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Abstract—When all the qubits needed for solving a problem are not
located in a single quantum computer, qubits from different quantum
computers can be collectively utilized. In this case, quantum communi-
cation is needed for the multiple quantum computers to communicate
with each other. Several studies address the problem of minimizing
the number of quantum communications when evaluating a general
quantum circuit. The solutions proposed typically involve solving some
intractable problems. In this paper, we show that we can obtain much
better solutions when we focus on solving specific problems (instead
of seeking solutions for generic circuits). Specifically, we consider
several fundamental quantum circuits and identify communication
protocols that need a much smaller number of communication steps
than those offered by generic solutions. Our work is in line with tra-
ditional parallel and distributed computing research where typically
scientists focus on solving specific problems (such as sorting, matrix
multiplication, network flow, etc.) in a parallel or distributed setting.

Index Terms—distributed quantum computing, parallel algorithms,
quantum fourier transform, quantum network.

I. Introduction
Quantum algorithms have been proposed to solve a myriad

of problems including search, integer factorization, combinatorial
optimization, option pricing, etc. Two of the most well-known
algorithms in quantum computing are the prime factorization
algorithm of Shor [12] and the search algorithm of Grover [7].
Shor’s algorithm was the first one to show that prime factorization
and discrete logarithms problems can be solved in polynomial
time. Given an unsorted sequence X of length N , Grover showed
how to perform search in this sequence in O(

√
N) time using

a quantum algorithm. Any traditional algorithm will need Ω(N)
time to solve this problem in the worst case.

Despite rapid progress, current quantum processors can only
support a limited number of qubits (up to a few thousand). However,
many problems of interest need significantly more qubits. One way
of dealing with this shortcoming is to employ distributed quantum
computing [3] over multiple quantum processors. Communications
among these quantum processors are through quantum networks,
which consume quantum resources (e.g., entanglement) and adds
noise to computation. Therefore, one goal of distributed quantum
computing is to reduce the amount of communication needed.

Researchers have proposed many solutions to address this prob-
lem (see e.g., [1], [2], [4], [5], [9], [10], [13]–[15]). In all existing
studies, however, the proposed solutions are generic, i.e., they are
designed to work for any problem. This is in contrast to traditional
parallel computing, where algorithms are typically proposed for
specific problems, not broadly for a class of problems. For example,
numerous parallel sorting algorithms are known, and many parallel
matrix multiplication algorithms have been published.

In this paper we demonstrate that creating quantum distributed
algorithms for specific problems is much more desirable than

generic solutions. In particular, we show that we can minimize the
communication cost more effectively when we focus on individual
problems. We exemplify this approach using three important
problems: quantum Fourier transform (QFT) that is used in Shor’s
algorithm, Grover’s search algorithm, and Satisfiability problem.
Our evaluation shows that our approach requires significantly less
teleportations than a random local search algorithm for all three
problems. We believe our work points to an important direction for
further improving the efficiency of distributed quantum computing.

II. Background
Quantum circuit. Quantum algorithms can be represented as
quantum circuits. We can think of a quantum circuit as a leveled
graph. If there are n qubits, we can represent them as n horizontal
lines/wires. Each vertical level corresponds to a set of gates. We
can correlate each level with a time step. The qubits go through
several levels of gates. At the end, we can measure the circuit. If
the circuit computes a function f on n qubits, the measurement
will give us the value of f(i) for some i, 0≤ i≤ (2n−1). The
specific value of i will depend on the amplitudes associated with
the different states of the qubits.
Distributed quantum computing. A large-scale quantum circuit that
cannot run on a single quantum machine can be split to run on mul-
tiple quantum machines that are connected by a quantum network.

Two subproblems in distributed quantum computing are: (i)
qubit allocation, which allocates each qubit of the quantum
circuit to a certain quantum processor in a given set of quantum
processors, so that the number of qubits allocated to quantum
processor r does not exceed its storage capacity nr, and (ii)
non-local gate operation, which determines how to support
gate operations that involve qubits on two different quantum
processors. One mechanism to realize non-local gate operation is
through teleportation, which is used in this paper due to its many
advantages over cat-entanglement [13]. Specifically, suppose a gate
operation involves two quantum processors, r1 and r2. Then r1 can
teleport its qubit |x⟩ to r2; r2 in turn completes the gate operation
locally, and then teleports |x′⟩ back to r1. The goal of the above
two subproblems is to reduce the number of teleportations needed.

In this paper, we solve both of the above two subproblems. We
assume that each quantum processor has a single communication
qubit (which differs from computation qubits), and hence can
only perform one teleportation at a time. In addition, each
quantum processor can store a single qubit (separate from its
own computation qubits) that is teleported from other processors.

III. Quantum Fourier Transform (QFT)
QFT is a very fundamental problem not only in traditional

computing but also in quantum computing. For example, Shor’s



Fig. 1: Quantum circuit for Fourier transforms.

algorithm for factorization employs QFT as one of the components
[12]. Figure 1 shows the circuit for QFT, when the size of the
input is N=2n. We employ n qubits. In this figure, Rs stands
for the unitary operator:

Rs=

[
1 0
0 e2πi/2

s

]
,

for s = 1,2, .... Let the number of processors available be p.
Also, let the number of qubits available in processor i be ni,
for 1 ≤ i ≤ p such that

∑p
i=1ni = n. Let mj =

∑j
i=1ni, for

j=1,2,...,p, with m0=0. Without loss of generality, assume that
processor i has the qubits xmi−1+1,xmi−1+2,...,xmi , for 1≤ i≤p.
For this circuit, we propose the following communication protocol.

Handling gates involving |x1⟩: Consider |x1⟩. In the first
n time steps, all the gates applied involve |x1⟩. Specifically,
the gates applied in the first n time steps involve: |x1⟩,
(|x1⟩,|x2⟩), (|x1⟩,|x3⟩),...,(|x1⟩,|xn⟩). In the first n1 time steps,
there is no need for teleporting |x1⟩ since all the qubits participat-
ing in the gates are with processor 1. At time step n1+1, we tele-
port |x1⟩ to processor 2. Assume that a teleportation and gate appli-
cation can be done in the same time step. (If not, we can expand the
time scale by a factor of 2). From time step n1+1 through n1+n2,
the qubits participating in the gates are with processor 2. At time
step n1+n2+1, we teleport |x1⟩ to processor 3, and so on. In
summary, we perform p−1 teleportations in the first n time steps.

Handling gates involving |x2⟩: In time steps n+1 to 2n−1,
all the gates in the circuit involve |x2⟩. Specifically, the gates
applied in these n − 1 time steps involve |x2⟩, (|x2⟩, |x3⟩),
(|x2⟩, |x4⟩), ... , (|x2⟩, |xn⟩). From time step n + 1 through
n+n1−1, the qubits participating in the gates are with processor
1. At time step n+n1, we teleport |x2⟩ to processor 2. From
time step n+n1 through n1+n2−1, the qubits participating
in the gates are with processor 2. At time step n+n1+n2, we
teleport |x1⟩ to processor 3, and so on. In summary, we perform
p−1 teleportations in times steps n+1 to 2n−1.

We can handle the other gates in a similar manner. To sum
up, for the qubits |x1⟩ through |xn1

⟩, we do p−1 teleportations.
For qubits |xn1+1⟩ through |xn1+n2

⟩, we perform p − 2
teleportations. As a result, the total number of teleportations
done is n1(p−1)+n2(p−2)+ ···+np−1. If QFT is the only
operation we are interested in, then there is no need for any
other teleportations. If there are other operations to be performed
on the qubits, then they will have to be teleported back to their
original processors. This will take a total of n−np teleportations.
Therefore, the total number of teleportations taken in the general
case is n1(p−1)+n2(p−2)+···+np−1+(n−np).

Consider the special case of ni = n/p, for 1 ≤ i ≤ p.
In this case, the total number of teleportations is
n
p [(p−1)+(p−2)+···+1+(p−1)]= n(p−1)

2 +(n−n/p).
We can transform the circuit shown in Figure 1 to an equivalent

circuit by replacing the R binary gates with CZ binary gates and
adding up to n

2 swap operations at the end. The i-th swap operation
swaps the quantum state of qubit qi with the quantum state of
qubit qn−i. Each R gate can be implemented using two CZ gates
and the swap operation is implemented using three CZ gates.

Consider a QFT setting with n=64 qubits and p=4 partitions.
For this setting, our mentioned protocol takes 144 teleportations.
On the contrary, the generic local search algorithm (Section VII-A)
takes 336 teleportations, more than 2× of what our approach needs.

IV. Grover’s Algorithm

Given an unsorted sequence A[1 : N ] and another element
x, Grover’s algorithm searches for x in A[1 : N ] in O(

√
N)

time using a quantum circuit. Clearly, any traditional algorithm
will need Ω(N) time to solve this problem. We can also think
of searching as the following problem: the input is a sequence
X=k1,k2,...,kn and a function f :X→{0,1}, and the problem
is to find an i such that f(ki)=1.

In this circuit, there are two main blocks that are repeated
O(

√
N) times each. On any given input |x⟩, the first block

(labeled O±
f ) returns (−1)f(x)|x⟩ as the output. This block

can be constructed from an oracle gate for computing |f(x)⟩
on any |x⟩. We assume that there exists such an oracle gate.
Thus we only focus on the second block (labeled D) that
is known as the diffusion block. This block modifies the
amplitudes. The diffusion gate (see e.g., [11]) is H

⊗
nZ0H

⊗
n=

H
⊗

n(2|0n⟩⟨0n|−I)H
⊗

n=2|+n⟩⟨+n|−I , where

Z0|x⟩=

{
|x⟩ if |x⟩= |0n⟩
−|x⟩ if |x⟩ ̸= |0n⟩.

One way of constructing Z0 is shown in Figure 2. As we
see from this picture, Z0 can be realized if we have a circuit
for computing the OR of n qubits. In the study of quantum
communications, only binary gates are considered (see e.g., [13]).
As a result, in the context of Grover’s algorithm and quantum
communication complexity, we conclude that the circuit of interest
is one where we perform the OR of n bits. One such circuit is given
in Figure 3. For simplicity, assume that when an OR gate is applied
between |xi⟩ and |xi+1⟩, OR of these two qubits is available in
|xi+1⟩. Here again, assume that the number of processors available
is p. Also, let the number of qubits available in processor i be ni,
for 1≤ i≤p such that

∑p
i=1ni=n. Again, the qubits are allocated

sequentially to the p processors, with ni qubits for processor i.

Fig. 2: Realizing Z0 in the Diffusion gate.
In the first n1 − 1 time steps, there is no need for any

teleportations. At the end of step n1, the OR of the first n1 qubits is
available in |xn1

⟩. In time step n1, |xn1
⟩ is teleported to processor

2. For the next n2−1 time steps, there is no need for any telepor-
tation. In time step n1+n2, |xn1+n2⟩ is teleported to processor 3,
and so on. In total, the number of teleportations needed is p−1.



Fig. 3: Boolean OR of n qubits.

In a setting with n=64 qubits and p=4 partitions, our men-
tioned protocol takes 6 teleportations. On the contrary, the generic
local search algorithm (Section VII-A) takes 76 teleportations.

V. Satisfiability
The satisfiability problem (SAT) has numerous applications and

is known to be NP-complete. Many other important problems
can be reduced to SAT, and hence this problem has been studied
extensively. Given a Boolean formula F on n variables, the SAT
problem is to check if F has a satisfying assignment. A simple
algorithm can be used to solve SAT in O(2n) time (see e.g., [8].

It has been shown that we can use Grover’s algorithm to create
a quantum algorithm for solving SAT whose runtime is O(

√
2n).

The idea is to replace the oracle in the Grover’s algorithm with
a boolean circuit for F . The diffusion module will remain the
same. Call this quantum algorithm as QSAT.

In this section, we study the quantum communication
complexity of QSAT. Assume that there is a neuron corresponding
to each variable in the formula F . As earlier, we assume that
the neurons are distributed across p machines.

Let F = C1 ∧ C2 ∧ C3 ∧ ··· ∧ Cq, where C1,C2, ... ,Cq are
clauses (i.e., disjunctions of literals). The oracle circuit will have
a component for each of the clauses and these segments will
appear in sequence. For any Ci, the segment will be a boolean
circuit for realizing a disjunction of the literals in Ci.

Note that we have to construct a specific quantum circuit
for each input formula F . We won’t be able to use the same
quantum circuit to solve SAT on two different formulas (even
if they have the same number of variables). Keeping this in mind,
we look at some specific boolean formulas and compute the
quantum communication complexity for each.

Example 1: In this example, there are 16 clauses on 16
variables. The clauses are: (x1, x2, x5), (x1, x2, x3, x6),
(x2,x3,x4,x7), (x3,x4,x8), (x1,x5,x6,x9), (x2,x5,x6,x7,x10),
(x3, x6, x7, x8, x11), (x4, x7, x8, x12), (x5, x9, x10, x13),
(x6,x9,x10,x11,x14), (x7,x10,x11,x12,x15), (x8,x11,x12,x16),
(x9, x13, x14), (x10, x13, x14, x15), (x11, x14, x15, x16), and
(x12,x15,x16).

Assume that we have 4 machines, each with 6 qubits. The
solution we suggest is to assign qubits 1, 2, 5, and 6 to machines
1; qubits 3, 4, 7, and 8 to machine 2; qubits 9, 10, 13, and 14
to machine 3; and qubits 11, 12, 15, and 16 to machine 4.

In our example, consider C1. All the qubits are with machine
1 and hence there is no need for any teleportation. Consider
C2. Only qubit 3 is needed from machine 2. This qubit will be
moved to machine 1 and then moved to machine 2. Hence this
is counted as two teleportations. Continuing in a similar manner,
we realize that 32 teleportations are utilized. In contrast, the
local search algorithm introduced in Section VII-A required 48
teleportations, 50% more than our solution.

Fig. 4: An example of a fully connected weighted network with 4
machines, where wij represents the teleportation cost between machines
i and j.

Algorithm 1: GreedyDeterministicMapping()

Input: Network as weighted graph, G=(V,E) Communication
requirement as weighted graph G′=(P ′,E′)

Output: A map, M :P ′→V .
1: M : an empty map of size |P ′|
2: L: list of edges in E sorted in ascending order of edge

weights.
3: L′: list of edges in E′ sorted in descending order of edge

weights.
4: for i=1 to |V |/2 do
5: (u,v)=L[0]
6: (u′,v′)=L′[0]
7: M [u′]=u
8: M [v′]=v
9: Remove all edges containing u or v from L

10: Remove all edges containing u′ or v′ from L′

11: end for
12: return M

VI. Qubit Assignment in Weighted Network

Our circuit partitioning schemes introduced in Sections III and
IV can partition the qubits into non-uniform sizes of partitions.
They assume the underlying communication cost between any
pair of machines is uniform. We now consider a heterogeneous
setting where the quantum communication cost between a pair
of machines is non-uniform. One example is shown in Figure
4. Non-uniform communication costs can happen due to various
reasons in practice (e.g., different distances, and different number
of quantum repeaters connecting two quantum computers). While
non-uniform communication cost has also been considered in [13],
[15], as we shall see below, our focus differs from them since
we treat it as the second step, after assigning qubits to a set of
quantum computers (following Sections III and IV).

Optimal circuit partitioning assuming non-uniform
communication cost among machines is known to be intractable
[2]. Hence, we propose a greedy algorithm to solve this problem
as shown in Algorithm 1.

Our proposed greedy mapping algorithm looks at a pair of
partitions and assigns them to a pair of machines (lines 7 & 8
in Algorithm 1). Given a pair of partitions (pi,pj) and a pair of
machines (mu,mv), we can either map partition pi to machine
mu and pj to machine mv , or we can map pi to mv and pj to
mu. In our experiments on the weighted networks in Section
VII-D, we explored two strategies: (i) following the mapping
presented in Algorithm 1, and (ii) randomly picking one of the



Fig. 5: Total teleportation cost (in log2 scale) incurred by our proposed
exact method vs local search method for partitioning QFT circuit with
16, 64, 256 qubits into 2, 4, and 8 equal partitions.

two possible assignments. Our results show that for large circuits,
the latter tends to outperform the former.

VII. Experimental Results
We conducted a series of experiments to partition the QFT

circuit, diffusion module circuit of Grover’s search algorithm,
and QSAT circuits. In our experiments, we varied the number
of qubits n∈{16,64,256}. For each number of qubits, we varied
the number of partitions p∈{2,4,8}. We assumed the capacity
of each partition is n

p . Hence, each machine would require only
two more qubits in addition to the partition size – one for storing
the teleported qubit and one for facilitating the communication.

A. Local Search Algorithm
Previously, local search methods were used to evaluate

quantum circuit partitioning methods [4]. Similarly, we propose
a local search algorithm to compare against our proposed
problem-specific partitioning schemes.

In our proposed local search algorithm, we follow a simple
strategy to generate candidate solutions which are partitions of
the qubits. Initially, we randomly assign qubits to the partitions
till a partition is full to the capacity. We produce a candidate
solution by randomly picking two partitions and exchanging
one randomly picked qubit from each partition. We measure the
fitness of the candidate solution by counting the number of qubit
teleportation required by the candidate solution. A candidate
solution with lesser teleportation has a higher fitness. We select
the higher fitness candidate solution as the current solution with
high probability. With a small probability, we would select the
existing candidate solution. Finally, after a certain number of
iterations, we output the best-found solution.

In our experiments, we ran the local search algorithm for 10,000
iterations. In each iteration, the candidate solution is selected with
the probability α=0.2. If the candidate solution is not selected
on the first attempt, but the candidate solution is more fit than the
current solution, it will be selected with a probability of β=0.8.

In our experiments on QSAT, we calculate the minimum
number of required qubit teleportation for each clause. The total
required qubit teleportation is the sum of the required qubit
teleportation for all clauses.

B. Experiments on QFT and Grover’s Circuits
We proposed exact partitioning methods in Section III for QFT

circuits and Grover’s search algorithm in Section IV.
The results for the experiments on the QFT circuit are presented

in Figure 5 and the results for the experiments on Grover’s search
algorithm are shown in Figure 6.

Our experiments show that the exact method can partition the
qubits such that it incurs significantly fewer qubit teleportations.

Fig. 6: Total teleportation cost (in log2 scale) incurred by our proposed
exact method vs local search method for partitioning diffusion gate
circuit in Grover’s search algorithm with 16, 64, 256 qubits into 2, 4,
and 8 equal partitions.

This is because our protocol exploits the symmetry of qubit gate
operations in the circuit. Whereas, the local search algorithm can
only search the solution space without any explicit knowledge
of the symmetry. Although the local search algorithm runs for
a large number of iterations (10,000), it fails to find a similarly
good solution to the exact method. Furthermore, the solution
space increases exponentially when increasing the number of
qubits or partitions. With a fixed number of iterations, the local
search algorithm performs comparatively worse when the number
of qubits or the partitions is higher.
C. Experiments on QSAT

We conducted two series of experiments on QSAT circuits to par-
tition them into 4 partitions. We assumed that each literal is mapped
to a qubit. These qubits are arranged in a mesh topology. In the
first experiment, we assumed each clause is constituted by literals
whose mapped qubits are on a path in the mesh. We generated 1000
clauses by randomly varying the length of each clause between 3
to 5 literals. We divided the mesh into four quartets as done in the
example shown in Section V. We ran the simulation 5 times. The
average performance of each of the methods is shown in Figure 7.

Fig. 7: Average teleportation cost incurred by a fixed partitioning
method vs local search method for satisfying 1000 randomly generated
clauses over the mesh topology.

In the second series of experiments, clauses constituted randomly
picked literals instead of following the inter-connectedness of
the mesh. The comparative performance of the fixed partitioning
scheme and the local search algorithm is shown in Figure 8.

Our results in Figure 7 show that the fixed partitioning scheme
requires fewer teleportations when clauses are sampled from a mesh
topology. In fixed partitioning, each partition contains all the qubits
in a quarter of the mesh. The clauses are also constituted by literals
that are mapped to neighboring qubits. Hence, some clauses have
only literals that are mapped to qubits residing in the same partition,
incurring no teleportation cost. However, when we generated the
clauses by sampling literals randomly, irrespective of the inter-
connectedness of their mapped qubits, we see in Figure 8 that



Fig. 8: Average teleportation cost incurred by a fixed partitioning method
vs local search method for satisfying 1000 randomly generated clauses.

Fig. 9: Average Communication cost (in log2 scale) incurred by various
partition mapping methods for 30 weighted networks and partitioning
QFT circuit with 16, 64, 256 qubits into 2, 4, and 8 equal partitions.

Fig. 10: Average Communication cost (in log2 scale) incurred by
various partition mapping methods for 30 weighted networks and
partitioning diffusion gate circuit in Grover’s search algorithm with 16,
64, 256 qubits into 2, 4, and 8 equal partitions.

the local search algorithm fares better than our scheme. It shows
that a partitioning scheme tailored for the SAT problem instance
can result in less communication as opposed to a generic scheme.

D. Experiments with Non-uniform Communication Cost
We experimented with weighted networks that represent hetero-

geneous quantum networks as discussed in Section VI. For each
experiment, we generated a fully connected undirected weighted
network with nodes representing the machines and weights of
the edges (in range [1,5]) representing the communication costs
between machines. We repeated each experiment 30 times and
reported the average communication cost. We compared four meth-
ods for each network configuration. First, we partitioned the QFT
or Grover’s circuit with our proposed partitioning schemes. As the
first method (termed Exhausting Search) we conducted a exhaustive
search to find optimal partition to machine (node) mapping. The
second method (termed Greedy Deterministic Mapping) followed
Algorithm 1. The third method (termed Greedy Random Mapping)
picked one of the two possibilities in partition assignment randomly
(line 7 & 8 in Algorithm 1). Lastly, we employed our local search
algorithm. Results are shown in Figure 9 and Figure 10.

In our experiments with both the QFT circuits and Grover’s
diffusion gate circuits, we found both of our greedy mapping

algorithms find near optimal mapping. These costs are much lower
than the local search method, particularly for cases with a high
number of qubits and a high number of partitions. Between the
two of our proposed greedy algorithms, none performs better than
the other consistently. However, for circuits with a large number of
qubits (e.g., 256 qubits), the Greedy Random Mapping performs
marginally better than the Greedy Deterministic Mapping.

VIII. Conclusions
In this paper, we have addressed an important problem in

distributed quantum computing. The problem is minimizing the
complexity of communication. Our main goal is to emphasize
that, in line with traditional parallel computing, we can reduce
the communication complexity more effectively if we create
algorithms specific to individual problems. We have demonstrated
our thesis with three different problems: QFT, Searching, and
SAT. We could not get the source code for any of the algorithms
published in the literature. As a result, we have created our own
generic randomized algorithm. The performance of this algorithm
has been compared with our solutions that are designed specific
to the problems. This comparison convincingly proves our thesis.
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