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Abstract
Quantum Key Distribution allows two parties to establish a secret key that is secure against
computationally unbounded adversaries. To extend the distance between parties, quantum
networks are vital. Typically, security in such scenarios assumes the absolute worst case: namely, an
adversary has complete control over all repeaters and fiber links in a network and is able to replace
them with perfect devices, thus allowing her to hide her attack within the expected natural noise.
In a large-scale network, however, such a powerful attack may be infeasible. In this paper, we
analyze the case where the adversary can only corrupt a subset of the repeater network connecting
Alice and Bob, while some portion of the network near Alice and Bob may be considered safe from
attack (though still noisy). We derive a rigorous finite key proof of security assuming this attack
model, and show that improved performance and noise tolerances are possible. Our proof methods
may be useful to other researchers investigating partially corrupted quantum networks, and our
main result may be beneficial to future network operators.

1. Introduction

Quantum key distribution (QKD) allows for the establishment of secure secret keys between two parties,
Alice and Bob, the security of which is guaranteed by the laws of physics. This is unlike classical public key
cryptography which necessarily requires computational assumptions placed on the adversary in order to
achieve security. See [1–4] for a general survey on QKD.

One of the main limiting factors of QKD performance is distance—since transmissivity decays
exponentially with distance, achieving efficient QKD between two parties that are far away from each other
remains a tremendous challenge. One promising solution for long-distance QKD is through quantum
networks, e.g. quantum internet [5–7]. Quantum networks consist of quantum repeaters that are capable of
creating shared end-to-end entanglement between parties, even if the repeaters are controlled by an
adversary. As such, they provide a much stronger security guarantee than the current day trusted node
networks [8–15], where the trusted nodes must be trusted.

In almost all QKD performance analyses, the security of the system assumes the absolute worst case,
namely that the adversary controls the entire region outside of Alice and Bob’s labs. This implies that the
adversary controls all repeaters and fiber links in the entire network, and can even replace them with ideal,
noiseless devices, and thus ‘hide’ within the expected natural noise. Considering that such networks are
meant to allow for long-distance QKD operation, this is an unrealistic scenario. In any realistic operational
scenario, it is likely that an adversary can only control a strict subset of repeaters and fiber links.
Furthermore, it is also realistic to assume that an adversary can only control a contiguous section of the
network, i.e. not scattered, unconnected, repeaters, but instead a connected region of the network, based on
the location of the attacker.

In this work, we consider the above realistic partially corrupted network scenario. We start with the
simplest form of quantum repeater networks, a quantum repeater chain, which consists of two end users
(Alice and Bob) and a sequence of quantum repeaters connecting the end users; see figure 1. These repeaters
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Figure 1. An example repeater chain where the repeaters (solid circles) and links near parties Alice and Bob, (those within the
dashed circles), may be considered ‘safe’ or trusted, while all other repeaters and links may, or may not, be adversarial. Note that
even though the repeaters near Alice and Bob may be trustworthy, they are still noisy.

perform Bell swap operations to create end-to-end entanglement between two distant parties (we discuss the
details of their operation later). Once this end-to-end entanglement is established, parties can run the
E91 [16] QKD protocol (the entanglement based version of BB84 [17]) to establish a shared secret key. As we
shall see, even in this simple topology of a repeater chain, analyzing security assuming partial corruption is a
tremendous challenge. Once the repeater chain is analyzed, we extend our result to general networks where a
region close to Alice and a region close to Bob are considered safe or trusted, and the rest of the network is
adversarial. Specifically, we further extend our analysis by taking account of multiple paths that may exist
between Alice and Bob in a general network setting.

Naturally, a partially corrupted network is an assumption; however, unlike classical key distribution
which requires computational assumptions, this assumption on the attack model is grounded in physical
limitations of the adversary. See section 2.1 for a more formal description of our assumptions and security
model. So far, security analyses of QKD networks assuming alternative attack models, such as this, have
received very little attention (see section 1.1 for a discussion on prior work). Yet analyzing such scenarios is
important for a variety of reasons. For instance, we show that drastically improved key-rates and noise
tolerances are possible (as we show in section 5), potentially allowing for early QKD networks to perform at
more optimistic levels. Also, by having rigorous proofs of security that can handle alternative, perhaps more
realistic, attack models, users of early QKD network systems can have guidelines on how much of the
network, and exactly which locations, need to be protected physically, in order to achieve a certain desired
key-rate.

Analysis of partially corrupted repeater chain: In this work, we first analyze the performance and security
of the E91 protocol operating on a repeater chain consisting of c repeaters, where the adversary is allowed to
control a subset of contiguous repeaters and links. Alternatively, one may consider a repeater chain where
some of the repeaters and links near Alice and Bob are trusted and better secured. We assume that users can
upper-bound the number of adversarial repeaters or, alternatively, can lower-bound the number of honest
repeaters in the network.

There are two motivating examples as to why this is a reasonable assumption. First, as discussed above, it
is unrealistic that an adversary can control the entire, lengthy, repeater network and replace the entire
network with adversarial devices, performing coherent attacks across a large distance. Second, it is likely that
at least some repeaters near Alice and Bob will be placed in a secure and trusted location, which an adversary
cannot easily gain access to (similar to how trusted nodes are considered physically secure—however
securing a repeater is even easier, as it never stores the secret key). Thus, for any path from Alice to Bob, one
can assume that the first few repeaters connected to Alice are secure while the last few repeaters connected to
Bob are secure, leaving the middle repeaters as potentially under the control of the adversary; see figure 1.
Note that it may be that there are no secure repeaters for some paths, in which case, our key-rate result
converges asymptotically to the standard BB84 expression.

Of course, even though there may be multiple honest repeaters and fiber links connecting them, these
honest sub-networks are still noisy, and will still introduce detectable noise into the final shared entangled
pairs. Thus, when Alice and Bob run a QKD protocol, the observed noise is a function both of Eve’s attack
and the natural noise in the trusted sub-network. Therefore, for a given observed noise level Q, one would
expect that Eve’s information is not nearly as high as it would be in the standard assumption case, where all
noise is the result of an attack. However, formalizing this in the finite key setting, where a bound on the
quantum min entropy [18] is required, is non-trivial, especially for multi-path networks. With min entropy,
one must take into account that it is in some ways a ‘worst-case’ entropy and, so, we must be careful when
analyzing the system that Eve is not always able to ‘hide’ in the natural noise. We must also deal with finite
sampling imprecisions, and also the fact that Eve can interact non-trivially with the honest repeater network
(even influencing routing decisions in larger networks). Finally, we must also take into account that the
repeater network, including the adversary’s portion of it, must send classical messages to users of the
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protocol, in order for them to apply a correcting Pauli gate. Taken together, these issues make finite key
analyses a challenge.

Finite key analyses, however, are vital to understanding the potential performance of a quantum system.
Asymptotic analyses are highly interesting, and useful, as theoretical upper-bounds; however finite key
scenarios, where Alice and Bob only utilize the network for a finite amount of rounds, are important for
understanding the potential performance in more realistic scenarios. Our work shows how to bound the
quantummin entropy between Alice and the adversary Eve in this network scenario, thus providing us with a
bound on the finite key-rate of the system under this attack model. We develop a novel proof technique for
this scenario, taking advantage of a sampling-based framework introduced by Bouman and Fehr in [19],
along with proof techniques used for sampling based entropic uncertainty relations [20, 21]. We restrict our
attention to noisy but lossless channels as this already presents a large challenge; despite this, we suspect our
proof techniques may be extended to deal with lossy channels also, potentially using decoy state methods
[22–24]. However, we do not assume uniform noise in the network; some honest links may be noisier than
others. We also do not make any assumptions on the adversary’s attack within the corrupted sub-network;
i.e. it can be any arbitrary general/coherent attack.

We make several contributions in this work. First, we show a quantum min entropy bound for the setting
where natural and adversarial noise are mixed in a quantum repeater network. Such a bound allows us to
derive key-rate expressions in the practical finite key setting. To prove our new bound, we develop several
new techniques which may be broadly applicable outside of this application domain. At a high level, our new
results claims that the quantum min entropy, denoted Hϵ

∞(A|E) is bounded by:

Hϵ
∞ (A|E)⩾ n(1− h(Q−QN + δ)) , (1)

where h(x) is the binary Shannon entropy, n is the number of network rounds used (after sampling), Q is the
observed X basis noise, QN is a function of the honest network noise (which we assume in this paper that
Alice and Bob may at least lower-bound), and δ results from finite sampling imperfections. Our proof takes
into account all finite sampling artifacts and imprecisions, allowing users to immediately evaluate key-rates
and optimize over user parameters. Our full result is stated in theorem 2 for the repeater chain scenario.

Analysis of partially corrupted multi-path networks: Following the analysis of repeater chains, we extend
the analysis to general multi-path networks. Our full result for general network scenario is in theorem 3.
Similar to equation (1), we show how the natural noise may, in a way, be deducted from the observed X basis
noise. Now, however, we must be careful of multi-paths and routing issues that arise in large-scale networks.
We extend our result and show how QN can be computed in the multi-path setting, assuming some repeaters
and links near Alice and Bob are honest, but noisy.

For both single-path repeater chains and general multi-path networks, we use our expression to derive
finite key-rate expressions, and also asymptotic key-rates. We evaluate our results in a variety of settings
showing that significantly improved key-rates are possible, compared to standard security models consisting
of entirely adversarial networks. While that result is not surprising, showing it rigorously is a challenging, but
important, problem which we solve in this work.

Finally, our proof method may be broadly applicable to other application domains within quantum
cryptography. We build on the quantum sampling framework of Bouman and Fehr and introduce new
methods to derive min entropy expressions for systems that are only partially under the control of the
adversary.

1.1. Prior work
We are not the first to consider physical assumptions in the security model of QKD. Much work has been
done, for instance, in assuming Eve is bounded in her storage abilities, either in quantity of storage bits [25],
or quality of storage memory [26].

We are also not the first to consider a security model based on the communication setup. For instance,
several recent papers have considered alternative security models for satellite communication, placing
reasonable assumptions on the adversary’s capabilities given the channel conditions. In particular, these
references take advantage of the fact that satellite communication requires line of sight and it is infeasible for
an adversary to completely control the freespace channel between the satellite transmitter and the ground
station. In [27], a new ‘bypass channel’ model is introduced which models the practical assumption that an
adversary can only capture a portion of the transmitted photons while others will bypass the adversary and
arrive at the receiver un-attacked. Vergoossen et al [28] took this further and argued that attacks against
satellite QKD can be detected through classical means, and defined ‘photon key distribution’ protocols to
improve performance. Other [29, 30] have considered security of QKD protocols, particularly freespace ones
such as satellite communication, operating over wiretap channels [31]. These are all assumptions placed on
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the adversary, based on reasonable practical constraints on any attack against QKD. In our work we place
what we consider reasonable assumptions on an adversary, based on the impracticality of attacking an entire
large-scale network simultaneously. Similar to the work cited above, these assumptions allow for improved
performance of the underlying system—though it is up to users of the system to decide if they are
comfortable with the assumption. Indeed, users can always revert back to the standard security model
(though, in that case, they can no longer take advantage of the improved performance).

Perhaps the closest work to ours is found in [32, 33]. Both of these sources investigated the performance
of QKD where some of the observed channel noise is assumed to be honest or natural noise (also called
trusted noise in some references), while some is adversarial. Both references, however, only considered
point-to-point BB84, not a quantum repeater network. Furthermore, [32] only considered collective attack
scenarios and, thus, computed a bound on the von Neumann entropy (note that such an analysis could be
promoted to general attacks, though the result is usually not as tight, in the finite key setting, as deriving a
bound directly on the min entropy as we do in this paper). We do not assume the adversary is restricted to
collective attacks, thus requiring us to derive a bound on the quantum min-entropy, a more challenging
prospect. The second, [33], considered a particular ‘state replacement’ noise model, where the natural noise
in the channel consisted of a state being replaced with a truly mixed state. This replacement is done for every
single state sent, in an i.i.d. manner and the probability of state replacement is known and characterized. Our
work considers repeater networks where some of the network is considered ‘honest’ or safe, but suffers from
characterizable noise, while the remainder of the network is considered adversarial. Our proof must take into
account the action of the honest repeater network and the classical messages being passed, which was not a
requirement in these previous works. We also are able to analyze arbitrary quantum networks beyond simple
repeater chains, including multi-path networks.

Other references have considered various ‘trusted noise’ scenarios in the discrete variable case. In [34],
the six-state BB84 protocol was analyzed where the signal received by Bob is mixed with white noise (which
can be added deliberately by the source, Alice, or naturally, such as by natural light interfering with a
free-space satellite QKD link). However, only individual attacks were considered in the asymptotic setting;
note that individual attacks are weaker than collective attacks and security against individual attacks does not
necessarily imply security against arbitrary, general attacks. In [35], the authors investigated the performance
of BB84 with a particular form of added natural noise, namely collective-rotation noise. However, the
security analysis was only against a particular intercept/resend attack strategy, where the adversary measures
incoming signals in either the Z or X basis. This was followed up recently in [36] for the six-state BB84
protocol, but again, only for intercept resend attacks. In [37], the benefits of adding noise to an already faulty
source were considered and shown to improve BB84. Finally, in [38], the effects of multiple but independent,
adversaries on a single point-to-point BB84 link were considered. Only the von Neumann entropy was
investigated there.

BB84 style protocols were not the only ones to be considered in the trusted-noise scenario. In [39, 40],
the so-called Ping-Pong protocol (introduced in [41]) was analyzed assuming there was either trusted noise
in the channel [39] or there was noise added by the source [40]. The Ping-Pong protocol relies on a two-way
quantum communication channel, with qubits traveling from Alice, to Bob, then back to Alice. In both these
works, only asymptotic analyses were considered and, thus, bounds on von Neumann entropy. Furthermore,
no quantum repeaters were considered. Finally, larger scale networks were also considered in [9], though,
there, the network consisted only of trusted nodes (not repeaters) and the security model assumed that
trusted nodes were corrupted randomly; the goal of that reference was to route QKD paths randomly so that
at least one path went through all honest trusted nodes. This is different from our work where we are forced
to pass through both the honest, and the dishonest, nodes.

Moving beyond these discrete-variable protocols, several sources have investigated natural and trusted
noise in the continuous variable QKD scenario [42–45]; see also [46] for more of a survey in practical
continuous variable QKD. However, none of these considered repeater chains (or larger networks) and,
instead, assumed natural noise in the channel between source and receiver, trusted noise in the devices, or
the intentional addition of noise at the source or receiver.

1.2. Preliminaries
We now introduce some notation and basic definitions we use throughout this work. We will then discuss
some more important properties of quantum min entropy and some basic lemmas which will be used later.

LetAd be a d-character alphabet which, without loss of generality, we simply assume to be
Ad = {0,1, · · · ,d− 1}. Given a word q ∈ AN

d and a subset t⊂ {1, · · · ,N}, we write qt to be the substring of q
indexed by subset t (i.e. qt = qt1 · · ·qt|t|) and we write q−t to mean the substring of q indexed by the
complement of t. When t is a singleton t= {i} we usually just write qi to mean the ith character of q. We use
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w(q) to be the relative Hamming weight of q, defined by:

w(q) =
|{i : qi 6= 0}|

|q|
.

Finally, given two real values x,y ∈ R and δ > 0, then we write:

x∼δ y

if and only if |x− y|⩽ δ.
Let P be some probability distribution overAd, with P(x) being the probability of some outcome x ∈ Ad.

Then, given a word q ∈ AN
d , for some N > 1, we often write P(q) to mean P(q) = P(q1)P(q2) · · ·P(qN).

If a quantum state (density operator) ρ acts on some Hilbert spaceHA ⊗HB, we usually write ρAB; we
then write ρA to mean the state resulting from the partial trace over B, namely ρA = trBρAB. This can be
extended to multiple subspaces. Given a pure state |ψ〉, we write [ψ] to denote [ψ] = |ψ〉〈ψ|. Given an
orthonormal basis B = {|x0〉, · · · , |xd−1〉} and a word i ∈ AN

d , we write |i〉B to mean the word i in the B basis,
namely |i〉B = |xi1〉⊗ · · · ⊗ |xiN〉. If no basis is specified, we assume the standard computational basis, namely
|i〉= |i1〉⊗ · · · ⊗ |iN〉. Finally, given ρ and σ, acting on the same Hilbert space, we write ||ρ−σ|| to be the
trace distance of ρ and σ defined as: ||ρ−σ||= tr

√
(ρ−σ)∗(ρ−σ), where A∗ is the Hermitian adjoint of

operator A.

Bell basis notation:We use |ϕy
x〉, for x,y ∈ {0,1}, to denote the Bell basis states:

|ϕy
x〉=

1√
2

(
|0,x〉+(−1)y |1, x̄〉

)
, (2)

where x̄= 1− x. Later, we will work with multiple Bell states tensored together. For this, we define the Bell
alphabet set of size N to be:

BN =
{
(x,y) ∈ {0,1}N ×{0,1}N

}
. (3)

Given an element i = (x,y) ∈ BN, we write ibt to mean the ‘x’ portion of the string i while we write iph to be
the y portion. That is, the superscript ‘ph’ will denote the ‘phase’ element of a Bell state, while ‘bt’ will
represent the ‘bit’ portion. All subset indexing rules discussed earlier apply to each individual portion of i
(e.g. iph

t is the y portion of i, but only those indices indexed by t). We then write it to mean both x and y
portions indexed by t, namely it = (xt,yt) ∈ B|t|. We write |ϕi〉 to mean |ϕiph

ibt〉 with:

|ϕi〉= |ϕiph

ibt〉= |ϕy1
x1〉⊗ |ϕy2

x2〉⊗ · · · ⊗ |ϕyN
xN〉. (4)

(Recall xj is the jth bit of x and similarly for y.)
Finally, we also can add two Bell alphabet elements: given i, j ∈ BN with i = (x,y) and j = (z,u), then we

write i+ j to mean the addition, coordinate-wise, modulo two, namely: i+ j = (x⊕ z,y⊕ u), where the
strings x⊕ z and y⊕ u are added bit-wise modulo two.

1.3. Quantummin entropy
Let X be a random variable taking value i with probability pi. Then we write H(X) to mean the Shannon
entropy of X defined to be H(X) =−

∑
i pi logpi where all logarithms in this paper are base two unless

otherwise specified. If X has only two outcomes, then H(X) = h(p) =−p logp− (1− p) log(1− p) where
h(p) is the binary entropy function. For technical reasons later, we define a function h̄(p) by h̄(p) = h(p) if
p< 1/2 and h̄(p) = 1 otherwise. Thus h̄(p)⩽ h̄(p ′) for every 0⩽ p⩽ p ′ ⩽ 1.

Given a quantum state ρAE, the conditional quantum min entropy is defined as [18]:

H∞ (A|E)ρ = sup
σE

max
{
λ ∈ R : 2−λIA ⊗σE − ρAE ⩾ 0

}
, (5)

where the supremum is over all density operators σE acting onHE and where A⩾ 0 means operator A is
positive semi-definite. Let Γϵ(ρ) = {τAE : ||ρAE − τAE||⩽ ϵ}, i.e. the set of all density operators ε-close to
ρAE in trace distance. Then, the smooth min entropy is defined [18] to be:

Hϵ
∞ (A|E)ρ = sup

τ∈Γϵ(ρ)

H∞ (A|E)τ . (6)
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Quantum min entropy is a vital resource in quantum cryptography as it directly relates to how many
uniform random bits may be extracted from a quantum state. Formally, let ρAE be a classical quantum state

(cq-state). That is, it may be written in the form ρAE =
∑

a∈{0,1}N PA(a)[a]A ⊗ ρ
(a)
E . Then, if one chooses a

two-universal hash function at random, f : {0,1}N →{0,1}ℓ, disclosing the choice of function to Eve, and
hashing the A register to f (A), then it holds [18]:∣∣∣∣ρf(A),EF − I/2ℓ ⊗ ρEF

∣∣∣∣⩽ 2−
1
2 (H

ϵ
∞(A|E)ρ−ℓ) + 2ϵ. (7)

Above, F is the system representing Alice’s random choice of hash function f, while f (A) is the ℓ-bit register
resulting from hashing N-bit register A. Essentially, the above states that, so long as the min entropy in the
state ρAE before privacy amplification is high enough, one can extract a random string, of size ℓ-bits, that is
uniform random and also independent of Eve.

There are several important properties of min entropy that will be useful later. Given a state ρABC that is

classical in C, namely it can be written in the form ρABC =
∑

c pc[c]⊗ ρ
(c)
AB , then it holds that:

H∞ (A|B)ρ ⩾H∞ (A|BC)ρ ⩾min
c

H∞ (A|B)ρ(c) . (8)

In particular, the above says that for some mixed state ρAB =
∑

c pcρ
(c)
AB , or a state ρABC that is classical in C,

the min entropy of the entire state can be lower-bounded by the worst-case entropy over the possible
sub-events c.

We conclude this section with two lemmas that will be useful later. The first one, below, allows us to
bound the smooth min entropy in a particular state after a measurement operation is performed on part of
it, if we know the min entropy of a state that is ‘close’ to it in trace distance:

Lemma 1. (From [47]): Let ε> 0, and let ρ and σ be quantum states acting on the same Hilbert space such that
1
2 ||ρ−σ||⩽ ϵ. Let F be some completely positive trace preserving (CPTP) map (i.e. some quantum operation,
or operations) which, on input a quantum state τ , acts as follows:

F (τ) =
∑
x

p(x|τ) [x]X ⊗ τ
(x)
AE . (9)

Then, it holds that:

Pr
(
H4ϵ+2ϵ1/3

∞ (A|E)ρ(x) ⩾H∞ (A|E)σ(x)

)
⩾ 1− 2ϵ1/3, (10)

where the probability is over the random outcome X in the states F(ρ) and F(σ).

The next lemma that we will need in our proof, allows us to bound the min entropy of a superposition
state in the Bell basis, if a measurement is made on the first qubit of every Bell pair:

Lemma 2. (From [48], rewritten using our notation): Let |ψ〉XE =
∑

i∈Jαi|ϕiph

ibt〉X ⊗ |Ei〉E where
J= {i ∈ Bn : w(iph)⩽ Q} ⊂ Bn (for Q ∈ [0,1]). Let ρAE be the state resulting from taking |ψ〉 and measuring
the first particle of every Bell pair in register X in the computational basis (which results in register A) while the
second particle of every Bell pair is traced out. This measurement results in post-measured state ρAE. Then, it
holds that:

H∞ (A|E)ρ ⩾ n
(
1− h̄(Q)

)
. (11)

1.4. Quantum sampling
To derive a lower-bound on the quantum min entropy, we will take advantage of a quantum sampling
framework introduced by Bouman and Fehr in [19]. In this section, we review some of the main points of
this framework, referring the reader to [19] for additional details. The main point of Bouman and Fehr’s
sampling framework is the ability to promote a classical sampling strategy to a quantum one in such a way
that one can argue about the state of the post measured system after sampling a quantum state.

A classical sampling strategy for words of length N over some alphabetAd is a triple (PT,g, r) where PT is a
probability distribution over all subsets of {1, · · · ,N}; g is a guess function; and r is a target function. Here,
g, r :A∗

d → R. Typically g≡ r (which will certainly be the case in this work, where we set g≡ r≡ w, the
Hamming weight function), though this is not required in general. Given a word q ∈ AN

d , the sampling
strategy will: (1) choose a subset t according to distribution PT; (2) observe qt and evaluate g(qt) (or, will
simply observe g(qt)); finally, (3) output this value as a ‘guess’ as to the value of r(q−t). That is, the strategy
uses g(qt) (the guess function evaluated on the observed portion of q) to guess at the value of some target
function evaluated on the unobserved portion of q.

6
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Let δ > 0, then given a fixed subset t, we define the set of ideal words to be those words q where the guess,
given qt, is always δ-close to the target r(q−t). Formally:

Gt =
{
q ∈ AN

d : g(qt)∼δ r(q−t)
}
. (12)

(Recall x∼δ y only if |x− y|⩽ δ.) From this, the error probability of the given sampling strategy is defined
to be:

ϵcl = max
q∈AN

d

Pr(q 6∈ Gt) , (13)

where the probability, above, is over the choice of subset t chosen according to PT. Thus, given any string
q ∈ AN

d , the probability that the given classical sampling strategy fails to produce a δ-close guess of the target
value on observing qt is no higher than ϵcl.

While the above described sampling strategy applies to a classical word, it may be promoted, in a natural
way, to a quantum sampling strategy. Given a quantum state |ψ〉AE, where the A register lives in some dN

dimensional Hilbert space, the sampling strategy will choose a subset t according to PT and thenmeasure
those qudits in A indexed by t in some fixed d-dimensional basis B. This measurement produces a classical

output qt ∈ A|t|
d and a quantum post-measured state |ψt,qt〉A′E, which depends on both the subset choice t

and the actual observed value qt. Note that the A′ register of the post-measured state, once removing the
measured qudits, lives in a dN−|t|-dimensional Hilbert space. The question becomes: what can be said of
|ψt,qt〉A′E?

Define the space of ideal states for subset t with respect to the fixed (but arbitrary) d-dimensional basis B
as follows:

span(Gt)⊗HE = span
{
|q〉B : q ∈ Gt

}
⊗HE. (14)

An ideal state, |υt〉, is defined to be one which lives in this space. Note that, if a basis measurement in the B
basis is made of |υt〉 in subset t, producing outcome x ∈ A|t|

d , then it is guaranteed that the post-measured
state can be written in the form:

|υtx〉=
∑
i∈Jx

αi|i〉B|Ei〉, (15)

where:

Jx =
{
i ∈ AN−|t|

d : g(x)∼δ r(i)
}
. (16)

Notice that, if the state given is an ideal state with respect to subset t and if the sampling strategy actually
chooses t to sample, then the post-measured state is well behaved. Of course, given an arbitrary state |ψ〉AE,
this is not guaranteed. However, Bouman and Fehr’s main result, stated in theorem 1 below, says that,
roughly, |ψ〉AE should behave like an ideal state, on average over the subset choice.

Theorem 1. (From [19], though reworded here for our application): Let δ > 0 and |ψ〉AE be an arbitrary
quantum state where the A register consists of N qudits each of dimension d. Let B be an arbitrary d-dimensional
orthonormal basis. Then, given a classical sampling strategy (PT,g, r) with failure probability ϵcl, there exists a
collection of ideal states {|υt〉}t, indexed over every subset t, such that |υt〉 ∈ span(Gt)⊗HE (where span(Gt) is
defined with respect to basis B) and:

1

2

∣∣∣∣∣
∣∣∣∣∣∑

t

PT (t) [t]⊗ [ψ]−
∑
t

PT (t) [t]⊗ [υt]

∣∣∣∣∣
∣∣∣∣∣⩽√

ϵcl. (17)

Proof. For a proof, see [19]; to see that our rewording of their main result follows from Bouman and Fehr’s
work, the reader is also referred to [20].

To conclude this section, we will introduce the classical sampling strategy we will use later which we
denote here byΨ4. It operates on the four-dimensional alphabet BN and is defined as follows: PT will choose
a random subset t of sizem⩽ N/2, uniformly at random from all subsets of {1, · · · ,N} of sizem. Then, the
guess function and target functions are the Hamming weight of the phase component of the word q ∈ BN.
Namely g(qt) = w(qph

t ) and r(q−t) = w(qph
−t).

To bound the error probability of this strategy, we will actually need to introduce an alternative strategy
defined and analyzed in [19], for two character alphabets which we denoteΨhw. Namely, given a word

7
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q ∈ {0,1}N, PT will choose a uniform random subset of sizem⩽ N/2, observe the relative Hamming weight
of qt, namely g(qt) = w(qt) and use this as a guess for the target value r(q−t) = w(q−t) (i.e. the target value is
the Hamming weight of the unobserved portion). It was shown in [19] that the error probability for this
strategy is upper-bounded by ϵclhw defined to be:

ϵclhw ⩽ 2exp

(
−δ2 mN

N+ 2

)
. (18)

Using this, we can prove the following lemma, bounding the error probability of the sampling
strategyΨ4:

Lemma 3. Given the sampling strategyΨ4 described above, for m< N/2, it holds that:

ϵcl ⩽ 2exp

(
−δ2 mN

N+ 2

)
. (19)

Proof. Let G(4)
t be the set of good words induced by sampling strategyΨ4 and let Ghw

t be the set of good words

for sampling strategy Ψhw. Pick q ∈ BN and let q̃= qph. Then it is obvious that q 6∈ G(4)
t ⇐⇒ q̃ 6∈ Ghw

t . Thus,

Pr(q 6∈ G(4)
t ) = Pr(q̃ 6∈ Ghw

t ). Since q was arbitrary, and using equation (18), the result follows.

2. Network and security model

Since our security analysis for general networks directly builds on that of repeater chains, in this section and
section 3, we focus on models and security analysis of repeater chains. In section 4, we extend our results to
general networks. In section 5, we present numerical results for both repeater chains and general networks.

We consider a repeater chain topology in this work consisting of c repeaters, denotedR1, · · · ,Rc, chained
in sequence connecting two users Alice and Bob as shown in figure 2(a). A repeater in our network is a basic
device with two quantum storage ports, one connected to each neighbor. These devices are capable of
creating Bell pairs and sending one particle to a neighbor while storing the other in quantum memory;
receiving quantum states and storing them in the corresponding storage port; performing Bell measurements
on the two qubits in storage; and finally, sending and receiving classical messages. We assume a noisy but
lossless quantum communication model in this work, leaving the lossy case to future work.

If the entire repeater chain is honest, the network will perform the following operations on each round
(refer also to figure 2):

1. First, repeaterR1 will create two Bell pairs and send one particle to Alice and one particle toR2. The
other two particles (one from each pair) are stored in the corresponding storage ports ofR1.

2. RepeaterR2 will then store the received particle fromR1 while creating a new Bell pair and sending one
particle toR3.

3. Repeaters continue to distribute link-level Bell pairs until all repeaters have two particles each while Alice
and Bob have one particle each.

4. While the above is happening, repeaterR1 will, as soon as possible, perform a Bell measurement on both
particles in its memory, thus creating, ideally, an entangled pair between Alice and repeaterR2; see
figure 2(b). Furthermore, the outcome of this measurement (which we denote as simply ′x,y ′ if Bell state
|ϕy

x〉 is observed) is sent to Alice.
5. Alice will, on receipt of the classical message fromR1, apply an appropriate Pauli gate to her particle in

the right storage port (received fromR1 and which, should ideally now, be entangled withR2). This
should, in the absence of noise, ensure that Alice andR2 have the Bell pair |ϕ00〉.

6. As soon asR2 has two particles in its storage port (namely, as soon as it sends a particle toR3), it will
perform a Bell measurement itself, reporting the outcome to Alice, who applies the correct Pauli gate as
before.

7. The above continues until, finally, the last repeaterRc performs a Bell measurement, reporting the
outcome and Alice will perform the correct Pauli operation. In the noise free scenario, Alice and Bob
should now share the state |ϕ00〉, independent of the repeaters; see figure 2(c).

The above describes the operations of the network, the goal of which is to establish end-to-end
entanglement between Alice and Bob. Of course, the ultimate goal of the users is to establish a shared secret
key. For this, Alice and Bob will run the entanglement based E91 protocol [16]. We actually consider the
more commonly used, biased version, of this protocol, where the Z basis is used for key distillation and the X
basis is used only for testing the error rate in the channel [49]. In detail, Alice and Bob will perform the
following operations:

8
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Figure 2. Illustration of the operation of the repeater chain. (a) Link-level distribution of Bell pairs. (b) Bell state measurement
(BSM) and local Pauli gate operation at repeaterR1 to create an entanglement between Alice and repeaterR2. (c) End-to-end
entanglement between Alice and Bob.

1. Alice and Bob use the repeater chain network for N rounds, each round operating as described above.
Ideally, this should result in N shared Bell states held between the two users, each of the form |ϕ00〉.

2. Alice and Bob will choose a subset t⊂ {1,2, · · · ,N} of size |t|=m⩽ N/2 and measure those qubits
indexed by t in the X basis. This results in outcomes qA (for Alice) and qB (for Bob). They broadcast their
measurement results and compute the total X basis error string as q= qA ⊕ qB. This should, ideally, be
the all zero string if there is no error in the network.

3. The remaining n= N−m qubits held by Alice and Bob are measured in the Z basis. This will be used as
their raw-key.

4. Finally, Alice and Bob run an error correcting protocol on their raw keys and a privacy amplification
protocol to output their final secret key.

2.1. Adversarial model and assumptions
Our goal in this paper is to analyze the scenario where an adversary controls a contiguous subset
(sub-network) of the repeaters in the chain, while the remaining repeaters behave honestly. We assume that
the corrupted repeaters are contiguously connected and that Eve also controls the fiber lines within this
corrupted sub-network (which we call the adversary’s zone of control). Any repeater outside the corrupted
zone of control behaves honestly, and any fiber connection outside the corrupted region is not under
adversarial control, but is noisy (i.e. these links are susceptible to natural noise); see figure 1. This is in
contrast to general QKD repeater chain scenarios, where it is assumed that the adversary completely controls
all fiber and repeater nodes between Alice and Bob.

As mentioned in section 1, there are two ways to justify the above assumption. First, in a large QKD
repeater chain, it is unlikely that an adversary can gain physical access to all repeaters in the chain and all
fiber links connecting them. Instead, it is more realistic to assume an adversary can only realistically control a
‘small’ subset of those repeaters and that the repeaters controlled by the adversary will be contiguous. An
alternative way to justify the assumption is that, it is likely that some repeaters near end users can be placed in
secure areas (e.g. in a trusted corporate or government building). Thus, one can justify trusting those
repeaters, but not the remaining middle section of the network, connecting the two trusted regions. Note
that one does not need to know exactly how many repeaters are adversarial—instead one needs an
upper-bound on this; one may just as easily assume that a certain lower-bound of repeaters are trustworthy
(but noisy) and then assume the remainder are adversarial.

Our goal is to show that improved key-rates are possible in this security model. We will do so by deriving
a bound on the finite key-rate under the network and security model derived here. Before proceeding with
our proof in the next section, however, we formally state our security model assumptions and, especially, the
attack model afforded to the adversary. The assumptions we make in our security proof are as follows:

Assumption 1. The adversary can corrupt any number of contiguous repeaters in the chain. Furthermore,
we assume that Eve can also control all fiber links between repeaters in her zone of control and the fiber links
connecting to the nearest honest repeater. We will actually assume that Eve is able to completely replace her
corrupted sub-network with her own perfect devices, and perform any quantum attack possible here (i.e. she
need not operate within the bounds of a repeater chain and there will be no assumption of natural noise
within the corrupted sub-network). Any repeater and fiber link outside her zone of control, however, cannot
be attacked by Eve (though will be noisy).

9
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Assumption 2. The adversary can read, but not tamper with, classical messages sent by repeaters outside their
zone of control.

Assumption 3. Classical messages are sent after all Bell swaps are performed in the entire network for all
rounds. This can be achieved by having the network wait until all N rounds have been performed, before
sending the correction messages for the Bell swaps.

Assumption 4. Though Alice and Bob do not know exactly which sub-network is controlled by Eve, they are
able to lower bound the amount of natural noise in the honest sub-network. In particular, they are able to
lower-bound the so-called noise parameter of the network, defined in definition 2.1.

Out of the above assumptions, assumption 2 is perhaps the strongest. We actually do not think it is
entirely necessary, however could not formally prove our result without it. We leave, as interesting future
work, the removal of this assumption. We still feel that, even with the assumption in place, our results are
interesting and, furthermore, this assumption is not unreasonable in a large-scale network setting. There
may even be ways to enforce it through repeater messaging logs for instance.

2.2. Natural noise model
Outside of the adversary’s zone of control are the left and right honest repeater sub-networks. Though
honest, we will assume these are noisy in the sense that fiber noise, and internal repeater noise, may cause
errors in the Bell states being distributed. For our security proof, we will assume the natural noise acts in an
i.i.d. manner and leads to a mixed Bell diagonal state. We do not assume the noise is identical in every fiber
link (e.g. some may be ’noisier’ than others).

As before, let c be the total number of repeaters in the chain. Formally, consider the link between honest
repeatersRi andRi+1 (if i= 0, then we are considering the link between Alice and the first repeaterR1,
while if i= c, then we are considering the link between the last repeater and Bob). Then, we assume that the
two-qubit state distributed betweenRi andRi+1 is actually of the form:

ρ=
∑
x∈B

Pi (x) [ϕx]. (20)

where Pi(x) is the probability that the final shared state will be [ϕx] for some x ∈ B. Note the superscript i
indexes the repeater number, since we assume different links may have different noise levels.

After N rounds, we can write the state between honest repeaters i and i+ 1 as follows:

ρ=
∑
x∈BN

Pi (x) [ϕx]. (21)

Recall, from section 1.2, we define Pi(x1, · · · ,xN) = Pi(x1)Pi(x2) · · ·Pi(xN).
Our security model assumes users know something about the natural noise in the network. To be more

precise, we will assume that users can lower-bound the noise parameter of the honest sub-network, denoted
p∗, which is defined below:

Definition 2.1. Let Pi
L(ℓ) and Pi

R(r), for ℓ, r ∈ B be the probability that the ith link in the left honest sub-
network (respectively the right honest sub-network) produces a state [ϕℓ] (respectively [ϕr]) on any particular
single round of the network; see equation (20). Let j be the number of honest left sub-network links, not
including the link connecting the honest network to Eve, and let k be the number of honest right sub-network
links, not including the link connecting to Eve (these may be zero if Eve directly connects to Alice or Bob). For
any x ∈ B, define:

PL (x) =
∑

ℓ1,··· ,ℓj∈B
ℓ1⊕···⊕ℓj=x

P1
L

(
ℓ1
)
· · ·P j

L

(
ℓj
)

PR (x) =
∑

r1,··· ,rk∈B
r1⊕···⊕rk=x

P1R
(
r1
)
· · ·Pk

R

(
rk
)

If j= 0, then we simply set PL((0,0)) = 1, similarly for the right network if k= 0. Then, the noise parameter of
the honest sub-network is defined to be:

p∗ =
∑
x,y∈B

xph⊕yph=1

PL (x)PR (y) . (22)
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Note that if j = k= 0 (i.e. there are no honest repeaters), then p∗ = 0.
Essentially, the noise parameter characterizes the probability of there being a phase error in either the left

or the right honest sub-networks, but not both. Of course, one can always find a trivial lower-bound for this
by setting p∗ = 0, however, in this case, our key-rate expression will converge towards the normal BB84
key-rate which is expected: if p∗ = 0, users are assuming there is no natural noise and, so, all observed noise
must be the effect of an adversary system. Once p∗ > 0, our bound begins to improve over BB84 as we show,
later, in our evaluation sections.

Finding a reasonable bound on p∗ will depend on context. If we take the example of two ‘safe-zones’ (as
shown in figure 1), then users can characterize the link-level noise between each safe-zone repeater and use
this to easily determine a value for p∗. This would be a suitable lower-bound since it would assume every
repeater outside the two safe-zones is adversarial (which may not actually be true and, so, in reality p∗ could
be higher, and thus the key-rate could be higher). Our security proof only requires a lower-bound on p∗ and
users may be pessimistic in their choice of setting for this parameter.

3. Security

We now derive a key-rate expression for the partially corrupted repeater chain as described in the previous
section. To do this, we will first show how the system can be reduced to a three-party entanglement based
protocol. From this, we will derive a lower-bound on the quantum min entropy Hϵ

∞(A|E) needed to
determine a bound on the number of secret key bits as per equation (7). Our bound will be a function of the
observed X-basis noise in the final state shared between Alice and Bob, along with the natural noise in the
honest sub-networks (or, rather, a lower-bound on the noise parameter p∗ defined above).

3.1. Reduction to an entanglement based protocol
To analyze the security of a partially corrupted repeater chain, we will first show that it suffices to analyze the
key-rate in the following simplified scenario where there are three honest parties: Alice, Bob, and Heidi (four
parties total, counting the adversary Eve). Here, Heidi will represent and simulate the honest sub-network in
the actual network protocol (both the left and right sections); see figure 3(b). We describe this
entanglement-based version first, and then later show that analyzing this entanglement based version will
lead to results for the actual protocol (described in the previous section).

3.1.1. Entanglement based protocol
We now present the entanglement based version in its entirety. Then, in section 3.1.2, we will show how this
is representative of the actual network protocol discussed in section 2.

In this entanglement-based protocol, Heidi first creates two independent states |L〉L and |R〉R of the
form:

|L〉=
∑
ℓ∈BN

√
PL (ℓ)|ϕℓ〉L|Fℓ〉 (23)

|R〉=
∑
r∈BN

√
PR (r)|ϕr〉R|Gr〉, (24)

where 〈Fℓ|Fℓ ′〉= δℓ,ℓ ′ and, similarly, 〈Gr|Gr′〉= δr,r ′ where δx,y is the Kronecker Delta function.
Furthermore, we have |Gr〉= |Gr1〉⊗ · · · ⊗ |GrN〉 with each 〈Gri |Gr ′i

〉= δri,r ′i (and |Fℓ〉may be written in a
similar tensor form). Note that both states are pure states. The values of PL and PR will be determined from
the actual honest network she is simulating which will be clear later (essentially, she will be simulating the
network and so will set these to values based on the honest network noise, equation (21)). She keeps these
states private to herself.

Next, Eve creates an arbitrary 2N qubit state, entangled with her private ancilla, denoted |ψ̃〉ME,
independent of the Left and Right sub-network states that Heidi created. TheM (middle, since Eve is in the
middle of the chain) register consists of 2N qubits; she then sends theM register to Heidi, while keeping her
ancilla private. After this, Heidi, who holds 6N qubits currently (the L,M, and R registers—note that each
register holds 2N qubits), will perform a final network operationN . This will simulate the honest network’s
final Bell swaps and classical messages being sent from the last honest repeaters (bordering Eve) to Alice.

This map acts on a 6N qubit state |ϕℓ,ϕi,ϕr〉, for all ℓ, i, r ∈ BN, in the following manner:

N⊗N|ϕℓ,ϕi,ϕr〉=
1

22N

∑
z,u∈BN

(−1)g(ℓ,i,r;z,u) |”z,u”〉cl ⊗ |ϕℓ+i+r〉AB, (25)
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Figure 3. Illustration of the reduction: (a) the original protocol operating in N rounds, and (b) the new protocol after reduction
operating in N rounds. Not shown here is that the original protocol (a) also requires classical communication from all repeaters
under Eve’s control, and each individual repeater while our reduction does not need this. Also not shown is that Eve may receive
qubits from honest repeaters in the real protocol (a), however in our reduction (b), she always prepares states and sends them to
honest repeaters.

Figure 4. A high-level view of the entanglement-based protocol. First, Eve creates a state |ψ̃⟩ME, and sends theM portion to Heidi.
Heidi, simulating the honest portion of the network, creates Left and Right network states, then applies the network operatorN .
She then sends the resulting qubits to Alice and Bob. Alice and Bob then measure some of the qubits in the X basis, used to
compute QX, the parity of their X basis outcomes. The remaining qubits are measured in the Z basis which is used to produce
their final secret key after Error Correction (EC) and Privacy Amplification (PA). We show that security of this entanglement
based protocol will imply security of the actual repeater-chain protocol. Not shown in this figure is the classical communication
sent from Heidi, and also from Alice and Bob.

for some function g : B5N →{0,1} whose exact action, though easy to actually derive by simulating the
action of the final left and right sub-network Bell swaps (which we do later), is not important to our current
discussion. This mapN will simulate the honest network’s final operations of performing Bell swaps at the
‘border’ repeaters (those nearest Eve) and sending the measurement outcomes. It will also simulate the final
Pauli fix applied by Alice. Note that the input of g depends on 5N Bell states since this is a function of all N
rounds and, for each round, there are five important Bell values: the two messages output by the map
(output by the honest network or Heidi in this case), and the three input Bell states (fromM, L, and R). Also,
recall the additive notation for Bell states, defined in section 1.2.

The above map is actually unitary, which is not obvious from the above definition since g’s action is not
defined; however, that it is an unitary, will be clear when we write out explicitly how the map operates in the
next section. Essentially, it performs a SWAP followed by a delayed Bell basis measurement and recording the
result in the ‘cl’ register; it then performs the final Pauli correction which Alice would normally have done.
We use quotes in the ‘cl’ register as they will, later, represent the classical message sent from the last two
repeaters to Alice.

Finally the A and B registers (which are N-qubits each) are sent to Alice and Bob respectively, while the
‘cl’ register (the classical message register) is measured and the outcome broadcasted to all parties—this
represents the final correction term that normally would have been broadcast (i.e. it represents the sum of all
the honest messages that normally would have been broadcast, not the entire message transcript that would
have been broadcast in the actual prepare and measure protocol). The G and F registers are simply discarded
(i.e. traced out). Alice and Bob are then free to run the E91 protocol as normal, namely, they choose a
random sample and measure in the X basis to test the fidelity of the state, while measuring the remaining
systems in the Z basis to derive a secret key after error correction and privacy amplification. See figure 4.
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3.1.2. Reduction
We claim security of the above entanglement-based protocol will imply security of the actual partially
corrupted repeater chain. To show this, we trace the execution of the actual network, and compare with the
state that would have been produced in the entanglement based protocol above.

First, since messages are not sent until after all N rounds are complete and, furthermore, since Eve cannot
tamper with these messages (see assumptions 2 and 3 as defined in section 2.1), Eve cannot adapt her attack
based on the results of the honest network’s Bell messages. On account of this, giving Eve the ability to
prepare all 2N qubits simultaneously for those repeaters neighboring her can only give her a greater
advantage than in the potentially more realistic case where (1) she would need to feed in qubits to the
neighboring repeaters in smaller blocks and/or (2) she would receive qubits prepared by the honest network
instead of being free to create and send her own. Thus, we analyze the case where Eve prepares all 2N qubits
for the neighboring repeaters as this can only be to her advantage—any other scenario would give Eve fewer
attack opportunities and, thus, more uncertainty in her system. We can thus assume that Eve prepares the
state:

|ψ̃〉ME =
∑
i∈BN

√
PE (i)|ϕi〉M|Ei〉E, (26)

where each |Ei〉 is some arbitrary normalized, but not necessarily orthogonal, state in Eve’s ancilla, and PE(i)
is arbitrary such that

∑
iPE(i) = 1 (we are not assuming an i.i.d. attack). Note that Eve is allowed, in the

actual network scenario, to send a classical message transcript (consisting of 2N-bits for every repeater under
her control). However, this message can only cause Alice to apply an incorrect Pauli gate later when correcting
the Bell state. Eve can simulate this, without sending a classical message, by applying a suitable Pauli gate
herself to her state above, before sending the qubits to the corresponding neighboring honest repeaters. Thus,
Eve’s ability to send a classical message (the output of her adversarial repeater network), does not give her any
additional power if we assume she is allowed to always prepare qubit states and send them to her neighbors
and so we do not need to consider it further. We do, however, need to consider the classical messages sent by
the honest repeaters as that message transcript may be affected by Eve’s state above as we soon see.

Now, let us consider the action of the honest network. First, it attempts to establish link-level
entanglement on all edges between honest repeaters (but not between honest repeaters and Eve’s corrupted
region as those links are under Eve’s control as discussed) - see figure 3. By assumption 4, the noise in these
links results in a mixed Bell state. Let j be the number of fiber links in the left honest network (not counting
the fiber link leading to Eve which, we assume, is corrupted) and k be the number of fiber links in the right
honest network. Let ρiL (respectively ρ

i
R) be the state of the quantum system shared between nodes on link i

on the left (respectively right) sub-network. By assumption 4 and equation (21), we can write these states as:

ρiL =
∑
ℓi∈BN

Pi
L

(
ℓi
)
[ϕℓi ]L (27)

ρiR =
∑
ri∈BN

Pi
R

(
ri
)
[ϕri ]R. (28)

At this point, the joint state of the network is:

ρ1L ⊗ ·· ·ρ j
L ⊗
[
ψ̃
]
⊗ ρ1R ⊗ ·· ·⊗ ρkR.

The honest network will now perform Bell operations. Note that the actual order of the Bell
measurements performed by the network does not matter, since all Bell swaps at this point are performed by
honest repeaters. In fact, the network might as well perform Bell swaps on the left and right honest networks
while waiting for Eve’s 2N qubits.

Let’s look closer at the Bell swap operation performed by a single honest repeater. Assume that we have a
chain: X−Y−Z, where X−Y and Y −Z share some quantum state of the form |ϕa〉 and |ϕb〉 for some
a,b ∈ B. Assume repeater Y is performing the Bell swap. Note that:

|ϕa,ϕb〉=
1

2

(
|0,abt,0,bbt〉+(−1)b

ph
|0,abt,1, b̄bt〉+(−1)a

ph
|1, ābt,0,bbt〉+(−1)a

ph+bph
|1, ābt,1, b̄bt〉

)
∼=

1

2

(
|abt,0〉|0,bbt〉+(−1)b

ph
|abt,1〉|0, b̄bt〉+(−1)a

ph
|ābt,0〉|1,bbt〉+(−1)a

ph+bph
|ābt,1〉|1, b̄bt〉

)
,

where, above, we simply permuted the subspaces so that the two qubits owned by Y are on the left while the
third qubit is the one held by X and the fourth (right-most) qubit is the one held by Z. Repeater Y is now
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going to perform a Bell measurement on the qubits it holds (the left-two qubits in the above, permuted,
state).

If abt = 0, the above state is found to be:

|ϕa,ϕb〉 ∼=
1

2
√
2
|ϕ00〉⊗

(
|0,bbt〉+(−1)a

ph+bph
|1, b̄bt〉

)
+

1

2
√
2
|ϕ10〉⊗

(
|0,bbt〉+(−1)a

ph+bph+1 |1, b̄bt〉
)

+(−1)b
ph 1

2
√
2
|ϕ01〉⊗

(
|0, b̄bt〉+(−1)a

ph+bph
|1,bbt〉

)
+(−1)b

ph 1

2
√
2
|ϕ11〉⊗

(
|0, b̄bt〉+(−1)a

ph+bph+1 |1,bbt〉
)
.

Otherwise, if abt = 1, then the state is:

|ϕa,ϕb〉 ∼= (−1)b
ph 1

2
√
2
|ϕ00〉⊗

(
|0, b̄bt〉+(−1)a

ph+bph
|1,bbt〉

)
+(−1)b

ph+1 1

2
√
2
|ϕ10〉⊗

(
|0, b̄bt〉+(−1)a

ph+bph+1 |1,bbt〉
)

+
1

2
√
2
|ϕ01〉⊗

(
|0,bbt〉+(−1)a

ph+bph
|1, b̄bt〉

)
+

1

2
√
2
|ϕ11〉⊗

(
|0,bbt〉+(−1)a

ph+bph+1 |1, b̄bt〉
)
.

Thus, for any abt, we can write the joint state as:

|ϕa,ϕb〉XYZ ∼=
1

2

∑
x∈B

(−1)f(a,b,x) |ϕx〉Y ⊗ |ϕa+b+x〉XZ, (29)

for some function f : B3 →{0,1} which can be determined from the above, though the exact mapping is not
important at the moment. Essentially, the above is defining a map that applies a SWAP to the middle two
qubits which will simulate a delayed measurement of the middle repeater Y (the left-most register will later
be measured in the Bell basis, and the outcome reported).

The left two registers are then measured in the Bell basis leading to a classical outcome x ∈ B which is
saved in a classical register spanned by |”x”〉 for all x ∈ B. Note we use quotes, here, to distinguish the fact
that this system is classical and will later be used as a message system. The final state, then, is:

|ϕa,ϕb〉 7→
1

4

∑
x∈B

[”x”]⊗ [ϕa+b+x], (30)

where, recall from section 1.2, |ϕa+b+x〉= |ϕaph+bph+xph

abt+bbt+xbt〉 (where all arithmetic in the subscript and
superscript is done bitwise modulo two of course).

Returning to the protocol, let us assume the left and right honest sub-networks perform their Bell swaps
N times on each repeater, except for the repeaters neighboring Eve. On the left sub-network, the state
becomes, after all j− 1 repeaters perform the above Bell measurements on all N rounds:

ρ1L ⊗ ·· ·ρ j
L 7→

1

4N( j−1)

∑
x1,··· ,xj−1∈BN

[
”x1, · · · ,xj−1”

]
⊗

∑
ℓ1,··· ,ℓj∈BN

P1
L

(
ℓ1
)
· · ·P j

L

(
ℓj
)
[ϕℓ1+···+ℓj+x1+···+xj−1 ]

=
1

4N( j−1)

∑
x1,··· ,xj−1∈BN

[
”x1, · · · ,xj−1”

]
⊗
∑
ℓ∈BN

PL (ℓ) [ϕℓ+x1+···+xj−1 ] := ρL, (31)

where:

PL (ℓ) =
∑

ℓ1,··· ,ℓj∈BN

ℓ1+···+ℓj=ℓ

P1
L

(
ℓ1
)
· · ·P j

L

(
ℓj
)
. (32)

Similarly, the right honest sub-network’s state can be written as:

ρR =
1

4N(k−1)

∑
y1,··· ,yk−1∈BN

[
”y1, · · · ,yk−1”

]
⊗
∑
r∈BN

PR (r)
[
ϕr+y1+···+yk−1

]
, (33)
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with a similar definition for PR(r) based on each Pi
R(·). The overall network, then, is in the state:

ρL ⊗
[
ψ̃
]
⊗ ρR.

The two last repeaters (one to the left of Eve and one to the right) now perform their final Bell swaps. To
model this, let us consider a purification of the above network state:

ρL ⊗
[
ψ̃
]
⊗ ρR = trGF

 1

4N( j+k−2)

∑
x⃗,⃗y

|”⃗x, y⃗”〉〈”⃗x, y⃗”|

⊗ P

 ∑
ℓ,i,r∈BN

√
PL (ℓ)PR (r)PE (i)|ϕℓ+⃗x,ϕi,ϕr+⃗y〉|Fℓ,Gr,Ei〉

 (34)

where we use P(|z〉) = |z〉〈z|. Above, the sum is over vectors of messages x⃗= (x1, · · · ,xj−1) and
y⃗= (y1, · · · ,yk−1). Also, we purified the left and right network states independently by appending ancillas
spanned by |Fℓ〉 (for the left honest network) and |Gr〉 for the right network. Of course 〈Fℓ|Fℓ ′〉= δℓ,ℓ ′ and
similarly for 〈Gr|Gr′〉. Furthermore, we may write |Fℓ〉= |Fℓ1〉|Fℓ2〉 · · · and, similarly, for |Gr〉 due to the i.i.d.
structure of the natural noise.

Consider a particular x⃗ and y⃗. Using the SWAP and delayed measurement technique, used to derive
equation (29), twice, first for the left honest repeater which owns half the qubits of ϕℓ+⃗x and half the qubits
from ϕi, then again for the right honest repeater which owns the other half of ϕi and half of ϕr+⃗y, yields the
state, for this particular outcome x⃗ and y⃗:∑

ℓ,i,r∈BN

√
PL (ℓ)PR (r)PE (i)|ϕℓ+⃗x,ϕi,ϕr+⃗y〉|Fℓ,Gr,Ei〉

7→ 1

22N

∑
z,u∈BN

|ϕz,ϕu〉ZU ⊗
∑

ℓ,i,r∈BN

(−1)g(ℓ,i,r;z,u)
√

PL (ℓ)PR (r)PE (i)|ϕℓ+i+r+⃗x+⃗y+z+u〉|Fℓ,Gr,Ei〉 (35)

where the function g : B5N →{0,1} can be determined through the action of function f, though, again, its
exact structure is not important to the analysis. Note this is the same function g as in equation (25). The
repeaters will then measure the ZU system resulting in:

1

42N

∑
z,u∈BN

[”z,u”]⊗ P

 ∑
ℓ,i,r∈BN

(−1)g(ℓ,i,r;z,u)
√

PL (ℓ)PR (r)PE (i)|ϕℓ+i+r+⃗x+⃗y+z+u〉|Fℓ,Gr,Ei〉

 . (36)

Note that, the phase induced by the g function will affect the probability of a repeater observing a particular
message z,u—however, working out algebraically exactly this distribution turns out to be not necessary for
the min-entropy analysis later; thus, while the g function is important, writing out its exact action is not, for
the sake of our security proof.

From the above, the message transcript x⃗, y⃗, z, and u are sent to Alice who performs the correct Pauli
operations. The ordering of these is not important—let us assume she fixes the x⃗ and y⃗ portions first,
resulting in state:

σ =
1

42N

∑
z,u∈BN

[”z,u”]⊗ P

 ∑
ℓ,i,r∈BN

(−1)g(ℓ,i,r;z,u)
√

PL (ℓ)PR (r)PE (i)|ϕℓ+i+r+z+u〉|Fℓ,Gr,Ei〉

 . (37)

Note that the above was all conditioning on a particular, but arbitrary, outcome x⃗ and y⃗. Considering, now,
all possible x⃗ and y⃗ as a mixed state, before Alice applies operators to fix the z and umessages, the entire
system, then, can be written as:

trGF

 1

4N( j+k−2)

∑
x⃗,⃗y

[”⃗x, y⃗”]⊗σ

 . (38)

Note that the x⃗ and y⃗message systems are now independent of the state σ. Thus, regardless of the message
outcome of the honest repeater network (the portion that did not interact with the adversary), the overall
entropy computation will be identical. This is not too surprising considering the operation of an honest
repeater with honest inputs, and the fact that the noise in the left and right honest sub-networks is well

15



Quantum Sci. Technol. 10 (2025) 015005 A Harkness et al

characterized. Therefore, there is no need to consider this part of the message transcript when analyzing the
security of the protocol. Note that it is important to consider the message transcript from the honest
repeaters that do interact with Eve (the Z and U messages), as these messages may not be independent of the
final state, especially Eve’s ancilla state.

Equation (38) represents the system before Alice applies the Pauli gates based on the z and umessages
(from the repeaters bordering Eve). Since the x⃗ and y⃗messages are independent, the only important element
is the state σ. That is, if we know Eve’s uncertainty in σ, we can derive the key-rate of the system. However, it
is not difficult to see that the entanglement based protocol, described earlier, will produce exactly the same
state σ. Indeed, by tracing the protocol’s execution, where Eve produces the same attack state in the
entanglement based version, and Heidi uses the honest network probabilities PL and PR for her created states,
the resulting system in the entanglement based version will produce, exactly, σ. Note that the network
operation mapN⊗N (equation (25)) is defined to simulate, exactly, the Bell swap operations of the honest
network, derived above (in particular, to simulate equation (35)). Thus, we can conclude that it suffices to
analyze the entanglement based version—any entropy computation there will translate to an equivalent
computation in the real network setting (equation (38)).

3.2. Key-rate bound
We now derive a key-rate bound for the partially corrupted repeater chain, or, rather, the entanglement based
protocol discussed in the previous section. To do so, we first derive a bound on the conditional min entropy
after running the E91 protocol in this network setup. Equation (7) can then be used to translate this to a
key-rate bound. Our main result is stated, and proven, in the following theorem:

Theorem 2. Let ε> 0 and let ρABE be the state produced through the entanglement based protocol discussed
above in section 3.1.1, where the A and B registers consist of N qubits each. Let p∗ be the noise parameter of the
honest network (or a lower-bound on the noise parameter) as defined in definition 2.1. Assume that Alice and
Bob choose a random subset t of size m⩽ N/2 and measure their corresponding qubits in the X basis resulting in
outcome qA and qB (which are m-bit strings). Denote by QX to be QX = qA ⊕ qB (this represents the X-basis error

string). Alice and Bob then measure their remaining n= N−m qubits in the Z basis resulting in state ρ(t,qA,qB)ABE .
Then it holds that:

Pr

[
H8ϵ+2(2ϵ)1/3

∞ (A|E)
ρ(t,qA,qB)

⩾ n

(
1− h̄

(
w(QX)− p∗ + δ ′

1− 2p∗
+ δ

))]
⩾ 1− 2(2ϵ)1/3 , (39)

where the probability is over the subset choice t and the observed outcomes qA,qB, and where:

δ =

√
(N+ 2) ln 2

ϵ2

mN
and δ ′ =

√
ln 2

ϵ

2m
. (40)

Sketch of proof: Our proof proceeds in three main steps. First, we will use theorem 1 to construct ideal
states and model the protocol under these states. Next, we will define a new ‘ideal-ideal’ state where the
previous ideal states are better behaved in a noisy network. Finally, we analyze the entropy of this ideal-ideal
state, and then use lemma 1 to promote the analysis to the real network state. Note that steps one and three
follow from ideas used in the proof of sampling-based entropic uncertainty relations [20, 21].

In some more detail, consider the overall ‘real’ state of the system: Eve creates |ψ̃〉ME, giving the 2N qubit
M register to the honest network simulator Heidi, while Heidi also creates |L〉⊗ |R〉. The state Heidi creates
is well known due to our assumptions on the honest network noise; the state that Eve creates is unknown.
Heidi then operates on the L,M, and R registers using operatorN⊗N (see equation (25)). This produces a
quantum state ρABE. Alice and Bob then choose a random sample t of sizem< N/2, measure their qubits,
indexed by this subset, in the X basis to test the fidelity of the channel, reporting the parity of their outcomes
QX ∈ {0,1}m (which should be the all zero string—any ‘one’ in this string indicates an X basis error). The
difficulty is that, given a particular QX and subset t, we need to know how many errors Eve’s arbitrary state
induced.

Given Eve’s state, we can construct ideal states using theorem 1 which are, on average over the subset
choice, ε-close to the real state |ψ̃〉. Heidi will create the same |L〉 and |R〉 states as before and perform the
same network operation, but now on the joint state consisting of an ideal state |ν t〉. Since quantum
operations cannot increase trace distance, the resulting state is ε-close to the actual state we want to analyze.

Even now, however, analyzing the quantum min entropy of this state cannot easily be done. Instead, we
must argue that, with high probability, the natural phase errors cannot always cancel out Eve’s induced error.
Since quantum min entropy is a ‘worst-case’ entropy, analyzing the entropy of the above ‘ideal’ state will
result in a trivial, or at least very poor, bound. Instead, we must next define what we call ‘ideal-ideal’
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states—ideal states which have a further ideal property that the natural noise actually adds to Eve’s overall
induced error, instead of taking away. Furthermore, these ideal-ideal states have the additional property that,
given the observed phase error and the known network noise (definition 2.1), we can upper-bound Eve’s
phase error, even though we cannot directly observe it. These new states are 2ε-close to the actual real state
and, so, arguments made about the min-entropy of these ideal-ideal states will translate, using lemma 1, to
the real state, giving us our result.

Proof. We now formally prove theorem 2.
Step 1 - Ideal state construction:Consider the entanglement based protocol discussed in section 3.1.1. Let

|ψ̃〉ME be the state Eve creates, where theM register consists of 2N-qubits and the E system is arbitrary. TheM
system is sent to Heidi. As discussed in the previous section, Heidi creates two purified states of the form:

|L〉=
∑
ℓ∈BN

√
PL (ℓ)|ϕℓ

ph

ℓbt〉L|Fℓ〉 (41)

and:

|R〉=
∑
r∈BN

√
PR (r)|ϕrph

rbt〉R|Gr〉, (42)

where PL(ℓ) and PR(r) depend on the honest left and right sub-networks that Heidi is simulating (see the pre-
vious section and, in particular, equations (23) and (24)). Note the |Fℓ〉 states are orthonormal and separable
(similar for the |Gr〉 states). The joint state, therefore, may be written (up to a permutation of the subspaces)
as: ∑

ℓ,r∈Bm

√
PL (ℓ)PR (r)|ϕℓ

ph

ℓbt〉|ϕrph

rbt〉|ψ̃〉ME|Fℓ〉|Gr〉. (43)

From the above state, Heidi will perform the network operation N⊗N (see equation (25)), which will
simulate the honest sub-networks’ Bell swaps, message transmissions, and Alice’s final Pauli correction; Heidi
then sends N qubits to Alice, N qubits to Bob, and broadcasts the final correction term (a 2N bit message).
Alice and Bob will then run the E91 protocol on the resulting state. Namely, they will choose a random subset
t of size m, measure their qubits indexed by this subset in the X basis, compute and report the parity of the
outcomesQX (which, ideally, should be the zero string), and thenmeasure the remaining qubits in the Z basis.
These last measurements form the raw key which is subsequently processed further using error correction and
privacy amplification. Call this final state ρtABE (which is a mixed state over all possible QX observations).

Instead of analyzing the actual state of the system above, we will instead apply theorem 1 and analyze ideal
states where sampling is well-behaved. We apply the theorem not to the entire state, equation (43), but instead
to the state Eve prepares |ψ̃〉ME. We use the sampling strategyΨ4, analyzed in lemma 3, with respect to the Bell
basis. From this, we have ideal states {|υt〉ME}t, indexed by subsets t, such that:

1

2

∣∣∣∣∣
∣∣∣∣∣∑

t

PT (t) [t]⊗
([
ψ̃
]
ME

− [υt]ME

)∣∣∣∣∣
∣∣∣∣∣⩽√

ϵcl = ϵ, (44)

where the last equality follows from lemma 3 and our choice of δ. Above, each |υt〉ME ∈ span(Gt)⊗HE, with:

Gt =
{
i ∈ BN : w

(
iph
t

)
∼δ w

(
iph
−t

)}
. (45)

Note that we are applying theorem 1 just to the state Eve creates and not to the entire joint state. We now
compute the min entropy in this ideal case and will later promote this analysis to the real case (where Eve’s
states are not ideal).

Consider a particular subset t and ideal state |υt〉. It is clear that we may write this state in the following
form (up to a permutation on individual qubit subspaces):

|υt〉 ∼=
∑
it∈Bm

√
PE (it)|ϕit〉⊗

∑
i−t∈Jit

βi−t|it |ϕi−t〉|Ei−t|it〉. (46)

where PE(it) is a value determined by Eve, which Alice and Bob cannot directly observe, and where Jx = {y ∈
Bn : w(yph)∼δ w(xph)}.
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Tensoring this with the honest sub-network states (whichwe do not apply theorem 1 to, but instead analyze
directly) yields the following state (up to a permutation of subspaces):∑

ℓt,rt,it∈Bm

√
PL (ℓt)PR (rt)PE (iT)|ϕℓt ,ϕit ,ϕrt〉|Fℓt ,Grt〉

⊗
∑

ℓ−t,r−t∈Bn

∑
i−t∈Jit

√
PL (ℓt)PR (rt)βi−t|it |ϕℓ−t ,ϕi−t ,ϕr−t〉|Ei−t|it〉|Fℓ−t ,Gr−t〉︸ ︷︷ ︸

µ(ℓt,rt,it)

=
∑

ℓt,rt,it∈Bm

√
PL (ℓt)PR (rt)PE (iT)|ϕℓt ,ϕit ,ϕrt〉|Fℓt ,Grt〉⊗ |µ(ℓt, rt, it)〉. (47)

Note we are only permuting the subspaces for clarity in presentation and to make the algebra simpler; in
practice, the parties do not need to do this, and it does not affect the final min entropy bound if users do or
do not perform this permutation of subspaces.

Now, the final network operation is performed N⊗N (equation (25)) on the above state (equation (47)).
However, it is equivalent to analyze the case where the network operates on the subset t first, Alice and Bob
measure in the X basis in the t subset only, and then the network operates on the complement−t while Alice
and Bob then measure, in the Z basis, the complement qubits−t.

After the network operation on t, the state becomes (again, writing the state after permuting subspaces for
clarity):

1

22m

∑
ℓt,rt,it∈Bm

√
PL (ℓt)PR (rt)PE (it)|Fℓt ,Grt〉

⊗
∑

z,u∈Bm

(−1)g(ℓt,it,rt;z,u) |”z,u”〉cl|ϕℓt+it+rt〉AB ⊗ |µ(ℓt, rt, it)〉. (48)

(Recall, again, the additive notation for Bell states defined in section 1.2.)
Now, an X basis measurement is made by Alice and Bob on those qubits indexed by t and the parity

is reported (in practice, Alice and Bob broadcast their measurement results and compute the parity, how-
ever, ultimately, the parity is the important information). Let X0 and X1 be two POVM elements where
X0 = [+,+]AB + [−,−]AB and X1 = [+,−]AB + [−,+]AB. That is, X0 indicates a parity of zero in Alice and
Bob’s measurements, i.e. Alice and Bob receive the same measurement outcome, while X1 indicates an error
in Alice and Bob’s X basis measurement (i.e. they get opposite measurement outcomes in that basis). The
following is easy to verify:

Xj|ϕy
x〉=

{
|ϕy

x〉 if y= j
0 otherwise

Finally, let X̃ be the CPTP map which measures Alice’s and Bob’s qubits indexed by t, records the parity
result in a separate register (which wewill call the P register), and finally traces out the postmeasured quantum
state. Applying this map X̃ to the ideal state above (equation (48)), and also tracing out the G and F systems
(or, rather, the t portion of the G and F systems), yields:

σt =
1

42m

∑
z,u∈Bm

[”z,u”]cl ⊗

 ∑
ℓ,r,i∈Bm

PL (ℓ)PR (r)PE (i)
[
lph ⊕ rph ⊕ iph]

P
[µ(ℓ, r, t)]


=

1

42m

∑
z,u∈Bm

[”z,u”]cl ⊗

∑
i∈Bm

PE (i)

 ∑
ℓ,r∈Bm

PL (ℓ)PR (r)
[
lph ⊕ rph ⊕ iph]

P
[µ(ℓ, r, t)]

 . (49)

Note that, above, we have removed the t subscript in the notation for clarity, since the context is clear. Also,
observe that the above state is a mixture of states which are not necessarily normalized; that is, the probability
of observing any particular z or u is not necessarily uniform due to the influence of the PE(i) term.

The above is the ideal-state using states constructed from theorem 1. The real state ρtABE can be found
similarly to the above, just substituting in an alternative probability distribution for Eve along with removing
the constraint of Jit in the post measured state |µ(ℓ, r, t)〉. However, equation (44), along with the fact that
quantum operations cannot increase trace distance, ensures that the real state ρtABE and the above ideal state
σt
ABE, are ε-close in trace distance (averaged over all subset choices t).
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Step 2 - Defining ‘Ideal-Ideal’ States: Analyzing the entropy in the state σt , defined above, despite being
composed of ideal states according to theorem 1, is still challenging. Instead, we will define a new ‘ideal-ideal’
state, τ t , which is ε close in trace distance to σt (and therefore 2ε close to the original real state ρ).

For any fixed i ∈ Bm, let us consider the expected value of w(ℓph ⊕ rph ⊕ iph). Note that the ℓ and r strings
are chosen independently of i since they are created from the honest but noisy sub-networks (or, rather, Heidi
in our case, who is simulating the honest sub-networks). Let Y be the random variable taking the value y=
ℓph ⊕ rph ∈ {0,1}m with probability:

PY (y) =
∑

ℓ,r∈Bm

ℓph⊕rph=y

PL (ℓ)PR (r) .

We compute the expected value of w(Y⊕ iph) for a given i ∈ Bm. Recall from definition 2.1, the equation for
p∗ which, we assume, is known (or lower-bounded) by Alice and Bob.

Let x= w(iph).Wedivide iph into two substrings: Even (all zeros) andOdd (all ones). SinceY is independent
of i, one will expect m · x · p∗ ones to appear in the odd substring of iph while m(1− x)p∗ ones to appear in
the even substring. Note any one appearing in the odd substring of iph will cause Y⊕ iph to be zero (i.e. will
decrease the number of ones in Y⊕ iph) while any one in the even substring will cause Y⊕ iph to be one (i.e. will
increase the number of ones in Y⊕ iph). Thus, the expected number of ones in Y⊕ iph for fixed i ∈ Bm is easily
found to be:

µi = E
(
w
(
Y⊕ iph) |i)= (x− xp∗)︸ ︷︷ ︸

from odd substring

+ (1− x)p∗︸ ︷︷ ︸
from even substring

= x(1− p∗)+ (1− x)p∗

= w
(
iph)(1− p∗)+

(
1−w

(
iph))p∗. (50)

Now, by Hoeffding’s inequality, and our choice of δ ′ from equation (40), it holds that:

Pr
(
|w
(
Y⊕ iph)−µi|⩽ δ ′

)
⩾ 1− 2exp

(
−2(δ ′)

2
m
)
= 1− ϵ, (51)

where the probability is over the outcome of Y= ℓph ⊕ rph.
For any i ∈ Bm, define the set Gi to be:

Gi =
{
y ∈ {0,1}m : |w

(
y⊕ iph)−µi|⩽ δ ′

}
. (52)

From this, we may write σt as follows:

σt =
1

42m

∑
z,u

[”z,u”]cl ⊗

∑
i∈Bm

PE (i)⊗
∑

y∈{0,1}m

PY (y)
[
y⊕ iph]

P
⊗

∑
ℓ,r∈Bm

ℓph⊕rph=y

PLR (ℓ, r|y) [µ(ℓ, i, r)]



=
1

42m

∑
z,u

[”z,u”]
∑
i∈Bm

PE (i)⊗

∑
y∈Gi

PY (y)
[
y⊕ iph]

P
⊗

∑
ℓ,r∈Bm

ℓph⊕rph=y

PLR (ℓ, r|y) [µ(ℓ, i, r)]

+
∑
y ̸∈Gi

PY (y)
[
y⊕ iph]

P
⊗

∑
ℓ,r∈Bm

ℓph⊕rph=y

PLR (ℓ, r|y) [µ(ℓ, i, r)]

 (53)

where we define:

PLR (ℓ, r|y) =
PL (ℓ)PR (r)

PY (y)
. (54)

Now, consider the state τ t which consists only of ‘good’ strings y:

τ t =
1

42m

∑
z,u

[”z,u”]cl
∑
i∈Bm

PE (i)⊗

 1

Ni

∑
y∈Gi

PY (y)
[
y⊕ iph]

P
⊗

∑
ℓ,r∈Bm

ℓph+rph=y

PLR (ℓ, r|y) [µ(ℓ, i, r)]

 , (55)
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where, from equation (51), we have:

Ni =
∑
y∈Gi

PY (y)
∑

ℓ,r∈Bm

ℓph⊕rph=y

PLR (ℓ, r|y)⩾ 1− ϵ. (56)

(For the above, note that
∑

ℓ,r∈Bm

ℓph⊕rph=y

PLR(ℓ, r|y) = 1.)

Now, it is not difficult to show, using basic properties of trace distance and the triangle inequality, that the
trace distance between τ t and σt is upper bounded by ε. Indeed:

1

2
||σt − τ t||⩽ 1

2

∑
z,u

1

42m

∑
i

PE (i)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
(
1− 1

Ni

)∑
y∈Gi

PY (y)
[
y+ iph]

P
⊗

∑
ℓ,r∈Bm

ℓph+rph=y

PLR (ℓ, r|y) [µ(ℓ, i, r)]

+
∑
y̸∈Gi

PY (y)
[
y+ iph]

P
⊗

∑
ℓ,r∈Bm

ℓph+rph≡y

PLR (ℓ, r|y) [µ(ℓ, i, r)]

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

⩽ 1

2

∑
z,u

1

42m

(∑
i

PE (i)

(
1

Ni
− 1

)
Ni +(1−Ni)

)
⩽ ϵ.

Note that the above holds for any subset t. Since we have that 1
2 ||σ

t − τ t||⩽ ϵ for every t, it follows from
equation (44) and the fact that CPTPmaps cannot increase trace distance, that 1

2

∣∣∣∣∑
tPT(t)[t](ρt − τ t)

∣∣∣∣⩽ 2ϵ.
Thus, we can actually analyze the entropy in τ t and then use lemma 1 to promote the analysis to the real state.
Step 3 - Bounding the min entropy: Rewriting τ t , equation (55), we find:

τ t =
∑

QX∈{0,1}m

[QX]P ⊗
∑

i,y∈G(QX)

PE (i)PY (y)

Ni
⊗
∑
z,u

1

42m
[”z,u”]⊗

∑
ℓ,r

PLR (ℓ, r|y) [µ(ℓ, i, r)], (57)

where:

G(QX) =
{
i ∈ Bm,y ∈ {0,1}m : y⊕ iph = QXand y ∈ Gi

}
=
{(

i,QX ⊕ iph) : QX ⊕ iph ∈ Gi

}
∼= {i ∈ Bm : |w(QX)−µi|⩽ δ ′} (58)

=
{
i ∈ Bm :

∣∣w(QX)−
(
w
(
iph)(1− p∗)+

(
1−w

(
iph))p∗)∣∣⩽ δ ′

}
=

{
i ∈ Bm :

∣∣∣∣w(iph)− w(QX)− p∗

1− 2p∗

∣∣∣∣⩽ δ ′

1− 2p∗

}
= G̃(QX). (59)

With this, we can continue to manipulate the expression for τ t as follows:

τ t =
∑

QX∈{0,1}m

[QX]P ⊗
∑

i∈G̃(QX)

PE (i)PY (QX ⊕ iph)

Ni
⊗
∑
z,u

1

42m
[”z,u”]⊗

∑
ℓ,r

PLR

(
ℓ, r|QX ⊕ iph) [µ(ℓ, i, r)].

(60)

At this point, Alice and Bob measure the P register to observe an actual parity string QX representing the
observed X basis noise. The state then collapses to τ (t,QX) which may be written as (tracing out the P register
which is simply [QX]P after the measurement):

τ (t,QX) =
1

MQX

∑
i∈G̃(QX)

PE (i)PY (QX ⊕ iph)

Ni
⊗
∑
z,u

1

42m
[”z,u”]

τ(t,QX,z,u,i)︷ ︸︸ ︷∑
ℓ,r

P
(
ℓ, r|QX ⊕ iph) [µ(ℓ, i, r)]

=
∑

i∈G̃(QX)

P̃E (i)
∑
z,u

1

42m
[”z,u”]⊗ τ (t,QX,z,u,i) (61)

where, aboveMQX is a normalization term, and we define P̃E(i) = PE(i)PY(QX ⊕ iph)/(NiMQX). Note that each
τ (t,QX,z,u,i) is normalized.
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At this point, the network operationN completes on the remaining unmeasured subset −t (those qubits
in the τ (t,QX,z,u,i) system) and Alice and Bobmeasure their remaining systems in the Z basis. Given a particular
observedQX, we need to boundH∞(A|E)τ(t,QX) , where the A register is taken to mean Alice’s Z basis outcome
after the final network operation is performed.

Recalling the definition of |µ(ℓ, i, r)〉 (see equation (47)) we can write the state of τ (t,QX,z,u,i), after the final
network operation is performed on the remaining systems, as:

τ (t,QX,z,u,i) =
∑

ℓ,r∈Bm

PLR

(
ℓ, r|QX ⊕ iph)

× P

 ∑
ℓ−t,r−t∈Bn

√
PL (ℓ−t)PR (r−t)|Fℓ−t ,Gr−t〉

1

22n

∑
z−t,u−t∈Bn

|”z−t,u−t”〉cl

⊗
∑
i−t∈Ji

(−1)g(ℓ−t,i−t,r−t;z−t,u−t) |ϕℓ−t+i−t+r−t〉|Ei−t|it〉

 . (62)

Then, tracing out the remaining G and F registers while measuring the cl register, yields the state:

τ (t,QX,z,u,i) =
∑

z−t,u−t

∑
ℓ−t,r−t∈Bn

P̃CLR (z−t,u−t, ℓ−t, r−t) [”z−t,u−t”]

⊗ P

∑
i−t∈Ji

(−1)g(ℓ−t,i−t,r−t;z−t,u−t) |ϕℓ−t+−t+r−t〉|Ei−t|it〉


︸ ︷︷ ︸

τ(t,QX,z,u,i,ℓ,r)

. (63)

Recall that, for any observed QX, it holds that i ∈ G̃(QX) since τ is our ideal-ideal state. Combining this
knowledge, and using equation (8), for any t and QX we have:

H∞ (A|E)
τ(t,QX) ⩾ min

i∈G̃QX

min
z,u,ℓ,r

H∞ (A|E)
τ(t,QX,z,u,i,ℓ,r) . (64)

Using lemma 2, along with equation (63), we have:

min
i∈G̃QX

min
z,u,ℓ,r

H∞ (A|E)
τ(t,QX,z,u,i,ℓ,r) ⩾ min

i∈G̃(QX)

(
n− nh̄

(
w
(
iph)+ δ

))
= n

(
1− max

i∈G̃(QX)
h̄
(
w
(
iph)+ δ

))
. (65)

Considering the definition of G̃(QX) in equation (59), it is clear that, for any QX and for any i ∈ G̃(QX), it holds
that:

w
(
iph)⩽ w(QX)− p+ δ ′

1− 2p
(66)

leading us to conclude that:

H∞ (A|E)
τ(t,QX) ⩾ n

(
1− h̄

(
w(q)− p+ δ ′

1− 2p
+ δ

))
. (67)

Now, of course this was only the ideal-ideal state, however it holds for any choice of t and observed QX.
Since 1

2

∣∣∣∣∑
tPT(t)[t](ρt − τ t)

∣∣∣∣⩽ 2ϵ, we can use lemma 1 to finish the proof. Indeed, note that all operations
performed on the two systems were CPTP maps satisfying the lemma’s hypothesis, and we take the subset
choice and observation of QX as the random variable X in that lemma.

Our above theorem, along with equation (7), will then allow us to determine a bound on the actual
key-rate of the protocol. Setting ϵPA = 17ϵ+ 4(2ϵ)1/3, for user specified ε, then, the overall key-rate of the
protocol will be:

rate ⩾ N−m

N

(
1− h̄

(
w(QX)− p∗ + δ ′

1− 2p∗
+ δ

))
− leakEC −

1

N
log

1

ϵ
, (68)

except with a failure probability of at most ϵfail = 2(2ϵ)1/3. Above, leakEC is the error correction leakage.
The above is a finite-key bound on the key-rate of this QKD protocol operating over a partially corrupted

repeater chain. We may also easily use this to derive an asymptotic bound as shown in the following corollary:
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Corollary 3.1. In the asymptotic regime, where the number of signals N approaches infinity, assuming the
observed Z and X basis noise are identical (namely QX) the key-rate becomes:

rate∞ = 1− h̄

(
w(QX)− p∗

1− 2p∗

)
− h(w(QX)) . (69)

Proof. First, we may assume collective attacks, whereby the total signal is of the form ρ⊗N
ABE and then, later, use

de Finetti style arguments [50] to promote the analysis to general attacks. In the asymptotic setting, we may
also set m=

√
N. The result then follows from the quantum asymptotic equipartition property [51] and the

fact that 1
N−mleakEC will approach h(w(Q)).

4. General networks: network model and security

Our above results apply to repeater chains, however they can be extended to work with general quantum
repeater networks. We model a repeater network in the typical fashion [5–7]: Alice and Bob are connected to
each other through a general layout of multiple repeaters and multiple links as shown in figure 5; note that
there may be multiple paths available to Alice and Bob. On a particular network round, the network will
attempt to establish one or more Bell pairs between Alice and Bob by routing entanglement through multiple
paths (or chains) of repeaters connecting Alice and Bob. The choice of paths is selected through a routing
algorithm, which may be probabilistic and the path selection may be different each network round; some
rounds may not produce any viable paths. However, any path starts at Alice, routes through a selection of
quantum repeaters, and ends at Bob forming a repeater chain for that path. There may be memory
constraints within each repeater that prevents a single repeater from appearing in more than one path on any
particular network round, however we are not concerned with this.

This process repeats through multiple network rounds, each round producing zero or more paths (which
are, individually, repeater chains) through which entanglement is routed between parties until Alice and Bob
share N entangled pairs. For these N pairs, there must have been N paths that produced them. Note that it
may have taken more or less actual network rounds to produce these N paths since, on some rounds,
multiple paths might have been used leading to more than one entangled pair per round, while on others, no
paths were viable. Let {P1, · · · ,PN} be the paths used on a particular usage of the network. Each path is of
the form:

Pj = A→Rj
1 →Rj

2 → ·· · →Rj
cj → B, (70)

where eachRj
i represents some repeater in the network. Certain network and routing constraints may impose

restrictions on path choices of course, however that is not within scope of the current discussion. Instead, we
simply assume that these N paths exist and lead to N quantum states shared between Alice and Bob.

Similar to the repeater chain scenario, in the general network scenario, we will assume that there are
certain repeaters near Alice and Bob which are considered ‘safe’ or honest, though still noisy. These repeaters
may be in a local connected sub-graph around Alice and Bob, as depicted in figure 5. Any other repeater
outside this region is considered to be in Eve’s zone of control. Consider, then, a particular path Pj as above.
This path can be decomposed into a left/middle/right section, namely:

Pj = A→ Lj →Mj → Rj → B≡
(
Lj,Mj,Rj

)
,

where Lj consists of all contiguous repeaters in path j near Alice which she trusts while Rj consists of all
contiguous repeaters near Bob which he trusts. All other repeaters inMj, connecting the right-most repeater
of Lj to the left-most repeater of Rj, are assumed to be under the control of Eve. Note that it might happen
that, for some paths, the left and right sections are different sizes; sometimes they may even be empty,
meaning that particular path traveled through no trusted repeaters.

Though, at the end of the day, we are still essentially working with repeater chains, there are several
additional layers that must be considered. Of particular importance is the fact that the path choices
(i.e. repeater chains) may be very different from each other depending on the size of the network. Also of
importance is the actual path selection. To formally analyze the security in this setting, we must make the
following assumptions, in addition to (or extending) those made in section 2.1:

Assumption 5. We assume there is an honest region of the network near Alice and Bob—any repeater in this
region is trusted, but introduces natural noise as discussed in section 2. From this, any path can be decomposed
into a ‘left/middle/right’ section as discussed, where the left and right portions pass through the trusted, but
noisy, network, while the middle section is assumed to be under full adversary control.
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Figure 5. An example general network, where the two squares represent Alice and Bob, and the circles represent repeaters. The
links and repeaters close to Alice and Bob that are marked in dashed circles are trusted, but are still noisy. The rest of the nodes
and links may, or may not, be adversarial. There are multiple possible network paths between Alice and Bob in the network.

Assumption 6. Eve can fully control the path selection and routing, even the paths used in the honest region
of the network. In particular, Eve can even pre-choose all N paths before the network even runs and those are
the paths that the network will use while in operation. Her choice may be probabilistic and may be different
each time Alice and Bob use the network for a secret key distillation. Note that this is a strong assumption in
favor of the adversary.

Assumption 7. The honest portions of the network will always use the prescribed paths and will always hon-
estly report these path selections to Alice and Bob.

Assumption 8. For every repeater in the honest section (i.e. those in Lj and Rj), that section of the network
will introduce noise in the same manner as described in section 2. However, now the probability distribution
over link i, Pi (see equation (21)), will depend on the current path j and potentially the entire path list P1

through PN. The latter may be the case if repeaters introduce noise differently based on how they must route
information within the honest regions. However, for every path Pj, Alice and Bob can lower-bound the path
noise parameter for that path, defined in definition 4.1. They can always set this to zero if a suitable bound
cannot be determined, which would imply that this particular path is fully adversarial.

Definition 4.1. Let P = {P1, · · · ,PN} be a set of paths used by a network and let each Pj ≡ (Rj,Mj,Lj),
where each repeater in Rj and Lj are honest, but noisy (as discussed above and in section 2.2). Then, for each
j = 1, · · · ,N, we define the path noise parameter for path j givenP to be the noise parameter (or a lower-bound)
of the given repeater chain according to definition 2.1, however, now, the probability distribution of the honest
portion PL and PR will depend on the given Pj and, potentially, the selection of paths P. We denote the noise
parameter for this path to be p∗[Pj : P] or, when the context is clear, simply p∗[Pj].

Note that, it may be hard for Alice and Bob in practice to be able to bound the noise parameters for every
possible path through the honest region—however, they may always use the trivial lower-bound of zero.

Under the above assumptions, it is not difficult to see that, first, our reduction in section 3.1 still applies,
though one must make a few minor changes, namely:

1. The protocol begins with Eve choosing P = {P1, · · · ,PN}. She sends this list to Heidi. Note that for any
repeater within Eve’s zone of control, Eve is not obligated to follow the selected path. Heidi, however, who
is simulating the honest network, will honestly obey the path selections for those repeaters not within
Eve’s zone of control.

2. Heidi will create appropriate left and right states |L〉L and |R〉R (equations (23) and (24)), where, now,
the distribution PL and PR depends on the path choices.

3. Alice and Bob are informed of the path choices P. Though, they do not trust the accuracy of these paths
outside the trusted region of the network.

It is not difficult to see that, with these modifications made, the resulting entanglement based protocol
will match the state produced by the actual general repeater network. One can see this by tracing out the
execution of both the modified entanglement based protocol and the general repeater network scenario as
was done in section 3.1.2 and note that the resulting quantum density operators are identical in both
scenarios. Note we are still assuming that the noise in the honest portion of the network is independent
across each round (though it may depend on the path and path history). Given this, we may now state our
second main result below. The proof of the below theorem is almost identical to theorem 2, however with a
few critical changes which are highlighted in the proof below.
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Theorem 3. Let ε> 0, P be the path choices used, and ρABE be the state produced through the entanglement
based protocol for a general repeater network using the given P. The A and B portions of the above state consist of
N qubits each. Define δ and δ ′ as in theorem 2. Let {p∗1 , · · · ,p∗k} be the unique path noise parameters for the
given paths; namely it is an enumeration of the set {p∗[P1], · · · ,p∗[PN]} (note that k⩽ N and recall
p∗[Pj] = p∗[Pj : P] is the path noise parameter for path j given P as defined in definition 4.1). Finally, let mj be
the number of times the path with parameter p∗j is used in the sampled subset. Then, if Alice and Bob choose a
random subset t of size m⩽ N/2 and measure those qubits in the X basis resulting in outcome qA and qB and
quantum state ρ(t,qA,qB), and if Alice measures the remainder of her qubits in the Z basis, it holds that:

Pr
[
H8ϵ+2(2ϵ)1/3

∞ (A|E)
ρ(t,qA,qB)

⩾ n
(
1− h̄(w̃(QX,p

∗
1 , · · · ,p∗k )+ δ)

)]
⩾ 1− 2(2ϵ)1/3 , (71)

where w̃(QX,p∗1 , · · · ,p∗k ) is defined to be:

w̃(QX,p
∗
1 , · · · ,p∗k ) = max

x1,··· ,xk

 k∑
j=1

mj

m
xj : − δ ′ ⩽ w(QX)+

k∑
j=1

mj

m

(
2xjp

∗
j − xj − p∗j

)
⩽ δ ′,and xj ∈ [0,1]

 .
(72)

A weaker bound may also be found by setting p∗min =min(p∗1 , · · · ,p∗k ), in which case it holds that:

Pr

[
H8ϵ+2(2ϵ)1/3

∞ (A|E)
ρ(t,qA,qB)

⩾ n

(
1− h̄

(
w(QX)− p∗min + δ ′

1− 2p∗min

+ δ

))]
⩾ 1− 2(2ϵ)1/3 . (73)

Proof. To prove this theorem, we follow the proof of theorem 2, identically, up to the derivation of the ideal-
ideal state in equation (55). The previous bound on w(iph) (for some i ∈ G(QX)) no longer applies in this case,
since Eve may adapt the noise in her state based on the path selection. For example, she may introduce more
noise in honest paths that are less noisy than others (as an example). However, it is clear that, if we can find an
alternative upper-bound to w(iph), then the remainder of the proof of theorem 2 will apply.

As in the proof of theorem 2, let Y be the random variable indicating the phase error of the combined
left and right honest sections of the network (where, now, the distribution on Y depends on the path choices,
however each round is still independent). Let 〈j〉 be the subset of all N paths where a path was chosen such
that p∗j is the noise parameter for that path. That is:

〈j〉=
{
ℓ ∈ {1,2, · · · ,N} : p∗ [Pℓ : P] = p∗j

}
. (74)

Thus
⋃k

j=1 〈j〉= {1, · · · ,N} and 〈j〉 ∩ 〈j ′〉= ∅ whenever j 6= j ′. Then, since the noise in each honest sub-
network is still independent across each round, we have for any ℓ ∈ 〈j〉 that Pr(Yℓ = 1) = p∗j . (Before, we simply
had Pr(Yℓ = 1) = p∗ for all ℓ= 1, · · · ,N.) Note that for any y ∈ {0,1}m, it holds that Pr(Y= y) = Pr(Y1 =
y1)Pr(Y2 = y2) · · ·Pr(Ym = ym) due to our independence assumption on the noise in the honest network (Eve’s
noise may not be independently distributed of course). Note that Pr(Y= y) may be determined or bounded
through the give noise parameters.

Returning to iph, we want to determine µi = E(Y⊕ iph|i) as in the proof of theorem 2. We decompose
iph into substrings i⟨1⟩, i⟨2⟩, · · · , i⟨k⟩, where i⟨j⟩ is the substring of iph, indexed by those rounds using noise
parameter p∗j , namely, all rounds in 〈j〉. Let wj = w(i⟨j⟩) =

1
mj
wt(ij), wheremj = |i⟨j⟩|= |〈j〉|, namely wheremj

is the number of rounds for which p∗j is the noise parameter. Recall that w(·) is the relative Hamming weight
(the relative number of ones in the input string) and wt(·) is the Hamming weight (the total number of one’s
in the input string).

As in the proof of theorem 2, we will decompose each i⟨j⟩ into even and odd parts. Then, if Y produces a
‘one’ in an even part (where i⟨j⟩ is zero), that will increase the total Hamming weight of iph, while a one in an
odd part will decrease it. Given this, we have, for each j:

wt
(
Yj ⊕ i⟨j⟩

)
= wt

(
ij
)
− p∗j wt

(
ij
)
+
(
mj −wt

(
ij
))

p∗j =mj

(
w
(
ij
)(

1− p∗j

)
+
(
1−w

(
ij
))

p∗j

)
. (75)

Now, the total expected value of µi, then, is simply the sum of the above, over all j, divided by the total size
of iph, namely, divided bym=

∑
jmj. This yields:

µi =
k∑

j=1

mj

m

(
w
(
ij
)(

1− p∗j

)
+
(
1−w

(
ij
))

p∗j

)
.
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Since eachYi is independent, equation (51) still holds and so does our decomposition ofσt (equation (53)),
and construction of the ideal-ideal state, τ t (equation (57)) both also hold (with the same trace distance
between them). Next, we revisit equation (58) which requires us to consider the difference: |w(QX)−µi|⩽ δ ′.
First, consider the difference between them (without the absolute value):

w(QX)−µi = w(QX)−

 k∑
j=1

mj

m

(
w
(
i⟨j⟩
)(

1− p∗j

)
+
(
1−w

(
i⟨j⟩
))

p∗j

)
= w(QX)−

∑
j

mj

m
w
(
i⟨j⟩
)
−
∑
j

mj

m
w
(
i⟨j⟩
)
p∗j +

∑
j

mj

m
p∗j −

∑
j

mj

m
w
(
i⟨j⟩
)
p∗j


= w(QX)−

w
(
iph)+∑

j

mj

m
p∗j − 2

∑
j

mj

m
w
(
i⟨j⟩
)
p∗j

 , (76)

where, above, we used the fact that:∑
j

mj

m
w
(
i⟨j⟩
)
=

1

m

∑
j

wt
(
i⟨j⟩
)
= w

(
iph) .

Returning to G(QX) (equation (58)), that set remains the set of all i ∈ Bm satisfying |w(QX)−w(iph)|⩽ δ,

however, when k> 1, now, we can no longer simplify this to implying
∣∣∣w(iph)− w(QX)−p∗

1−2p∗

∣∣∣⩽ δ ′

1−2p∗ (as we did

in our proof of theorem 2; however, as expected, when k= 1, we can make this simplification). Thus, we keep
G(QX) to be simply:

G(QX) =

i ∈ Bm : − δ ′ ⩽ w(QX)−

w
(
iph)+∑

j

mj

m
p∗j − 2

∑
j

mj

m
w
(
i⟨j⟩
)
p∗j

⩽ δ ′

 .
Continuing with the proof, following the proof of theorem 2, equation (65) still holds, we just need a

new upper-bound on w(iph). However, since i ∈ G(QX), if we set w(iph) = w̃(QX,p∗1 , · · · ,p∗k ) (where the lat-
ter is defined in equation (72)), it is clear that we get an upper-bound on the actual w(iph). In a run of the
protocol, Alice and Bob know w(QX), since that is the observed X basis noise; they also know

mj

m since they
have the honest path selections list. They also know p∗j by Assumption 8. The only thing they cannot directly
observe is w(i⟨j⟩) for each i⟨j⟩. However, they may optimize over all possible values, satisfying the given con-
straint that i ∈ G(QX) which is exactly what the w̃(QX,p∗1 , · · · ,p∗k ) function does. This will give a worst case
bound on the relative Hamming weight of w(iph) (the phase error introduced by Eve in the sampled subset),
needed for equation (65), and thus proves equation (71). Alternatively, if we simply replace all occurrences of
p∗j with min(p∗1 , · · · ,p∗k ), it is clear that this will produce a worst-case upper bound on w(iph), thus proving
equation (73). This completes the proof for the general network scenario.

5. Evaluation

We now evaluate our key-rate bounds in quantum networks and compare them with those obtained from
fully corrupted networks, i.e. those following standard BB84 assumption. In the following, we first present
the results for repeater chains and then general network settings.

5.1. Results for quantum repeater chains
We evaluate our key-rate bounds in both finite key (equation (68)) and asymptotic (equation (69)) settings.
As we will soon see, our security model allows for significantly higher key-rates when some of the network
can be assumed honest, when compared to the standard BB84 assumption, which assumes the entire
network is adversarial. This shows the benefit of incorporate knowledge of honest repeaters into QKD
key-rate calculations.

Our evaluation setup will assume a repeater chain with five repeaters (six fiber links total) connecting
Alice to Bob. We will consider scenarios where the number of honest nodes varies from zero (a fully
corrupted network) to four. We will also assume depolarizing channels connect all honest parties, and that
the total observed noise can be modeled as a depolarizing channel. The latter is an assumption made just for
our evaluations in order to simulate reasonable values for the expected observed noise w(QX). That is, we are
assuming the adversary’s attack introduces noise that can be modeled as a depolarizing channel, for the sake
of evaluation. Finally, given this setup, we will evaluate both the finite key and the asymptotic behavior of the
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Figure 6. Repeater chain: the total observed X-basis noise w(QX) (top, Dashed line) and honest network noise parameters p∗

(Solid lines) as the link-level depolarizing noise q increases. Here we assume a five repeater (six link) network. Noise parameter p∗

is computed for honest network sizes ranging from one to four repeaters.

partially corrupted repeater chain and compare with the standard BB84 expression (which assumes a fully
corrupted network). For BB84, we will compare with finite key (denoted BB84-F) and asymptotic (denoted
BB84-A) where appropriate.

To evaluate key-rates, we need to compute what the expected value of w(QX) would be in a general
repeater chain scenario. Then, we must determine reasonable lower-bounds on p∗ in the given adversarial
model. To do this, we designed a Python program which simulates the action of a repeater chain, computing
the overall expected noise, given the link level noise. We simulate the case where each link suffers
depolarizing noise which is a valid noise model for our network assumption. Such a depolarizing channel
maps a two qubit state ρ to:

Eq (ρ) = (1− q)ρ+
q

4
I, (77)

where I is the identity operator on two qubits. In particular, given the total number of repeaters c, and a link
level noise parameter q, our program will compute the total expected noise in the network (i.e. the value of
w(QX)). We then use this simulator to determine a bound on p∗ by having it compute what the noise would
be in a smaller chain.

Although each link can have a different depolarizing parameter, we assume for our evaluations that they
are all identically q. In our evaluations, we assume each round is independent and identical to the others;
thus after a single round, the final state of the full network (after all Bell measurements and Pauli corrections
are performed) is:

ρfull =
∑
i∈B

Pq,c

(
ibt, iph) [ϕi]. (78)

The X-basis error rate of the full network is then the probability of a phase-flip occurring:

w(QX) = Pq,c (0,1)+ Pq,c (1,1) . (79)

We use our Python program to determine the value of Pq,c(bt,ph), thus allowing us to determine w(QX), the
expected total observed error rate in the chain. This also allows us to determine p∗ by simulating smaller
honest sub-networks separately using our Python simulator (i.e. by determining Pq,c ′ for c ′ < c).

Figure 6 shows how the total observed noise accumulates in repeater networks of varying levels of
corruption. In networks of fixed size, a larger honest sub-network corresponds to a higher percentage of the
total measured noise being natural instead of adversarial. This means that less information is leaked to the
adversary, and higher key-rates can be obtained.

We next evaluate our finite key-rate bound (equation (68)), by settingm= .07N and ϵ= 10−36. Such a
setting for ε will imply a failure probability and an εPA-secure key (see equation (7)), both on the order of
10−12. We assume leakEC is simply 1.2h(w(QX)+ δ). We simulate networks with five total repeaters (six
total links) and analyze the cases where zero, two, and four repeaters are honest. Note that when the number
of honest repeaters is zero, the entire network is assumed to be under adversarial control.

To benchmark our key rate against prior work, we use the finite BB84 key rate from [52], namely:

BB84-F =
N−m

N

(
1− h̄(w(QX)+ ν)− 1.2h̄(w(QX)+ ν)

)
, (80)
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Figure 7. Repeater chain: the finite key-rate (y-axis) as the number of signals N increases (x-axis) in a five repeater chain for
various numbers of honest repeaters (Solid lines). We compare to BB84 assuming a fully corrupted network (dashed line). For
this graph, we set the link-level noise in each link to be q= 3%.

Figure 8. Repeater chain: finite key-rates versus total observed X-basis noise in a five repeater chain with N= 107 signals (left)
and N= 108 signals (right). Note that higher noise tolerances are possible when one assumes at least some of the repeaters are
honest, but noisy.

where

ν =

√
N(m+ 1) ln(2/ϵ)

m2n
. (81)

As seen in figure 7, our finite key rate can significantly outperform standard BB84 (which assumes a
completely adversarial network), so long as one is willing to assume at least some of the repeaters are honest
but noisy. Note that, as seen in this figure, if one assumes the entire network is corrupted (thus p∗ = 0), our
finite key rate requires more signals than BB84-F on fully corrupted networks to recover the same key-rate.
This is not unexpected, however, and is an artifact of our proof method. In our proof, we need to sample
twice to perform our ideal-ideal state analysis, thus giving worse bounds than BB84 with a fully adversarial
network, where this is not required. However, asymptotically the two key-rates (ours and standard BB84)
converge. When we take honest repeaters into account on partially corrupted networks, our key-rates
outperform BB84-F, which is the entire point of our security proof. Indeed, our results show that even
assuming a small number of honest repeaters (even one next to Alice and Bob for instance), can lead to
significant improvements in overall QKD performance.

Figure 8 shows the noise tolerances of our finite key result, for N= 107 and 108 signal rounds. On fully
corrupted networks, we again see that BB84-F is more robust to total measured noise especially when less
signals are transmitted (which is, again, an artifact of our proof method). However, when assumptions of
partial corruption can be made, our model provides higher key-rates and noise tolerances than BB84-F.
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Figure 9. Repeater chain: asymptotic key-rates versus total X-basis noise in a five repeater chain. With zero honest repeaters (i.e. a
fully corrupted network), our key-rate result converges with asymptotic BB84. As the number of honest repeaters in the network
increases, our protocol outperforms asymptotic BB84, showing rigorously that increased noise tolerances and key-rates are
possible in a partially corrupted setting.

To compare our asymptotic key-rate (equation (69)) with BB84 in the standard security model, we use
the well known BB84 rate from [53]:

BB84-A = 1− 2h̄(w(QX)) . (82)

We see in figure 9 that our key-rates exactly align with BB84-A on fully corrupted networks. On partially
corrupted networks, our results produce higher key-rates for all noise levels with any non-zero number of
honest repeaters. This figure also shows that our result converges asymptotically to standard BB84 results,
when one assumes a completely corrupted network (setting p∗ = 0).

5.2. Results for general quantum networks
Using theorem 3, we now perform evaluations for a general network. Instead of simulating an entire
quantum network, we assume a network with three trusted paths on Alice’s side and two on Bob’s side. This
setting leads to a total of six possible p∗ values (since the noise parameter takes into account both the left and
right portion—thus there are six possible total combinations of left/right sections of trusted regions). We will
assume the network has run, establishing a key between Alice and Bob leading to a total observed X basis
noise of QX. Alice and Bob are given the path choices for the network. We assume on a particular round, for
evaluation purposes, that the network operated such that the list of noise parameters is:

(p∗1 , · · · ,p∗6 ) = (0.01,0.02,0.015,0.05,0.00,0.03) (83)

and that the ratio of these paths being chosen in the sampled portion is:(m1

m
, · · · ,m6

m

)
= (0.40,0.10,0.15,0.05,0.10,0.20) . (84)

Notice that p∗5 is zero, indicating that Alice and Bob cannot characterize its noise. Given the above
parameters, we may plot the finite key-rate of the system, using theorem 3 (along with equation (7)) for
various numbers of signals N and various observed noise levels QX. We use the same settings as before
(i.e. same security parameter, error correction leakage rate, and sampling rate). This is shown in figure 10,
comparing with BB84 (using equation (80)). As with the repeater chain scenario, we see that, depending on
the number of signals and the honest network noise, our result can produce higher key-rates than BB84-F,
which assumes the entire network is adversarial. However, for ‘low’ levels of honest noise and a low number
of signals, the standard adversarial model (i.e. prior work) shows better key rates as shown in this same
figure. As discussed with the repeater chain evaluations, this is an artifact of our proof technique, especially
the double sampling, whose sampling errors improve as the number of signals increases. However, both our
result, and the standard adversarial model, can be used—users may simply take the maximum of both results
for the actual achievable keyrate.

In the above, we assume that Alice and Bob have no knowledge about p∗5 . We now assume that Alice and
Bob have an estimate of p∗5 as 0.06. Figure 11 compares the key-rates with and without this knowledge of p∗5 .
We show the results of three settings in the figure. For each setting, the results are shown in two curves with
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Figure 10. General quantum network: comparing the finite key-rates using our results (solid lines) which assumes a partially
trusted network, and standard BB84 (dashed lines) which assumes a fully adversarial network for a general repeater network for
three levels of observed X basis noise. For the solid lines, we use noise path parameters and ratios as shown in equations (83)
and (84) to evaluate the key-rate. Note that for a smaller number of signals, prior work surpasses ours—this is due to the relatively
low natural noise bounds (i.e. the values of p∗j ) and the fact that our proof uses a ‘double sampling’ technique which lowers the
key-rate as discussed in the repeater chain evaluations and in the text here. Indeed, relative to the observed X basis noise, our path
noise parameters for this graph are low. As the number of signals increases, the sampling error introduced by our double
sampling technique vanishes leading to higher key-rates compared to the standard adversarial model.

Figure 11. General quantum network: comparing our results when Alice and Bob improve their estimate of the honest noise.
Dashed lines assume noise parameters as indicated in equation (83) while solid lines are the same, except now p∗5 = 0.06. This
shows that improving estimates of the honest noise, even for one path in a network, can significantly increase key-rates.

the same color, one solid and the other dashed, corresponding to cases with and without knowledge of p∗5 ,
respectively. We see that for all the settings, knowing p∗5 leads to a significant increase in key-rate, which
demonstrates the benefits of improving estimates of the noise on the honest portion of the network.

Finally, figure 12 is similar to figure 10, except, now, we use the following, higher, path noise parameters:

(p∗1 , · · · ,p∗6 ) = (0.06,0.06,0.04,0.05,0.05,0.03) (85)

and the same values for relativemj’s as before. For this honest network noise, we see our key-rate always
outperforms BB84-F. For instance, at 7% observed X basis noise, BB84-F using the standard adversarial
model can generate a key at a rate of nearly 15% while our result, assuming a partially honest network,
generates a key at a rate of roughly 35%.

Taken together, these evaluations demonstrate that significantly increased noise tolerance and efficiency
(i.e. increased key-rates) are possible when using our results and assuming at least some repeaters in a
repeater network are honest. This also shows that it can be highly beneficial to secure at least some portions
of a future quantum network as, in this case, greatly increased performance would be possible. However, for
‘low’ levels of honest noise (or, alternatively, for weak lower-bounds on the honest noise), our results
perform sub-optimally which is an artifact of our proof technique. However, both our result and the
standard adversarial model are lower-bounds on the key-rate. Thus users may simply take the maximum of
both to get the actual key-rate.
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Figure 12. General quantum network: comparing our results (solid line) to the standard adversarial model (dashed line) using
path noise parameters in equation (85) representing higher known natural noise than that used in figure 10. In this case we see
our results always surpass the standard adversarial model.

6. Closing remarks

In this paper, we analyzed the case of a partially trusted (or partially corrupted) repeater network. Several
motivating examples justify this security assumption: in particular, in a large-scale network, it is
unreasonable to expect an adversary to be able to completely replace all devices on the network with perfect
ones and, thus, ‘hide’ within the expected natural noise. There may also be cases where certain repeaters live
in a safe area, where they can be trusted (as with trusted nodes). Current day networks utilize trusted nodes
which must be kept secure; securing repeaters may be significantly easier (since they do not store key
material), while policing fiber links close to the source for ‘wiretapping’ is not unreasonable, thus making
this a reasonable assumption.

While it is expected that higher key-rates are possible in this scenario, proving it in the finite-key scenario
is non-trivial. We derived a rigorous finite-key security proof for this setting; our proof techniques may be
broadly applicable to other scenarios where there is a mix of trusted noise and adversarial noise in a quantum
network. We also evaluated our results, comparing with standard security assumptions and showed that,
even with a small number of trusted repeaters, higher key-rates and noise tolerances are possible. This shows
the benefit in physically securing at least some portion of future quantum networks, perhaps those nodes and
links near parties, even if one cannot secure the entire network from adversary attack.

Many interesting future problems remain. First, it would be highly interesting to investigate lossy
channels. We suspect our proof method can be adapted to lossy channels, though we leave a rigorous proof as
future work. Second, investigating practical device imperfections (e.g. multi-photon sources and imperfect
detectors) would also be beneficial. This would also allow for future experimental evaluations—for instance
by setting up a small point-to-point system, and evaluating the noise in that link, one may extrapolate to
explore how our results would operate in a larger scale network.
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