when
p = q = 0.85; the results for other settings show similar
trend. As expected, single-tree and multi-tree dynamic algo-
rithms outperform single-tree and multi-tree fixed algorithms,
respectively. We also see that the € (Bet) layout yields higher
key rates than the A (Dalet) and T (Giml) layouts due to the
reduced distance between terminals in the € (Bet) layout. We
see that due to limited node degree (no more than 4) of the
grid network, the single-tree dynamic algorithm outperforms
the multi-tree fixed algorithm, which is not true in networks
with richer connectivity (see Fig. 10).

As the number of parties increases, naturally we expect
the key rate to decrease. Interestingly, for the incremental T
(Giml) layout, we see in Fig. 9 that 4, 5, and 6 party CKA have
very similar key rates, with a large gap between the 3-party and
4-party case. The closeness of the 4, 5, and 6 party key rates is
due to the similarity of the trees found. The large gap between
the 3 and 4 party cases can be partially explained by the non-
optimality of our Steiner tree approximation algorithm that is
used for the 4-party case, while the multi-star algorithm is used
for the 3-party case. Additionally, this gap is exacerbated in
the grid setting due to the limited connectivity between nodes.
We shall later see that with richer connectivity, as is the case
for random graphs, the degradation for increasing N is much
less significant.

The results for 11x11 grid show similar trends albeit with
significantly lower key rates due to the increased distance
between nodes. In fact, for values of v below 0.98, all 3-
party schemes in the 11x11 grid result in a key rate of 0.
This performance only worsens as N increases.

C. Results for Random Graphs (Homogeneous Setting)

We examine five random graphs and report the average
results. Each graph is generated by placing 50 nodes randomly
in a unit square. Two nodes are connected by a link if
their distance is less than 0.3. These random graphs have a
significantly higher average node degree than our grid graphs
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Fig. 11: Results for N-party CKA under dynamic multi-tree scheme
(averaged over 5 random graphs) when varying v, p and ¢, for N = 3,

4,5, and 6. The results for the other two settings (p = 0.85, ¢ = 0.95;
p = 0.95, ¢ = 0.85) show similar trend and are omitted.

(9.75 vs. roughly 4). We expect that this will improve the
performance of the multi-tree routing algorithm, as higher
node degrees lead to more routing trees.

Fig. 10 plots the average key rate for 3-party CKA in the
random graphs for various values of p and ¢q. Compared to 3-
party CKA for the three grid topologies in Fig. 8, we indeed
see much higher key rate for the random graphs. For instance,
in Fig. 10a, the multi-tree dynamic algorithm achieves a
maximum key rate of over 4, compared to the maximum in
the grid setting of just over 0.9 in Fig. 8a.

In Fig. 10, increasing p has the most impact on fixed
routing algorithms due to their reliance on specific links
being established to distribute entanglement. Similarly, we
see that increasing ¢ has the largest impact on the dynamic
routing algorithms. Once again this makes sense due to ¢
and ~ being the only parameters in our key rate equation
for dynamic routing. Increasing p and q leads to much higher
impact on the multi-tree routing algorithms than the single-tree
algorithm, since each found tree is independently impacted by
the increase of p or g. As expected, when increasing both p
and ¢ we see the largest increase in the key rate for both the
fixed and dynamic multi-tree routing algorithms.

We next compare the results of the different algorithms.

Avg # of Trees found / round

3 4 5 6
N

Fig. 12: Histogram showing the average number of trees found in
each round versus N when p = 0.85 or 0.95, and ¢ = 0.85.

In Fig. 10 for 3-party CKA, compared to the baseline fixed
single-tree algorithm, the dynamic single-tree algorithm results
in a key rate increase of 11% to 54% for the various values
of p and ¢. This increase is also seen in the dynamic multi-
tree compared to the fixed multi-tree algorithm, resulting in
a key rate increase of 25% to 148%. As we increase N, we
see even larger percentage increase. For instance, for N = 4,
5, and 6 parties, dynamic multi-tree algorithm leads to 137%,
191%, 223% higher key rate than fixed multi-tree algorithm
when p = ¢ = 0.85 (figure omitted). This is because as the
number of parties increases, the trees that are found consist of
more links, which degrade the performance of fixed routing
schemes exponentially in both p and ¢, whereas our dynamic
schemes degrade only in q.

Fig. 11 plots the key rate for dynamic multi-tree algorithm
when varying N from 3 to 6 in the random graphs. We
see a clear gap between each plotted key rate in Fig. 11,
in contrast to the grid topology where 4, 5, and 6 parties
achieved similar key rates. Adding terminals to random graphs
has significantly less impact than that in the grid topology
due to richer connectivity in random graphs. Again we see a
large gap between the key rates as IV increases from 3 to 4.
When varying p and g for increasing N, we see similar trends
exhibited in the 3-party case. We see that increasing p has little
effect on the dynamic routing schemes. As seen in the 3-party
case, when increasing ¢, the key rate increases significantly.
In addition, increasing ¢ reduces the gap between the 3 and 4
party key rates.

Fig. 12 plots the histogram of the average number of trees
found for N = 3 to 6, where ¢ = 0.85 and p is 0.85 or
0.95. We see that the average number of trees found tends to
decrease when increasing N. As expected, when increasing p
we see that more trees are found since higher p leads to more
successful link-level entanglements, and hence more trees can
be found. Finding trees is independent of ¢, which is only
taken into account when attempting to distribute entanglement
across nodes in the routing trees.

D. Results for Random Graphs (Heterogeneous Settings)

We now present the results in heterogeneous settings for
random graphs. For each of the 5 random graphs, we created
10 settings, where the parameters for each node and link
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Fig. 13: Results for random graphs in heterogeneous settings (aver-

aged over 50 settings): comparison of our scheme and a hop-count
based scheme.

is uniformly randomly chosen in their ranges (see §V-A).
We compare our dynamic multi-tree algorithm with a simple
strategy that is based on hop count, i.e., similar to that in [8].
For each algorithm, we obtain the results from 50 settings and
plot the average value with 95% confidence intervals as shown
in Fig. 13. When N = 3, 4, 5, and 6, on average, our scheme
leads to 85%, 14%, 43%, and 62% higher key rate than the
hop-count based scheme.

VI. RELATED WORK

The works that are closest to ours are [5]-[9]. As described
in §1, they focus on designing efficient multipartite entangle-
ment distribution strategies over quantum networks, not for
CKA. The design of our multi-tree algorithms for CKA are
inspired by them. On the other hand, we explicitly consider
key rate in our design to optimize key rate. Our design is
unique in that it focuses on dynamic entanglement distribution
and accounts for channel noise while maximizing key rate.

The multipath routing strategies that we develop for CKA
are broadly related to the extensive literature on routing in
quantum networks (e.g., [11], [12], [22]-[25]). These studies
however focus on pairwise Bell pair distribution, instead
of multipartite entanglement distribution to multiple parties.
Routing multipartite entanglement to multiple parties (as done
in this work) is significantly more challenging than routing
bipartite entanglement to two parties.

The design and security analysis of CKA have been studied
extensively (see [1] and the references within). They assume
entangled GHZ state of particular fidelity, but do not consider
CKA in quantum networks, which is the focus of this study.

VII. CONCLUSION

In this paper, we developed efficient CKA strategies over
quantum networks. We derived an analytical expression for
determining 3-party CKA key rates, and designed strategies
for 3-party and general N-party CKA by incorporating various
constraints in near-term quantum network technologies into the
design to optimize secret key generation rate. Using extensive
evaluation in both grid and random graphs under a wide range
of settings, we demonstrated that our schemes achieve high

key rates and degrade gracefully when increasing the number
of parties.
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