
Suppressing BGP Zombies with Route Status Transparency

Yosef Edery Anahory1, Jie Kong2, Nicholas Scaglione2, Justin Furuness2, Hemi Leibowitz3, Amir
Herzberg2, Bing Wang2, Yossi Gilad1

1School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
2School of Computing, University of Connecticut, Storrs, CT

3Faculty of Computer Science, The College of Management Academic Studies, Rishon LeZion, Israel

Abstract
Withdrawal suppression has been a known weakness of
BGP for over a decade. It has a significant detrimental
impact on both the reliability and security of inter-domain
routing on the Internet. This paper presents Route Status
Transparency (RoST), the first design that efficiently and
securely thwarts withdrawal suppression misconfigurations
and attacks. RoST allows ASes to efficiently verify whether
a route has been withdrawn; it is compatible with BGP as
well as with BGP security enhancements. We use simulations
on the Internet’s AS-level topology to evaluate the benefits
from adopting RoST. We use an extensive real-world BGP
announcements dataset to show that it is efficient in terms of
storage, bandwidth, and computational requirements.

1 Introduction

The Border Gateway Protocol (BGP) determines how packets
route between Autonomous Systems (ASes) on the Internet.
Despite its crucial role in facilitating Internet communication,
BGP is fragile, and when failures occur, they can cause
significant disruptions. Some failures are due to benign errors
and misconfigurations, while others are attributed to malicious
actions [29, 41]. Many of these issues are addressed by the
increasing adoption of the Resource Public Key Infrastructure
(RPKI) [11, 25, 33], which allows an IP prefix owner to
associate it with the ASes allowed to announce the prefix
through BGP. Furthermore, the networking community has
also devoted tremendous efforts to design and standardize
protocols for route authentication (i.e., beyond the origin),
most notably, BGPsec [6]. With route validation in place,
announcing routes with invalid sources or bogus links
becomes less of a problem for global Internet routing.

However, the authentication mechanisms do not solve the
problem of freshness. That is, how can an AS know whether
a BGP announcement has been withdrawn or not since it
was announced? This key problem is the root cause of stuck
routes, also known as “zombie” routes, where ASes choose

to route traffic through withdrawn routes because these ASes
are unaware that these routes have been withdrawn [15, 35].
This happens when some AS along the route withdraws an
announcement, but a downstream AS does not propagate the
withdrawal (intentionally or due to an error). The once valid
route keeps appearing “alive” to the following ASes, who may
opt to use it and export it further, accidentally misleading other
ASes. Since the zombie route was legitimate, it continues to
pass the route authentication checks even with RPKI and full-
fledged BGPsec. Zombie routes can cause disconnections
when an AS mistakenly sends traffic to a neighbor who no
longer has a valid route to the destination IP address (since
that route was withdrawn). Moreover, zombie routes can lead
to inefficient routing where an AS would think it uses a better
(e.g., cheaper or shorter) route to reach some destination,
but a downstream AS will route the traffic differently than
expected. In some instances, this misrouting has even led to
the creation of routing loops [30]. In many cases, withdrawal
suppression is attributed to benign errors rather than deliberate
attacks [15], illustrating the fragility of Internet routing.

Currently, the only proposed approach to solve this problem
is key rollover [39, 42], which requires route validation (i.e.,
BGPsec) to already be deployed. In key rollover, keys are
rotated periodically; as a result, signed routes have a limited
validity period and cannot be reused ‘forever’. Thus, after
a key rollover, the routes signed by the old key cannot be
authenticated by the new key. This means that a withdrawal
suppression can only be effective until the current keys are
rotated. However, key rollover requires a hefty operational
effort, since the AS’s BGPsec key pair needs to be updated,
a new certificate must be issued, and the old one revoked (if
the rollover occurs when the previous key is still valid).

In this work, we present Route Status Transparency
(RoST), a novel mechanism for mitigating withdrawal
suppression. RoST-adopting ASes publish cryptographically-
signed information about the routes they export to protect
their announcements against withdrawal suppression. Other-
RoST adopting ASes download and use this information to
verify whether any of the routes they receive were actually



withdrawn. Specifically, RoST uses the transitive attribute
capability to identify and monitor routes. Namely, every AS
in the path will generate a sequence of route IDs as the
announcement is distributed along the path. By combining
the transparent route status information with these route IDs,
each AS that performs validation based on RoST can check if
the announcements match the transparent information, and if
not, identify withdrawn routes.

RoST detects and limits the impact of BGP withdrawal
suppression to minutes, whether due to intentional attacks
or misconfigurations, and adds only a negligible overhead
to the BGP protocol. ASes that adopt RoST deploy a local
machine (an “agent”) that synchronizes with the route status
transparency reports and identifies withdrawn routes. The
agent machine performs the heavy lifting of validating these
reports and then configures the local BGP routers to withdraw
invalid routes. In contrast to key rollover, RoST can be
adapted with vanilla BGP to mitigate the zombie routes
phenomenon, thus circumventing the challenges involved in
the deployment of BGPsec and the costs of key rollover. We
evaluate RoST in terms of overhead using routing data from
multiple vantage points on the Internet and compare it with
key rollover.

In summary, this work addresses withdrawal suppression,
a fundamental problem in today’s Internet routing that will
persist even when route authentication mechanisms are fully
deployed. We design and evaluate the RoST protocol, the
first protocol that efficiently detects and mitigates withdrawal
suppression. RoST is compatible with the currently deployed
BGP, and we show how it can be deployed without requiring
changes to today’s routers.

2 Background

Route withdrawals and announcement suppression. A
BGP router can withdraw a route either explicitly by sending a
withdrawal announcement or implicitly by sending an updated
announcement. In Figure 1, we illustrate both explicit and
implicit withdrawals. The figure illustrates a scenario in
which AS 100 initially chooses AS 666 as its provider, and
thus AS 100 sends an announcement with prefix 1.2/16
and AS-path 100 to its provider, AS 666. Then, AS 100
decides to switch its provider to AS 300, so it sends an
explicit withdrawal announcement to AS 666. In an implicit
withdrawal, AS 100 sends a new announcement to AS 666
with an artificially inflated AS-path, 100-100-100, known
as ‘path prepending’. This makes the path from AS 100 to
AS 666 three-hop long, making the path from AS 100 to its
current provider, AS 300, more favorable (e.g., AS 200 will
route to prefix 1.2/16 through AS 300, instead of AS 666). A
withdrawal suppression happens when some AS on the route
fails to propagate a withdrawal message or an alternative
route (explicit/implicit withdrawal, respectively). This can be
unintentional due to misconfigurations or software bugs in

Figure 1: Illustration of explicit and implicit withdrawal
suppression attacks. The diagram highlights the sequence
of steps involved in each attack and the actions taken by
AS 666. Steps unique to explicit withdrawal suppression are
marked in yellow with a “b” label, and steps unique to implicit
withdrawal suppression are marked in purple with an “a” label.
Steps that are common to both scenarios are shown with a
combination of yellow and purple.

BGP routers, or intentional, for malicious purposes such as
to keep traffic flowing through a route with the attacker’s AS
(AS 666 in Figure 1).

Stuck or zombie routes. Measurement studies [15, 35]
using route beacons confirm that zombie outbreak happens
daily, which can cause traffic to follow undesirable and
unavailable paths, leading to network congestion, degraded
service quality, or even complete loss of connectivity.
Specifically, the analysis in [15] reveals that the impact
of zombie routes is influenced by the tier of the network
where the zombie route was detected, which has significant
implications. The authors demonstrate that zombie routes
detected within a Tier-1 AS can affect the majority of ASes. A
real-world example of this occurred on August 30, 2020, when
CenturyLink, which had acquired Level 3 Communications (a
Tier-1 AS), experienced a significant incident. According to a
report by Cloudflare [36], CenturyLink inadvertently applied
a firewall rule that blocked all internal BGP traffic, leading
to extensive outages across their network. What made this
incident particularly severe was the failure of affected routers
to issue BGP withdrawal messages. Without these messages,
external networks (including Cloudflare) continued to route



traffic through CenturyLink, unaware of the internal issues.
The outage lasted several hours, and many networks were
forced to manually reconfigure their systems to reroute traffic
away from CenturyLink/Level 3.

3 RoST Design

In this section, we detail the design of RoST. We start
with its goals (§3.1) and then present a high-level system
overview (§3.2). We then detail how RoST agents maintain
routes’ status (§3.3), how the routes’ status is made
transparent (§3.4), how agents track the status of these routes
(§3.5) and how routes advertisements are validated (§3.6).
A detailed pseudocode for the main RoST operations is
presented in Appendix A.

For simplicity, in this section we assume a single trusted
repository and refer to it in a singular form (“the repository”).
Later, in §7.2, we discuss how to extend it to support multiple
repositories and to overcome repository faults. Finally, when
we refer to AS-Paths, we write the path from left to right,
where the rightmost AS is the origin of the IP prefix.

3.1 Design Goals
RoST aims to detect and mitigate withdrawal suppression in
inter-domain routing on the Internet. It does not deal with
path manipulation attackers that may alter or spoof route
advertisements. Such attackers should be handled by path
authentication mechanisms [6, 32]. We design it to achieve
the following three desiderata:

• Efficiency, i.e., low computation, communication, and
storage overhead.

• Compatibility with BGP and future security
enhancement of BGP (e.g., BGPsec [6], BGP-iSec [32]).
Namely, it should be possible to deploy RoST without
extending or standardizing new routing protocols.

• Compatibility with BGP routers. That is, it should be
possible to mitigate withdrawal suppression by having
local RoST agent automatically issue commands to the
router through existing command line or application
interfaces rather than requiring specialized router
software or hardware support.

3.2 High-Level Operation
RoST detects withdrawal suppression by providing route
status transparency. We outline its operation following
Algorithm 1. Each adopting AS deploys a RoST agent,
which performs three main functions: (1) report the current
routes of the AS to a public repository (Algorithm 1, lines
6-7), (2) retrieve the current routes of other ASes from
the repository (Algorithm 1, lines 8–13), and (3) validate

Algorithm 1 High-Level Operations of RoST Agent
1: Input:
2: AgentAS: AS number for which the agent is responsible
3: BatchInterval: Time interval for periodic reporting
4: R: Trusted repository
5: procedure ROSTAGENT(AgentAS, BatchInterval, R)
6: // 1. Initialize asynchronous tasks
7: Event 1 - Reports local routes to R every BatchInterval
8: Event 2 - Subscribe to route updates from R
9: Event 3 - Listen for BGP update messages from the router

10: // 2. Handle incoming events
11: while true do
12: event←Wait for the next available event
13: if event is “Periodic Report Trigger” (Event 1) then
14: Report local routes to R
15: else if event is “Route Update from R” (Event 2) then
16: Validate impacted routes
17: if a route is invalid then
18: Propagate withdraw or alternative route
19: else if event is “BGP Update Message” (Event 3) then
20: Validate the new route using repository data
21: if the route is invalid then
22: Propagate withdraw or alternative route
23: Update route status before forwarding BGP message

advertised BGP routes without relying on propagation of
withdrawal announcements (Algorithm 1, lines 14–19).

Using a standalone agent that is separate from BGP routers
promotes simpler deployment because it does not require
replacing or updating existing BGP routers. Specifically,
when the agent detects a route that was withdrawn but the
withdrawal was suppressed, the agent instructs the BGP
routers of the AS to remove the withdrawn route using the
routers’ existing API.

To illustrate how RoST detects withdrawal suppression,
consider the scenario depicted in Figure 2. AS 4 has two
available routes to a prefix that originates at AS 1, either
via path 5-3-2-1 or 6-2-1. Assume that AS 4 chose to route
through AS 6 as that AS path is shorter. Suppose that at some
point, AS 2 decides to stop using AS 6 as a provider, and as
a result, AS 2 sends a withdrawal update message to AS 6;
however, AS 6 suppresses this withdrawal. This means that
AS 4 would continue to route traffic through AS 6 since it is
unaware of the withdrawal.

Using RoST, AS 4 can detect and mitigate this suppression.
That is, once AS 2 issues the withdrawal, its agent updates the
repository about the withdrawal. This allows AS 4’s agent to
learn about the withdrawal from the repository despite AS 6
suppressing it. To authenticate the information recorded at the
repository, RoST assumes a standard RPKI deployment. This
allows agents to sign the routes’ status information they make
transparent, and other agents to verify its authenticity. Given
the increasing adoption of RPKI, with most unique prefix-



Figure 2: High-level overview of RoST operations. AS1,
the origin AS, and AS2, the withdrawer, both perform the
protection role by ensuring that their routing information is up-
to-date and uploaded to the trusted repository when changes
occur. When AS2 switches providers from AS6 to AS3, AS6,
the old provider, continues to attract traffic using an outdated
route. AS4, a customer of AS6, takes on the validation role by
retrieving the updated route status from the trusted repository.
This allows AS4 to detect any withdrawal suppression by
AS6.

origin pairs already having valid RPKI records (54% [2]), we
believe that it will not hinder RoST’s adoption.

3.3 Tracking Route Status

An AS’s agent maintains the status of the AS’s routes using
vectors called Route Status Vectors (RSVs). Each RSV
represents the route updates to a specific IP prefix and whether
or not this route is active. That is, an RSV is in the form of:
(Prefix,RouteID,Status).

The agent updates the repository with batches of route
updates. These updates are identified using a RouteID that
consists of two counters, RouteID = (BatchID,PathID). The
BatchID counter identifies the batch number where that
update occurred, and the PathID counter indexes the specific
path update for the RSV’s prefix within that batch. This
design decision is based on our analysis of real-world route
announcements collected by public route collectors (see §4).
Our analysis shows that while the average number of path
changes per prefix remains under 20 per day, some prefixes
can experience more than 1 million route changes per day
(see Figure 5a). This can be caused by multiple reasons, such
as path prepending, provider change, or path finding [15].
By periodically sending batched updates, RoST minimizes
its space requirements: a burst of path changes would be
‘absorbed’ into one BatchID; PathID would reset (to 0) in the
next batch, which avoids the rapid counter increments if RoST
were to use a single counter. The PathID would increment
within a batch only if the route has changed and still active. If
the route is withdrawn, only the status field changes to invalid.

Every RoST agent maintains a set of RSVs per neighboring

AS, reflecting the routes that were announced to the specific
neighbor. We refer to this set as RSV-Out, and denote the set
of RSVs that the agent of AS x maintains for neighboring AS
y as RSV-Out(x,y). We refer to the pair (x,y) as the interface
between AS x and AS y. The RSV-Out(x,y) structure also
contains a BatchCounter, which is incremented periodically
at each batch interval. To illustrate, refer to step 1 in Figure 3,
where we present how the entries of RSV-Out(100,200) are
maintained at the end of batch 54 (i.e., BatchCounter is 54)
in five different scenarios:

1. Prefix 1.1/16, no changes during the current batch: This
prefix has an older BatchID (48) and PathID (1), meaning
that the route to this prefix has not changed since batch
48. The status of this route remains active (T).

2. Prefix 1.2/16, one route change: The BatchID has been
updated from 51 to 54, initialized with a new PathID (1).
This reflects that the route to this prefix has been updated
once in the current batch and remains active.

3. Prefix 1.3/16, withdrawn route: This prefix was
previously active (T), but its status has been changed
to withdrawn (F), i.e., the route has been withdrawn in
the current batch (BatchID 54 and PathID 0).

4. Prefix 1.4/16, multiple route changes: Similarly to the
case of prefix 1.2/16, but in this instance, there were
three different route change announcements within the
current batch, as indicated by the PathID of 3.

5. Prefix 1.5/16, withdrawn route after multiple changes:
This prefix resembles the scenario with prefix 1.4/16,
but the route has been withdrawn after two active route
announcements (PathID 2) within the current batch,
changing its status to withdrawn (F).

3.4 Making Routes’ Status Transparent
At the end of each batch interval, the agent updates the
repository about the routes that changed during that interval.
It generates for every RSV-Out a corresponding delta,
∆RSV-Out, and reports it to the repository. To illustrate, refer
to step 2 in Figure 3, where ∆RSV-Out(100,200) contains
all route status updates that were made to RSV-Out(100,200)
during batch 54. Specifically, ∆RSV-Out(100,200) contains all
the prefixes in RSV-Out(100,200) except prefix 1.1/16, since it
is the only prefix that has not changed during batch 54.

In addition, each ∆RSV-Out contains three other values:
(1) the batch counter, (2) a Merkle tree root hash committing
to all route updates (the leaves are the entries of the (updated)
RSV-Out), and (3) a signature over the batch counter, the
interface pair, and the Merkle root, signed by the AS’s private
key (based on the RPKI deployment assumption). The Merkle
tree commitment enables agents from other ASes to fetch
an authenticated subset of the ∆RSV-Out that only contains
updates relevant to the fetching agent, as we explain in §3.5.



Figure 3: The diagram illustrates the steps involved in RSV processing and distribution between ASes and the trusted repository.
AS 100 and AS 200 publish a ∆RSV-Out to the trusted repository, which contains updates for several prefixes. AS 400, which
monitors the interfaces (100, 200) and (200, 400), subscribes to 1.2/16 for those interfaces to receive updates. The trusted
repository sends ∆RSV-In when there are new updates, which AS 400 then merges with its existing RSV-In data. This ensures
that AS 400 has the most current and validated route statuses, protecting the network against the use of outdated or invalid routes.

3.5 Retrieving Route Transparency Data

To learn about route changes, agents receive updates about
routes from the repository. However, each agent only cares
about some of the RSVs, pertaining to the routes used by their
AS’s BGP routers. Thus, when a router chooses to use a route
to a specific prefix, the agent subscribes to updates about the
current RSVs for that prefix from all the ASes on the route’s
AS-Path. For example, if AS w uses a route with AS-Path
x− y− z, then the agent of AS w subscribes to RSVs of the
routes that z publishes to y, y publishes to x, and x publishes
to w, because suppression can occur in each of these hops.

To track these RSVs, the agents store them per interface;
we refer to them as RSV-Ins. To illustrate, observe AS 400
in Figure 3, which routes traffic to prefix 1.2/16 using the
AS-Path 400-200-100. As a result, AS 400 tracks the RSVs
to this prefix from AS 100 to AS 200 (in RSV-In(100,200)) and
from AS 200 to AS 400 (in RSV-In(200,400)).

To learn about RSVs updates, the agent sends a message
called ∆Subscribe to the repository, indicating for each prefix
which RSVs it is interested in. In response, the repository
provides the agent with the latest RSV-Ins according to
the subscription; it keeps the agent current using ∆RSV-In
messages whenever the relevant RSVs update. For example,
in Figure 3, AS 400 notifies the repository that it is interested
in the RSV of prefix 1.2/16 that AS 100 maintains for AS 200

and the RSV of prefix 1.2/16 that AS 200 maintains for AS
400 (shown in step 3 ). Before batch number 54, the BatchID
of the prefix 1.2/16 in RSV-In(100,200) at AS 400 was 51. AS
100 and AS 200 changed the route to 1.2/16 during batch
54 and 35 (respectively), and both ASes sent a ∆RSV-Out
reflecting this change (shown as part of step 2 ). Thus, the
repository sends two updates to the agent of AS 400 (based
on its subscription): ∆RSV-In(100,200) and ∆RSV-In(200,400),
with the updated RSVs (shown as part of step 4 ).

Using the ∆Subscribe request over querying for updates
each time allows agents to receive updates sooner without
repeatedly polling the repository. It is more efficient since
the agent sends ∆Subscribe only once after the BGP router
selects a new route.

Importantly, the repository attaches proofs to its updates
using the information recorded in the latest ∆RSV-Out. The
repository attaches the latest batch counter, the Merkle tree
root hash and signature from the latest ∆RSV-Out and an
inclusion proof for every RSV in the ∆RSV-In (i.e., the
neighboring nodes on the tree in the path from the relevant
leaf update to the root hash). The repository can compute
such proofs since it receives the entire ∆RSV-Out and thus
can recreate the entire Merkle tree. The agent, on the other
hand, only retrieves a subset of the ∆RSV-Out; it checks
the signature to verify the Merkle root and uses these
inclusion proofs to verify that the RSVs were indeed issued



Figure 4: This diagram illustrates Route Status Validation for prefix 1.1/16 across different ASes. AS 100 originates the
announcement and propagates it to AS 200, which in turn forwards it to ASes 300, 400. AS 200 later withdraws this prefix, but
AS 300 suppresses this withdrawal. The corresponding RSV-In entries for each AS show the status and identifiers for the prefix.
AS 400 detects the discrepancy between the announcement and the RSV-In received from AS 200 for the interface with AS 300.
It marks the announcement as invalid.

by the claimed AS. After verification, the agent updates the
corresponding RSV-In with the updated RSVs. Furthermore,
the agent must check if actions need to be taken to withdraw
a route that was suppressed; we discuss how an agent can do
it by interacting with a standard router interface in §6.

3.6 Route Status Validation

The agent validates routes it receives through BGP against the
information recorded in the repository. There are two triggers
for running the validation procedure: either when an agent
receives a route announced to its AS through BGP or when it
receives an update from the repository.

To validate a route for prefix p, the agent must check the
route against the relevant RSV-Ins records. To that end, RoST
adds a new transitive extended community attribute [5, 26,
40] to BGP announcements. This new attribute contains
a sequence of RouteIDs, where the BGP routers prepend
their (current) RouteID to this sequence of RouteIDs, before
forwarding an announcement. By doing so, agents that receive
an announcement can validate whether the announced route
is fresh, by comparing the RouteIDs in the transitive attribute
against the corresponding RouteIDs that were retrieved from
the repository in the relevant RSV-Ins.

For example, consider an origin AS w that announces to
neighboring AS x the AS-Path for prefix p for the first time
during batch number n. AS w would add to the announcement
the RoST’s transitive attribute containing a single RouteID,
(n,1). Assume that AS x decides to announce this route to
its neighbor, AS y, during batch number n′, and that AS x
has made two other changes to the route to prefix p during
batch n′. Thus, AS x would prepend RouteID = (n′,3) to the
proposed transitive attribute, i.e., the transitive attribute on the
announcement sent from AS x to AS y would be: (n′,3),(n,1).

To validate the route for the prefix p against its RSV,

the agent checks the repository’s data about the status of
the RouteIDs in p’s BGP announcement’s attributes. If at
least one of the interfaces along the AS-Path of the route is
not being tracked, the agent subscribes to updates from the
repository to make sure it receives the records for all RouteIDs.
If any of those routes’ status is withdrawn, or if there was a
later RouteID recorded for the same prefix (i.e., with a higher
BatchID or the same BatchID but a higher PathID), then it
considers that route withdrawn.

In Figure 4, we present route status validation for one route
of AS 400, where the prefix is 1.1/16 and the AS-Path is 300-
200-100. In the figure, the route withdrawal issued by AS 200
in batch 24 was dropped by AS 300 due to misconfiguration.
AS 400 will be able to learn that AS 200 has withdrawn
the routes since the status attribute in the RSV entry in
RSV-In(200,300) has been set to false.

4 Evaluation Overhead

In this section, we evaluate RoST’s overhead in terms of
storage, communication, and computation. We use the Internet
topology and traces from BGP routers to show that it is
feasible to deploy RoST in today’s Internet, considering the
number of ASes, their announcements, and route update rate.

Methodology. To ensure a comprehensive and realistic
evaluation of RoST, we use real-world BGP routing data
collected across six distinct months: February and August
of 2022, 2023, and 2024. We analyze data from Routing
Information Base (RIB) snapshots and BGP update messages
provided by RIPE NCC’s Routing Information Service (RIPE
RIS) [34]. RIPE RIS has multiple vantage points on the
Internet that have peering links to multiple ASes and provide
the full feed of their BGP traces and RIBs. We utilize RIB
snapshots (generated every 8 hours) and traces of BGP



20
22

/02

20
22

/08

20
23

/02

20
23

/08

20
24

/02

20
24

/08

0

5 ·105

1 ·106

Date

M
ax

im
um

ro
ut

e
ch

an
ge

s

24 hrs Max (month)
24 hrs Avg (month)
Standard Deviation

(a) Prefixes with the most daily
route changes.

20
22

/02

20
22

/08

20
23

/02

20
23

/08

20
24

/02

20
24

/08
0

10

20

30

40

50

Date
A

ve
ra

ge
ro

ut
e

ch
an

ge
s

5 min 15 mins 1 hr 24 hrs

(b) Average over different time
intervals.

Figure 5: Comparison of max and average route changes
aggregated across the RIPE-RIS vantage points.

Vantage Point #Prefixes RSV-In #Entries
IPv4 AS 51185 991,499 3,578,688
IPv6 AS 44085 220,074 1,078,736

Table 1: AS 51185 and AS 44085 are the RIPE VPs with the
maximum number of prefixes connectivity for IPV4 and IPv6
respectively. We show the number of RSV-In entries required
for each of them.

updates (batched every 5 minutes) from these vantage points
over the data collection month. We collected data from 55
vantage points and processed around 1010 BGP updates.

4.1 Storage
Each agent has two storage-related functionalities: (1) storing
information in RSV-Out vectors and (2) storing the RSV-In
entries from other ASes. The repository stores the full
RSV-Out vectors from all ASes.

Storage Overhead
Interfaces #ASes % RSV-Out RSV-In

Agent

1-10 (avg 2.14) 68,888 89.11% 22 MiB

65 MiB
11-50 (avg 22.27) 6,707 8.68% 0.23 GiB
51-200 (avg 76.23) 1,607 2.08% 0.80 GiB

201-639 (avg 257.95) 108 0.14% 2.7 GiB

Repository 496,910 118,031 100% 5.1 TiB 3 TiB

Table 2: Storage overhead of RoST with respect to the number
of interfaces each AS has. RSV-Out/RSV-In are calculated
for the average number of interfaces each group.

4.1.1 Agent Storage

In RSV-Out, every entry for an IPv4 IP prefix requires 89
bits1 and every IPv6 entry requires 209 bits2. Based on
RIPE RIS’s traces, we observed that the ASes that announced

1Prefix: 40 bits, BatchID: 32 bits, PathID: 16 bits and status: 1 bit.
2Prefix: 136 bits, BatchID: 32 bits, PathID: 16 bits and status: 1 bit.

20
22

/02

20
22

/08

20
23

/02

20
23

/08

20
24

/02

20
24

/08
0

5

10

15

Date

R
at

e
C

ha
ng

e
(P

re
fix

/S
ec

)

5 min 15 mins
1 hr 24 hrs

Figure 6: Average route updates per second for different
batch sizes (dividing the average ∆RSV s size by the batch
interval length). Across all sample dates, the average rates of
changes per prefix were 5.32/s, 4.29/s, 3.33/s, and 1.67/s for
the 5min, 15min, 1hr, and 24hrs intervals, respectively.

the maximum number of prefixes have announced 991,499
prefixes for IPv4 and 220,074 prefixes for IPv6, see Table 1.
We follow a conservative approach and assume that RIPE
RIS’s traces do not contain all prefixes, since some prefixes
announced to each neighbor might not always be visible to
RIPE RIS’s vantage points. Hence, we round these numbers
to 1M IPv4 prefixes and 250K IPv6 prefixes. Furthermore, we
assume a worst-case scenario, in which every RSV-Out has
entries for all of these prefixes. Thus, by multiplying entry
size× #prefixes, we estimate that the size of a single RSV-Out
is 16.83MiB (10.6MiB for IPv4 plus 6.23 MiB for IPv6).

Each agent creates an RSV-Out for every neighboring AS.
Based on the RIPE RIS traces, we found that the average
number of interfaces per AS is 6.43 and that 89.11% of
the ASes have at most 10 interfaces, see Table 2. Based
on the aforementioned size of a single (worst-case scenario)
RSV-Out, we get that for the average AS the storage size
is 106.76MiB (16.84MiB× 6.43) and for ASes with 10
interfaces, the storage size is 168.39MiB. For ASes with the
maximum number of interfaces observed, i.e., 639 interfaces,
the storage size is 10.51GiB.

The agent is also responsible for retrieving and maintaining
RSV-In associated with the interfaces of the other ASes
appearing in the “best routes” of each of its prefixes. To
quantify the expected overhead, we count for each of the
991,499 IPv4 prefixes and 220,074 IPv6 prefixes the number
of interfaces based on their AS-paths.

We observe that in such a worst-case scenario, any agent
would need to process 3,578,688 entries for IPv4 and
1,078,736 entries for IPv6. By multiplying each of them with
their corresponding entry size (see RSV-Out entry size for
IPv4 and IPv6, 89 and 209 bits respectively, see above), we
get 65MiB of storage, which can easily fit in a commodity
agent machine’s memory; see Table 2 (RSV-In column). Note
that this number is identical to all agents because it does not
depend on the number of interfaces.



4.1.2 Repository Storage

There are two contributing components to the repository’s
storage requirement: (1) storing all RSVs from each AS in the
network and (2) storing the prefixes that an AS validator
is interested in receiving route updates from for each of
the interfaces. We aggregate the cost for each AS given the
number of interfaces there are on the Internet, and assuming
the highest-cost scenario in which every AS announces a
route to every prefix announced on the Internet to each of
its neighbors. We conclude that the repository would need to
store 8.1 TiB, which is feasible even under the demanding
assumption above.

4.2 Communication

We quantify the increase in BGP update length due to adding
RoST’s identifying tags (encoded as transitive BGP attributes)
and the bandwidth consumption when ASes exchange ∆RSVs
with the repository.

BGP update length overhead. Each BGP announcement
in our protocol must include a new transitive attribute, the
RouteIDs. This attribute slightly increases the size of BGP
messages. To quantify this increase, we analyzed the routing
table from a RIPE-RIS route collector (rrc00) using the
BGPdump tool on August 1st, 2024. The results show that
the average AS-path length for IPv4 is 3.86 hops (when
excluding AS path prepending). For each hop on the route,
RoST encodes its identifier as a 7B attribute (1B for the length
and 6B for BatchID and PathID). This 27B increase represents
a modest increase compared to the average BGP update length,
especially considering that a BGP update message is allowed
up to a maximum size of 4096B [37].

Bandwidth overhead. Agents generate ∆RSVs at each
batch containing route updates, and agents at other ASes
periodically fetch and validate announcements they receive
against these vectors. To evaluate RoST’s bandwidth
overhead, we measure the number of prefixes that experienced
route changes at different batch intervals (5 minutes, 15
minutes, 1 hour, and 24 hours). The shorter the batch interval,
the faster RoST would be able to react to withdrawal
suppression, but the greater the bandwidth overhead. This
is because a route update requires a single ∆RSV entry per
batch, regardless of the number of updates within that batch
and whether it was due to withdrawal or path modification.

We use the route updates observed from RIPE-RIS vantage
points through six different months February and August
2022, 2023 and 2024. For each vantage point, we calculate
the number of prefixes that experienced route changes within
the different batch intervals we consider. Figure 6 illustrates
the frequency of route changes; we use this data to calculate

the bandwidth cost of sending and receiving updates from the
repository.

4.2.1 Agent Communication

Bandwidth overhead for submitting ∆RSVs. Each AS
periodically publishes ∆RSV to the repository. As shown
in Figure 6, ∆RSV should reflect average changes between
1.67 to 5.32 prefixes per second, depending on the interval
length. The bandwidth overhead for a specific agent is also
proportional to the number of interfaces its AS has, since any
route update requires updating the ∆RSV for each interface.
In Table 3 we can see the average bandwidth for each category
of ASes and each different batch. Even for ASes in the
category with the maximum number of interfaces (201-639),
the average bandwidth consumption is very low, at only
122.13 Kbps even when batch interval is 5 minutes.

Bandwidth overhead for fetching ∆RSVs from the
repository. A RoST agent synchronizes with the repository
to obtain the latest route updates (∆RSVs). Agents only
request updates for active routes within their ASes to
minimize bandwidth costs. The average cost per agent is
negligible 0.21 Kbps for 5 minute intervals (see Table 3).
To derive the repository’s cost, we sum across all ASes and
get 25.12 Mbps which are more than reasonable costs for a
regular server with good Internet connection and negligible
compared to the overall response.

The response bandwidth is more significant since it
includes a Merkle tree inclusion proof for each updated entry.
Each entry contains 89 bits for the RSV regular entry, plus
an additional 640B for the Merkle proof, assuming SHA-256
as the hash function, and a tree with depth 20 to support the
1M IP prefixes announced on the Internet. To estimate the
number of entries of a response, we refer again to the results
in Figure 6, which represent the average number of prefix
changes per second.

It is important to note that while these figures represent the
prefixes that experienced route changes, the actual number
of responses sent by the repository depends on how many
interfaces have reported these changes. In the worst-case
scenario, all interfaces along the path are impacted and
report the changes. As mentioned earlier, on average, non-
prepending paths have a length of 3.86 ASes. So the average
bandwidth under these assumptions will be around 14KB/s
(route change/sec× path length× entry size) for 5 minutes
of batch interval, which, as explained for the ∆RSV-Out
bandwidth, is acceptable for most machines. The overall
response cost for the repository, considering a total of 100K
ASes across the entire Internet, is between 7.9-12.63 Gbps
(see Table 3 for exact results). We expect overhead to be much
less than this, however, modern server and network hardware
(e.g., Cisco [12]) can support such data transfer rates.



Bandwidth Overhead

Interf. ASes
5min 15min 1hr

∆RSV-Out ∆Requests ∆RSV-In ∆RSV-Out ∆Requests ∆RSV-In ∆RSV-Out ∆Requests ∆RSV-In

Agent

1-10 89.11% 1.01 Kbps

0.21 Kbps 106.97 Kbps

0.82 Kbps

0.17 Kbps 86.26 Kbps

0.63 Kbps

0.13 Kbps 66.96 Kbps
11-50 8.68% 10.54 Kbps 8.50 Kbps 6.60 Kbps

51-200 2.08% 36.09 Kbps 29.11 Kbps 22.59 Kbps
201-639 0.14% 122.13 Kbps 98.49 Kbps 76.45 Kbps

Repository 496,910 118,031 235.28 Mbps 25.12 Mbps 12.63 Gbps 189.73 Mbps 20.25 Mbps 10.18 Gbps 147.27 Mbps 15.72 Mbps 7.90 Gbps

Table 3: RoST bandwidth, showing 5-minutes, 15-minutes, and 1-hour intervals.

Computational Overhead

Interf. ASes
5min 15min 1hr

∆RSV-Out ∆RSV-In ∆RSV-Out ∆RSV-In ∆RSV-Out ∆RSV-In

Agent

1-10 89.11% 7,133 h/s + 2 sig/5min

410 h/s + 21 vfy/s

2,377 h/s + 2 sig/15min

331 h/s + 17 vfy/s

594 h/s + 2 sig/1hr

257 h/s + 13 vfy/s
11-50 8.68% 74,233 h/s + 22 sig/5min 24,744 h/s+ 22 sig/15min 6,186 h/s + 22 sig/1hr

51-200 2.08% 254,100 h/s + 76 sig/5min 84,700 h/s + 76 sig/15min 21,175 h/s + 76 sig/1hr
201-639 0.14% 859,833 h/s + 258 sig/5min 286,611 h/s + 258 sig/15min 71,653 h/s + 258 sig/1hr

Repository 496,910 118,031 0 h/s + 0 sig/5min 48,475,803 h/s + 0 vfy/s 0 h/s + 0 sig/15min 39,090,450 h/s + 0 vfy/s 0 h/s + 0 sig/1hr 30,342,937 h/s + 0 vfy/s

Table 4: RoST Computational Overhead, showing 5-minute, 15-minute, and 1-hour intervals. MacBook Pro with a 3.2 GHz M1
processor can generate 3 Million SHA-256 h/s, 25K RSA-vfy/s and 100 RSA-sig/s per core. Legend: h/s stands for hashes per
second, sig for signature, and vfy for verification.

4.3 Computation
We next analyze the overhead associated with processing
∆RSVs at the agent and the repository. The steps that
dominate the computational costs are: agents generating
∆RSV-Outs (§4.3.1), repository handling updates and
requests (§4.3.2), and ASes handling ∆RSV-Ins from the
repository (§4.3.3).

4.3.1 ASes Uploading Changes to the Repository

Generating a ∆ vector involves three main operations:

1. Selecting entries updated in current batch: This can be
performed in advance as entries are updated, incurring
negligible computational overhead.

2. Calculating the Merkle root: A full RSV contains 1M
entries per interface, which results in around 2M hashes
per interface.

3. A signature that authenticates the Merkle root with the
version and the interface.

The overall average hash rate for agents with the largest
number of interfaces sending updates every 5 minutes, results
in less than 1M hash/s (859,833-for all numbers, see Table 4;
∆RSV-Out columns). A MacBook Pro with a 3.2 GHz
M1 processor can generate 3 million SHA-256 hashes per
second per core (the computation is also parallelizable with
multiple cores). Thus, the computational overhead for the
root calculation should be reasonable for agent machines.
A signature authentication needs to be made for every
∆RSV-Out sent. Assuming the worst-case scenario in which

all interfaces were involved in at least one route change at
each batch, the number of signatures that need to be made
equals the total number of interfaces. Majority of ASes have
between 0-10 interfaces (with an average of 2). Assuming
that they refresh the repository every 5 minutes, this would
result in≈ 2 signatures every 5 minutes. The same MacBoook
used for hash/s benchmarking is capable of performing 100
RSA signatures per second, which would be enough even for
AS with higher number of interfaces (639) refreshing every 5
minutes.

4.3.2 Repository Handling Updates and Requests

The repository first validates and stores each agent’s updates.
Since messages are sent using a TLS session, the validation
process is minimal. Updates are stored by the repository
which requires targeted reads and writes in the DB. We know
from the bandwidth evaluation that if all 118,031 agents are
sending updates every 5 minutes, this results in 235Mbps
(i.e., 29MBps as noted in Table 3). The majority of common
disks can read and write at a speed of 300 - 500 MBps,
thus, this adds zero I/O latency. The repository also needs
to generate ∆RSV-Ins. In this step, the repository needs to
generate an inclusion proof for each of the entries that had a
route change. If all agents are being updated every 5 minutes
(21 entries will need to be generated per second per agent,
route change/sec (Figure 6)×3.86 avg path length), then a
total of ≈2.4M entries per second will need to be processed.
Each entry requires a Merkle proof containing ≈20 entry
hashes (Figure 6). In total, we get a total of 48M h/s. These
costs can be improved by caching hashes of already computed
entries, but even without such improvement, the overhead is



feasible. (E.g, using 18 cores of CPUs, ≈ 54M h/s, at its full
computational power.)

4.3.3 ASes Handling New Updates from the Repository

The repository pushes new entry updates in the form of
∆RSV-Ins to agents, and agents need to process them. The
operations that dominate this process are the verification of
authenticity and integrity of the data. The agents should
first verify the signature (Merkle root+version+interface).
On average, as explained above, if the agent gets updated
every 5 minutes, then 21 entries are received per second.
Assuming the worst case where each entry belongs to a
different interface, this requires 22 verifications/s (Mac M1
Pro (1 core) can compute ≈ 25K verifications/s for RSA).
The agent also needs to verify all entries (21 for the same
scenario) against the set of hashes included in the Merkle
proof, which requires ≈20 hashes per entry; this results in
410 h/s, which remains minimal. For detailed numbers for
different intervals, see the agents’ ∆RSV-In column Table 4.

4.4 Comparison to Key Rollover
Key Rollover operates in a different fashion than RoST. It
relies on BGPsec and rotates its signing key often, making
sure zombie routes become invalid. However, this procedure
requires refreshing all routes an AS advertises since they
were all signed by the BGPsec signing key. Thus, if key
rollover is ubiquitously adopted, all routes on the Internet
would need to be refreshed often . Each provider, for example,
that announces routes for all prefixes to its customers, would
need to refresh about 1.2M routes per customer, resulting
in major computational and communication costs. RoST, in
comparison, makes routing status transparent and available to
agents in order to detect zombie routes (rather than proactively
periodically revoking all routes). Thus, its overhead is much
smaller. It only requires 258 signatures (on average) for the
ASes with the higher number of interfaces when its agent
submits a new RSV-Out (Table 2). Therefore, the agent can
refresh its routing data at the repository at a much higher rate
than key rollover may be invoked, which results in a shorter
withdrawal suppression exposure interval.

5 Benefits Under Partial Adoption

Deploying BGP mechanisms takes effort and usually happens
gradually over time. Thus, it is imperative to propose
mechanisms that are simple and backward compatible, but
also provide benefits even under partial adoption. RoST is
designed with this mindset, providing a direct incentive for
adopting ASes. An AS that adopts RoST lets other adopters
detect when its own announcements are suppressed, which
helps the adopter ensure its routing preferences and business
decisions are executed. Though without full adoption, RoST

0 20 40 60 80 10
0

0

50

100

Partial RoST Adoption (%)

Z
om

bi
e

A
Se

s
(%

) Lumen AS 3356
Arelion AS 1299
Cogent AS 174
GTT AS 3257

PCCW AS 3491

Figure 7: Impact of RoST in partial adoption on all Internet
ASes when Tier-1 ASes suppress withdrawals. (Error bars
mark standard deviation.)

cannot guarantee detection of all withdrawal suppressions, its
detection rate increases with the adoption rate.

To illustrate RoST’s benefits, consider the scenario depicted
in Figure 2, but assume that initially, only AS 4 adopts RoST.
First, observe that AS 2 is now incentivized to adopt RoST
because it would allow AS 4 to detect that AS 6 continues
to attract traffic designated to AS 2 using an outdated route,
which AS 2 wants to prevent. Second, once AS 2 adopts
RoST, AS 4 can detect this withdrawal suppression even
though ASes 2 and 4 are the only adopters.

5.1 Evaluation
To evaluate the impact of partial adoption, we used the
BGPy simulator [16], which allows simulating routes on
the Internet’s AS-level topology. We use a snapshot of the
Internet topology from January 2025 from CAIDA [9]. We
simulated the following scenario: a prefix is announced
by a RoST-adopting AS, which then explicitly withdraws
that announcement, while some Tier-1 AS suppresses the
withdrawal. We then count the number of ASes that kept
the withdrawn route active (i.e., use a zombie route). We
make this measurement under different RoST-adoption rates
across all Internet ASes, and assign different Tier-1 ASes
the suppressor role. We use Tier-1s as suppressors in our
simulations since they have the most customers, and therefore,
intuitively, they should have the highest impact.

Figure 7 illustrate the impact of adopting RoST on other
ASes on the Internet. We repeat the simulation for five
different Tier 1 ASes as suppressors, where the adopting ASes
are selected uniformly at random for each adoption rate and
execution. Each data point in the graph is the average of 1,000
executions, each time with a different origin (error bars mark
the 95% confidence interval). The graph shows the number of
zombie ASes (i.e., ASes choosing the withdrawn route, y-axis)
monotonically decreases with the rate of adopters (x-axis).
Moreover, this benefit shows as soon as ASes begin adopting
(in contrast to some interdomain routing mechanisms that
require near-ubiquitous adoption to provide benefits like
BGPsec or key rollover that is built on top of it). Lastly, we



notice that the number of non-zombie ASes is greater than
the number of adopters, which illustrates the collateral benefit
of adopting RoST. Namely, by adopting RoST and filtering
zombie routes, the AS may also indirectly protect others since
it would not announce the withdrawn route to them.

6 Compatibility with BGP Routers

We now describe how to support RoST on today’s routers,
without any modification to router software or hardware.
Specifically, we describe how the RoST agent of an AS
(external to the AS’s routers, but with credentials to configure
them) can: (1) attach the RouteIDs to announcements
that the AS exports, and (2) filter withdrawn routes. We
illustrate performing these operations on Cisco routers
using their standard command interface, but this approach
is compatible with devices from other common vendors (e.g.,
Juniper). Specifically, support for the BGP transitive extended
community attribute is widespread [17] and includes the most
common routers (such as Cisco [1] and Juniper [22] routers).
A library such as Netmiko [8] allows automating interaction
with routers for applying these commands. Of course,
a complete implementation would need to provide fault
tolerance, handling cases where an agent or the repositories
fail, e.g., by defaulting to the standard BGP behavior.

6.1 Attaching RouteIDs
The agent needs to verify the RouteIDs of every BGP
announcement, and if valid, the agent adds an additional
RouteID to the community attribute before the announcements
are propagated. To that end, we configure the BGP router to
send BGP event logs to the agent:

logging host <agent -ip>

These logs are parsed by the agent to detect when new
BGP routes are announced. To ensure that no routes
are automatically advertised until the agent completes the
validation and updating of the RouteIDs, we configure the
router to suppress all routes by default in the outbound
direction [14]:

# Block all routes from being advertised
ip prefix -list <prefix_list_name > permit 0.0.0.0/0 le 32
route -map <route_map_name > deny
match ip address prefix -list <prefix_list_name >

neighbor <neighbor_ip > route -map out <route_map_name >

The above snippet shows how to suppress all prefixes
(0.0.0.0/0 le 32) from being advertised to some specific AS
(neighbor_ip). To attach a RouteID to an exported route,
first we need to allow attaching extended community to
advertisements with the neighbor (if not already enabled):

# Configure Neighbor to Send Extended Communities
router bgp <agent_AS_number >

neighbor <neighbor_ip > send -community extended

Then, we can use Netmiko to dynamically attach a RouteID
to an advertisement via the following router command:

set extcommunity rt <routeid >

6.2 Filtering Withdrawn Routes

The other functionality that RoST requires is to withdraw
routes that the agent detects as withdrawn, even though the
explicit/implicit withdrawal was suppressed. Thus, the agent
needs to instruct the router to remove a specific (withdrawn)
route from the Local RIB, which will cause the router
to choose a new best route. Cisco supports this with the
following command:

# Defines a prefix list to allow specific IP prefixes
ip prefix -list REMOVE permit <ip-prefix >
# Remove the routes matching the REMOVE prefix list
clear ip bgp <neighbor -ip> soft in prefix -list REMOVE

7 Deployment Considerations

We next discuss privacy and fault tolerance challenges in
deploying RoST.

7.1 Privacy

Since RoST is a transparency system, it inventively reveals
information about the status of routes ASes advertise. Some
ASes might be less willing to share this information, at least
for some of their neighbors, although it will help ensure
that their announcements don’t get suppressed. For example,
some ASes might not want to expose (specific) paying
customers. However, we argue that RoST’s impact on privacy
is limited in practice. The information made transparent by
RoST is on par with what is available through existing or
proposed BGP mechanisms. Moreover, a significant portion
of this information is already inferred and made public
today, for example, by services like RIPE RIS, which we
used as part of our evaluation. Furthermore, many of the
relationships between ASes can be deduced (explicitly or
implicitly) from other BGP-related protocols. For example,
RPKI reveals ASes’ prefixes (via ROAs) and customer-
provider relations (via resource certificates), and the latter can
also be deduced from proposed mechanisms such as Only-
To-Customer (OTC) [3] and Autonomous System Provider
Authorization (ASPA) [4].

That said, some ASes may still decide to withhold some
of their route status information, either by only sharing some
of the prefixes they can reach through a neighbor or even
completely the fact that they peer with that neighbor. Luckily,
this does not impact RoST beyond protecting the withheld
routes. It only means that the withholding ASes deny other
ASes the opportunity to detect suppression of those routes.



7.2 Repository Faults

So far, we described RoST with one repository, creating a
single point of failure. In practice, however, we envision
a deployment with multiple repositories operated by
independent entities. This not only improves the scalability
and robustness of the system but allows for mitigating the
impact of a malicious repository that selectively hides status
updates for some routes (note that since the agent updates
are signed, the repository cannot generate fake updates).
Such a deployment may also piggyback on the existing BGP
repositories, such as the RPKI repositories maintained by
RIRs, to maintain RoST’ information.

A simple approach for running RoST with multiple
repositories is to have agents send ∆RSV-Out updates to
all repositories. Agents then receive updates from multiple
repositories, ensuring that even when some repositories are
down (e.g., due to a major outage) or censor the status
for specific routes, the agent will retrieve this information
from another repository. This approach ensures all (honest)
repositories will have their data without the need to
synchronize repositories (and it is the sender’s interest to
make sure their data is stored at the repository, §5).

Facilitating efficient synchronization across the repositories
could save the agent communication costs from the previous
solution Such synchronization may use Byzantine Fault
Tolerance (BFT) protocols to ensure that all repositories
hold the same route statuses despite malicious repositories.
Further, the repositories can take turns being the leader in the
BFT protocol to ensure a malicious repository cannot censor
route status updates [10, 23]. Lastly, BFT protocols create a
certificate for the data after repositories reach consensus. This
allows agents to update from one repository and check the
certificate to ensure other repositories have the same updates.

8 Related Work

Significant effort has been devoted to improving the security
of interdomain routing [7, 18, 20, 31, 38]. Although not
all proposed mechanisms can be used immidiately with
currently deployed BGP, the increasing widespread adoption
of RPKI [25] is promising since RPKI is a cornerstone for
other cryptography-based mechanisms. Specifically, RPKI
enables origin validation [11, 19, 24, 27, 33] against prefix
hijack attacks, where an attacker advertises a false origin
for a prefix to hijack traffic intended for the real origin.
BGPsec [28] builds on RPKI to add signatures on route
advertisements, providing route authentication that protects
against bogus paths advertised with the correct origin.
Recently, the IETF published other drafts for mechanisms that
aim to increase routing reliability and security. For example,
the Only-To-Customer (OTC) [3] transitive BGP path attribute
defines a mechanism against route leaks, and the Autonomous
System Provider Authorization (ASPA) [4] extends RPKI’s

origin validation to check ASes beyond the first hop [13].
However, none of the above security mechanisms addresses

withdrawal suppression. Approaches that reduce router
misconfigurations and software bugs, e.g., through better
policy specification, router design, and troubleshooting
tools [21, 29], can help reduce the chance of accidental
withdrawal suppression, but they require adoption at the
suppressing AS rather than the victim. The proposed solution
to withdrawal suppression is key rollover [39, 42], which
requires route authentication (e.g., via BGPsec). It incurs
high operational costs, as well as significant computation
and communication overheads from rotating keys often, as
discussed earlier in §1. As a result, key rollover cannot operate
at short timescales to quickly mitigate withdrawal suppression.
In contrast, RoST addresses withdraw suppression by
leveraging RPKI to have ASes sign route status data and
publish it, requiring no change to RPKI and not relying on
a route authentication mechanism. Furthermore, RoST is
compatible with BGP and requires no change to BGP routers.

9 Conclusion

In this paper, we presented RoST, an efficient and practical
protocol designed to defend against withdrawal suppression.
RoST can integrate with current routing hardware by using
standard APIs and is thus readily deployable. Further, we
showed through simulations that RoST provides benefits even
to early adopters. We evaluated RoST’s overhead based on
real-world routing data and showed RoST incurs reasonable
storage, compute, and network costs and can thus mitigate
withdrawal suppression at much shorter timescales compared
to the key rollover alternative (which also relies on BGPsec).

10 Acknowledgments

We thank our shepherd, Oliver Hohlfeld, and the anonymous
reviewers for their thoughtful comments, suggestions, and
feedback. This work was supported by grant no. 2022701
from the United States-Israel Binational Science Foundation
(BSF), by the Research Authority Fund of the College of
Management Academic Studies, Rishon LeZion, Israel, by
grants 2247810, 2410268, and 2149765 of the National
Science Foundation, and by Dr. Herzberg’s endowment from
Comcast. The opinions expressed in the paper are those of the
researchers and not of their institutions or funding sources.

References

[1] Cisco ios bgp command reference. https://www.ci
sco.com/c/en/us/td/docs/ios/12_2s/feature/
guide/fsnextcl.html.

[2] RPKI Monitor - Route Origin Validation. https://rp
ki-monitor.antd.nist.gov/ROV. Accessed: date.

https://www.cisco.com/c/en/us/td/docs/ios/12_2s/feature/guide/fsnextcl.html
https://www.cisco.com/c/en/us/td/docs/ios/12_2s/feature/guide/fsnextcl.html
https://www.cisco.com/c/en/us/td/docs/ios/12_2s/feature/guide/fsnextcl.html
https://rpki-monitor.antd.nist.gov/ROV
https://rpki-monitor.antd.nist.gov/ROV


[3] Alexander Azimov, Eugene Bogomazov, Randy Bush,
Keyur Patel, and Kotikalapudi Sriram. Route Leak
Prevention and Detection Using Roles in UPDATE and
OPEN Messages. RFC 9234, May 2022.

[4] Alexander Azimov, Eugene Uskov, Randy Bush, Keyur
Patel, Job Snijders, and Russ Housley. A Profile
for Autonomous System Provider Authorization.
Internet-Draft draft-ietf-sidrops-aspa-profile-07,
Internet Engineering Task Force, January 2022. Work
in Progress.

[5] Tony J. Bates and Enke Chen. An Application of
the BGP Community Attribute in Multi-home Routing.
RFC 1998, August 1996.

[6] Steven Bellovin, Randy Bush, and David Ward. Security
Requirements for BGP Path Validation. RFC 7353,
August 2014.

[7] Kevin Butler, Toni R. Farley, Patrick McDaniel, and
Jennifer Rexford. A survey of BGP security issues and
solutions. Proceedings of the IEEE, 98(1):100–122,
2010.

[8] Kirk Byers. Netmiko - multi-vendor library to simplify
paramiko ssh connections to network devices, 2024. ht
tps://github.com/ktbyers/netmiko.

[9] CAIDA. The CAIDA AS Relationships Dataset, 2025-
01-05. https://www.caida.org/catalog/datase
ts/as-relationships/.

[10] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance. In OSDI, volume 99, pages 173–186,
1999.

[11] Taejoong Chung, Emile Aben, Tim Bruijnzeels,
Balakrishnan Chandrasekaran, David Choffnes, Dave
Levin, Bruce Maggs, Alan Mislove, Roland van
Rijswijk-Deij, John Rula, and Nick Sullivan. RPKI
is Coming of Age: A Longitudinal Study of RPKI
Deployment and Invalid Route Origins. In Proc. of
IMC. ACM, 2019.

[12] Cisco Systems. Unified computing system adapters
white paper. https://www.cisco.com/c/en/us/pr
oducts/collateral/interfaces-modules/unifi
ed-computing-system-adapters/whitepaper-c
11-741550.html, 2024. Accessed: 2024-09-12.

[13] Avichai Cohen, Yossi Gilad, Amir Herzberg, and
Michael Schapira. Jumpstarting BGP security with path-
end validation. In Proc. of ACM SIGCOMM, pages
342–355. ACM, 2016.

[14] Extreme Networks. Extreme networks article detail.
https://extreme-networks.my.site.com/Extr

ArticleDetail?an=000082826, 2024. Accessed:
2024-09-12.

[15] Romain Fontugne, Esteban Bautista, Colin Petrie,
Yutaro Nomura, Patrice Abry, Paulo Gonçalves,
Kensuke Fukuda, and Emile Aben. BGP zombies:
An analysis of beacons stuck routes. In Passive and
Active Measurement: 20th International Conference,
PAM 2019, Puerto Varas, Chile, March 27–29, 2019,
Proceedings 20, pages 197–209. Springer, 2019.

[16] Justin Furuness, Cameron Morris, Reynaldo Morillo,
Amir Herzberg, and Bing Wang. Bgpy: The bgp python
security simulator. In Proceedings of the 16th Cyber
Security Experimentation and Test Workshop, CSET ’23,
page 41–56, New York, NY, USA, 2023. Association
for Computing Machinery.

[17] Yossi Gilad, Tomas Hlavacek, Amir Herzberg, Michael
Schapira, and Haya Shulman. Perfect is the enemy
of good: Setting realistic goals for BGP security. In
Proceedings of the 17th ACM Workshop on Hot Topics in
Networks, HotNets 2018, Redmond, WA, USA, November
15-16, 2018, pages 57–63, 2018.

[18] Amir Herzberg, Matthias Hollick, and Adrian Perrig.
Secure Routing for Future Communication Networks
(Dagstuhl Seminar 15102). Dagstuhl Reports, 5(3):28–
40, 2015.

[19] Tomas Hlavacek, Haya Shulman, Niklas Vogel, and
Michael Waidner. Keep your friends close, but your
routeservers closer: Insights into rpki validation in
the internet. In Proceedings of the 32nd USENIX
Conference on Security Symposium, SEC ’23, USA,
2023. USENIX Association.

[20] G. Huston, M. Rossi, and G. Armitage. Securing BGP:
A literature survey. IEEE Communications Surveys &
Tutorials, 13(2):199–222, 2011.

[21] Vinit Jain and Brad Edgeworth. Troubleshooting BGP: A
Practical Guide to Understanding and Troubleshooting
BGP. Cisco Press, 2016.

[22] Juniper Networks. BGP communities and extended
communities match conditions overview. https://
www.juniper.net/documentation/us/en/softwa
re/junos/routing-policy/bgp/topics/conce
pt/policy-bgp-communities-extended-commu
nities-match-conditions-overview.html, 2024.
Accessed: 2024-09-12.

[23] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: speculative
byzantine fault tolerance. In SOSP, pages 45–58, 2007.

[24] APNIC Labs. Rpki, 2023.

https://github.com/ktbyers/netmiko
https://github.com/ktbyers/netmiko
https://www.caida.org/catalog/datasets/as-relationships/
https://www.caida.org/catalog/datasets/as-relationships/
https://www.cisco.com/c/en/us/products/collateral/interfaces-modules/unified-computing-system-adapters/whitepaper-c11-741550.html
https://www.cisco.com/c/en/us/products/collateral/interfaces-modules/unified-computing-system-adapters/whitepaper-c11-741550.html
https://www.cisco.com/c/en/us/products/collateral/interfaces-modules/unified-computing-system-adapters/whitepaper-c11-741550.html
https://www.cisco.com/c/en/us/products/collateral/interfaces-modules/unified-computing-system-adapters/whitepaper-c11-741550.html
https://extreme-networks.my.site.com/ExtrArticleDetail?an=000082826
https://extreme-networks.my.site.com/ExtrArticleDetail?an=000082826
https://www.juniper.net/documentation/us/en/software/junos/routing-policy/bgp/topics/concept/policy-bgp-communities-extended-communities-match-conditions-overview.html
https://www.juniper.net/documentation/us/en/software/junos/routing-policy/bgp/topics/concept/policy-bgp-communities-extended-communities-match-conditions-overview.html
https://www.juniper.net/documentation/us/en/software/junos/routing-policy/bgp/topics/concept/policy-bgp-communities-extended-communities-match-conditions-overview.html
https://www.juniper.net/documentation/us/en/software/junos/routing-policy/bgp/topics/concept/policy-bgp-communities-extended-communities-match-conditions-overview.html
https://www.juniper.net/documentation/us/en/software/junos/routing-policy/bgp/topics/concept/policy-bgp-communities-extended-communities-match-conditions-overview.html


[25] Matt Lepinski and Stephen Kent. An Infrastructure to
Support Secure Internet Routing. RFC 6480, February
2012.

[26] Tony Li, Ravi Chandra, and Paul S. Traina. BGP
Communities Attribute. RFC 1997, August 1996.

[27] Weitong Li, Zhexiao Lin, Mohammad Ishtiaq Ashiq
Khan, Emile Aben, Romain Fontugne, Amreesh
Phokeer, and Taejoong Chung. RoVista: Measuring
and Understanding the Route Origin Validation
(ROV) in RPKI. In Proceedings of the ACM Internet
Measurement Conference (IMC’23), pages 1–14,
Montreal, Canada, October 2023. ACM.

[28] M. Lepinski (Ed.) and K. Sriram (Ed.). BGPsec Protocol
Specification. RFC 8205, sep 2017.

[29] Ratul Mahajan, David Wetherall, and Tom Anderson.
Understanding bgp misconfiguration. ACM SIGCOMM
Computer Communication Review, 32(4):3–16, 2002.

[30] Paweł Małachowski. Bgp zombie routes, 2020. https:
//es.slideshare.net/slideshow/bgp-zombie-r
outes/238666533.

[31] Asya Mitseva, Andriy Panchenko, and Thomas Engel.
The state of affairs in BGP security: A survey of attacks
and defenses. Computer Communications, 124:45–60,
June 2018.

[32] Cameron Morris, Amir Herzberg, and Samuel Secondo.
Bgp-isec: Improved security of internet routing against
post-rov attacks. In Proceedings of the 2024 Network
and Distributed System Security Symposium (NDSS
2024), 11 2023.

[33] National Institute of Standards and Technology (NIST).
NIST RPKI Monitor, version 2.0. https://rpki-mon
itor.antd.nist.gov/. Accessed November 2023.

[34] RIPE NCC. Routing information service (ris), 2024.
https://www.ripe.net/analyse/internet-mea
surements/routing-information-service-ris.

[35] Porapat Ongkanchana, Romain Fontugne, Hiroshi Esaki,
Job Snijders, and Emile Aben. Hunting BGP zombies
in the wild. In Proceedings of the 2021 Applied
Networking Research Workshop, ANRW ’21, page 1–7,
New York, NY, USA, 2021. Association for Computing
Machinery.

[36] Matthew Prince et al. August 30th 2020: Analysis of
centurylink/level(3) outage, Jul 2022. https://blog
.cloudflare.com/analysis-of-todays-century
link-level-3-outage/.

[37] Yakov Rekhter, Susan Hares, and Tony Li. A Border
Gateway Protocol 4 (BGP-4). RFC 4271, January 2006.

[38] Muhammad S. Siddiqui, Diego Montero, Rene Serral-
Gracia, Xavi Masip-Bruin, and Marcelo Yannuzzi.
A survey on the recent efforts of the Internet
Standardization Body for securing inter-domain routing.
Computer Networks, 80:1–26, April 2015.

[39] Kotikalapudi Sriram and Doug Montgomery. Design
Discussion and Comparison of Protection Mechanisms
for Replay Attack and Withdrawal Suppression in
BGPsec. Internet-Draft draft-sriram-replay-protection-
design-discussion-11, Internet Engineering Task Force,
October 2018. Work in Progress.

[40] Dan Tappan, Srihari R. Sangli, and Yakov Rekhter. BGP
Extended Communities Attribute. RFC 4360, February
2006.

[41] Pierre-Antoine Vervier, Olivier Thonnard, and Marc
Dacier. Mind Your Blocks: On the Stealthiness of
Malicious BGP Hijacks. In NDSS, 2015.

[42] Brian Weis, Roque Gagliano, and Keyur Patel. BGPsec
Router Certificate Rollover. RFC 8634, August 2019.

A RoST Pseudocode

In this section, we detail the operation of a RoST agent in
pseudocode, given in Appendix A.

https://es.slideshare.net/slideshow/bgp-zombie-routes/238666533
https://es.slideshare.net/slideshow/bgp-zombie-routes/238666533
https://es.slideshare.net/slideshow/bgp-zombie-routes/238666533
https://rpki-monitor.antd.nist.gov/
https://rpki-monitor.antd.nist.gov/
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
https://blog.cloudflare.com/analysis-of-todays-centurylink-level-3-outage/
https://blog.cloudflare.com/analysis-of-todays-centurylink-level-3-outage/
https://blog.cloudflare.com/analysis-of-todays-centurylink-level-3-outage/


Algorithm 2 RoST Agent
1: Input:
2: AgentAS: AS for which this agent is responsible
3: BatchInterval: Time interval for batching updates in ∆RSV-Out
4: R: Repository
5: State:
6: RSV-Out, RSV-In← /0 ▷ Tracks outgoing & incoming route status per interface
7: SubscribedInterfaces← /0 ▷ Tracks subscribed interfaces for each prefix
8: PrivateKey← LoadPrivateKey(AgentAS) ▷ Private key for signing RSV-Out data
9: BatchInterval← Input BatchInterval

10: RepositoryConnection← CONNECTTOREPOSITORY(R) ▷ Manages communication with repository
11: RouterConnection← CONNECTTOROUTER(AgentAS) ▷ Connection to the router of ‘AgentAS‘
12: procedure ROSTAGENT(AgentAS, BatchInterval, R)
13: // Set up event-driven handlers for router and repository interactions
14: Register PROCESSBGPUPDATE(U) as a handler for incoming BGP updates from router ▷ See Line 18
15: Register PROCESSRSVINUPDATES(∆RSV-In) as a handler for RSV-In updates from repository R ▷ See Line 24
16: Schedule periodic tasks every BatchInterval to:
17: Generate and upload ∆RSV-Out to repository R using GENERATEANDUPLOADRSVOUT( ) ▷ See Line 30

18: procedure PROCESSBGPUPDATE(U)
19: for each Neighbor ASy of AgentAS do
20: if ISELIGIBLETOPROPAGATE(ASy,U.Pre f ix) then ▷ See Line 167
21: Status← VALIDATEROUTESTATUS(U) ▷ See Line 34
22: if Status = Valid or Pending then UPDATEANDPROPAGATEBGP(U , ASy) ▷ Updates RSV-Out state. See Line 108
23: else if Status = Invalid then HANDLEINVALIDROUTE(U , ASy) ▷ See Line 90

24: procedure PROCESSRSVINUPDATES(∆RSV-In)
25: ValidatedPre f ixes← MERGERSVIN(∆RSV-In) ▷ Returns validated prefixes. See Line 54
26: for each Prefix P in ValidatedPre f ixes do
27: for each Neighbor ASy of AgentAS do
28: if (RIBOutEntry← QUERYRIBOUT(Pre f ix = P,Neighbor = ASy)) ̸= /0 then ▷ See Line 158
29: if VALIDATEROUTESTATUS(RIBOutEntry) = Invalid then HANDLEINVALIDROUTE(RIBOutEntry, ASy) ▷ See

Lines 34 and 90

30: procedure GENERATEANDUPLOADRSVOUT

31: for each interface (ASx,ASy) in RSVOut do
32: if (DeltaInter f ace← GENERATEDELTARSV(ASx,ASy)) ̸= /0 then ▷ See Line 130
33: UPLOADRSVOUT(DeltaInter f ace) ▷ See Line 174

34: procedure VALIDATEROUTESTATUS(Route, ASy)
35: Extract Pre f ix, AS-Path, and RouteID sequence (BatchID,PathID) from Route
36: Status← Valid ▷ Initial assumption that the route is valid
37: MissingInter f ace← False ▷ Flag to check if subscription is needed
38: for each (ASprev,AScurrent) in AS-Path do
39: Retrieve RSV InInter f ace← RSV In(ASprev,AScurrent) ▷ Interface-specific RSV-In
40: Retrieve RSV InEntry← RSV InInter f ace[Pre f ix] ▷ Access RSV-In entry by prefix
41: if (ASprev,AScurrent) /∈ SubscribedInter f aces[(Pre f ix,ASy)] then
42: MissingInter f ace← True ▷ Mark that the subscription needs to be updated
43: if RSV InEntry does not exist or BatchID > RSV InEntry.BatchID then
44: Status← Pending ▷ Mark status as pending due to missing data
45: else if BatchID < RSV InEntry.BatchID or PathID ̸= RSVInEntry.PathID or RSVInEntry.Status = Inactive then
46: return Invalid ▷ Inconsistent or inactive route
47: if MissingInter f ace = True then
48: // Update the subscription state for this ASy and Pre f ix
49: Replace SubscribedInter f aces[(Pre f ix,ASy)] with all interfaces in AS-Path
50: // Prepare the full subscription set for all ASy for the Pre f ix
51: FullSubscriptionSet←

⋃︁
ASy

SubscribedInter f aces[(Pre f ix,ASy)]
52: SUBSCRIBETORSVINUPDATES(Pre f ix, FullSubscriptionSet) ▷ Send a single subscription for the prefix across all ASy
53: return Status ▷ Return Valid or Pending status



54: procedure MERGERSVIN(∆RSV-In)
55: // Step 1: Extract batch-level metadata
56: Extract BatchCounter, MerkleRoot, Signature, (ASprev,AScurrent) from ∆RSV-In
57: // Step 2: Retrieve Interface-Specific BatchCounter
58: RSV InInter f ace← RSV In(ASprev,AScurrent)
59: if RSV InInter f ace does not exist then
60: Initialize RSV In(ASprev,AScurrent)← /0

61: LocalBatchCounter← 0 ▷ Default value for new interface
62: else
63: Retrieve LocalBatchCounter← BatchCounter stored in RSV In(ASprev,AScurrent)
64: // Step 3: Check BatchCounter from ∆RSV-In
65: if BatchCounter ≤ LocalBatchCounter then
66: Log: "Stale ∆RSV-In batch from (ASprev,AScurrent) with BatchCounter BatchCounter"
67: Reject and exit
68: // Step 4: Verify Batch Signature
69: Reconstruct SignedData← HASH(BatchCounter,MerkleRoot,(ASprev,AScurrent))
70: Retrieve PublicKey← RPKI[ASprev]
71: if not VERIFYSIGNATURE(SignedData, Signature, PublicKey) then
72: Log: "Invalid signature for ∆RSV-In batch from (ASprev,AScurrent)"
73: Reject and exit
74: // Step 5: Process Individual Entries with Merkle Proofs
75: ValidatedPre f ixes← /0 ▷ Initialize list of validated prefixes
76: for each entry E in ∆RSV-In do
77: Extract Pre f ix, BatchID, PathID, Status, MerkleProo f
78: // Validate Merkle Proof for Entry
79: if not VERIFYINCLUSIONPROOF(Pre f ix,BatchID,PathID,Status,MerkleProo f ,MerkleRoot) then
80: Log: "Invalid Merkle proof for Pre f ix from (ASprev,AScurrent)"
81: Continue ▷ Reject and skip this entry
82: // Merge Valid Entry into Local RSV-In
83: RSV In(ASprev,AScurrent)[Pre f ix]← (BatchID,PathID,Status)
84: Add Pre f ix to ValidatedPre f ixes
85: Log: "Successfully merged Pre f ix from (ASprev,AScurrent)"
86: // Step 6: Update BatchCounter for the Interface
87: Update RSV In(ASprev,AScurrent).BatchCounter← BatchCounter
88: Log: "Updated BatchCounter to BatchCounter for (ASprev,AScurrent)"
89: return ValidatedPre f ixes ▷ Return the list of validated prefixes

90: procedure HANDLEINVALIDROUTE(Route, ASy)
91: Extract Pre f ix and specific route attributes from Route
92: // Step 1: Remove the route from the router’s RIB for the interface with ASy
93: REMOVEROUTEFROMRIB(Pre f ix, Route, ASy) ▷ Remove route for the interface with ASy. See Line 161
94: Log: "Removed invalid route Route for Pre f ix to ASy"
95: // Step 2: Check for alternative routes in the router’s RIB for the interface with ASy
96: AlternativeRoutes← QUERYALTERNATIVEROUTES(Pre f ix, ASy) ▷ Query remaining routes for the interface with ASy. See Line 164
97: if AlternativeRoutes is empty then
98: // Step 3: Propagate withdrawal using UpdateAndPropagateBGP
99: WithdrawalU pdate← Generate withdrawal update message for Pre f ix
100: UPDATEANDPROPAGATEBGP(WithdrawalU pdate, ASy) ▷ Attach RouteID and propagate withdrawal. See Line 108
101: Log: "Withdrawal propagated for Pre f ix to ASy"
102: else
103: // Step 4: Select the best alternative route and announce it using UpdateAndPropagateBGP
104: BestRoute← SELECTBESTROUTE(AlternativeRoutes)
105: AnnouncementU pdate← Generate announcement update message for BestRoute
106: UPDATEANDPROPAGATEBGP(AnnouncementU pdate, ASy) ▷ Attach RouteID and propagate announcement. See Line 108
107: Log: "Announced alternative route for Pre f ix to ASy"



108: procedure UPDATEANDPROPAGATEBGP(U , ASy)
109: Extract Pre f ix, AS-Path, Action (e.g., Announce or Withdraw) from U
110: // Step 1: Update RSV-Out for interface with ASy
111: Retrieve RSVOutInter f ace← RSVOut(AgentAS,ASy)
112: // New Prefix Entry Handling
113: if Pre f ix /∈ RSVOutInter f ace then Initialize empty entry for Pre f ix in RSVOutInter f ace
114: // New Batch Handling for Prefix Entry
115: if RSVOutInter f ace.BatchCounter > RSVOutInter f ace[Pre f ix].BatchID then
116: Reset RSVOutInter f ace[Pre f ix].PathID← 0
117: Update RSVOutInter f ace[Pre f ix].BatchID← RSVOutInter f ace.BatchCounter
118: // Update Existing Entry Based on Action
119: if Action = Announce then
120: Increment RSVOutInter f ace[Pre f ix].PathID
121: Update RSVOutInter f ace[Pre f ix].Status← Active
122: else if Action = Withdraw then
123: Update RSVOutInter f ace[Pre f ix].Status← Inactive
124: // Step 2: Attach RouteID to the BGP Update Using API
125: RouteID← (RSVOutInter f ace[Pre f ix].BatchID,RSVOutInter f ace[Pre f ix].PathID)
126: ATTACHROUTEIDTOUPDATE(U , RouteID) ▷ Router API: Attach RouteID
127: // Step 3: Forward Updated BGP Message to ASy Using API
128: FORWARDUPDATE(U , ASy) ▷ Router API: Forward message to neighbor
129: Log: "Forwarded BGP update for Pre f ix to ASy with RouteID (BatchID,PathID)"

130: procedure GENERATEDELTARSV(ASx,ASy)
131: Retrieve RSVOutInter f ace← RSVOut(ASx,ASy)
132: // Step 1: Identify Delta Entries for the Current Batch
133: Initialize DeltaEntries← /0

134: for each Pre f ix in RSVOutInter f ace do
135: if RSVOutInter f ace[Pre f ix].BatchID = RSVOutInter f ace.BatchCounter then
136: Add RSVOutInter f ace[Pre f ix] to DeltaEntries
137: // Step 2: Build Merkle Tree for All RSV-Out Entries
138: Initialize AllEntries← All entries in RSVOutInter f ace
139: MerkleLeaves← HASH(AllEntries)
140: // Hash each entry in AllEntries
141: MerkleRoot← BUILDMERKLETREE(MerkleLeaves)
142: // Step 3: Sign the Merkle Root, BatchCounter, and Interface
143: ToSign← HASH(MerkleRoot,RSVOutInter f ace.BatchCounter,(ASx,ASy))
144: Signature← SIGNWITHPRIVATEKEY(ToSign,PrivateKey)
145: // Step 4: Increment BatchCounter and Update BatchStartTime
146: Increment RSVOutInter f ace.BatchCounter
147: RSVOutInter f ace.BatchStartTime← CURRENTTIME()
148: // Step 5: Prepare and Return Delta
149: if DeltaEntries ̸= /0 then
150: return {(ASx,ASy),RSVOutInter f ace.BatchCounter−1,DeltaEntries,MerkleRoot,Signature}
151: return /0



Router API Module
The following functions interact directly with the router via the RouterConnection state. These functions handle operations such as
querying or modifying the router’s RIB and propagating updates to neighboring ASes. They are invoked by the RoSTAgent to enforce
protocol logic.

152: procedure FORWARDUPDATE(U , ASy)
153: Use RouterConnection to send U to ASy
154: Log: "Forwarded BGP update for U.Pre f ix to ASy"

155: procedure ATTACHROUTEIDTOUPDATE(U , RouteID)
156: Use RouterConnection to append RouteID to U
157: Log: "Attached RouteID (RouteID.BatchID,RouteID.PathID) to BGP update for U.Pre f ix"

158: procedure QUERYRIBOUT(Pre f ix,ASy)
159: Query RouterConnection for RIB-Out entry matching Pre f ix for neighbor ASy
160: return Matching entry or /0 if not found

161: procedure REMOVEROUTEFROMRIB(Pre f ix, Route, ASy)
162: Use RouterConnection to remove Route for Pre f ix on the interface with ASy
163: Log: "Route Route for Pre f ix removed from the interface with ASy"

164: procedure QUERYALTERNATIVEROUTES(Pre f ix, ASy)
165: Use RouterConnection to query all remaining routes for Pre f ix on the interface with ASy
166: return List of alternative routes for Pre f ix on the interface with ASy or /0 if none found

167: procedure ISELIGIBLETOPROPAGATE(ASy,Pre f ix)
168: Query RouterConnection for policy decision on propagating Pre f ix to ASy
169: return True if the policy allows propagation, False otherwise

Interaction with the repository The following functions interact directly with the repository via the RepositoryConnection state.
These functions handle operations such as subscribing to updates and uploading data to the repository. They are invoked by the RoSTAgent
to implement repository-specific logic.

170: procedure SUBSCRIBETORSVINUPDATES(Pre f ix, Inter f aceSet)
171: Use RepositoryConnection to send a subscription request for:
172: Pre f ix and all interfaces in Inter f aceSet
173: Log: "Subscribed to RSV-In updates for Pre f ix with interfaces Inter f aceSet"

174: procedure UPLOADRSVOUT(DeltaInter f ace)
175: Use RepositoryConnection to upload DeltaInter f ace


	Introduction
	Background
	RoST Design
	Design Goals
	High-Level Operation
	Tracking Route Status
	Making Routes' Status Transparent
	Retrieving Route Transparency Data
	Route Status Validation

	Evaluation Overhead
	Storage
	Agent Storage
	Repository Storage

	Communication
	Agent Communication

	Computation
	ASes Uploading Changes to the Repository
	Repository Handling Updates and Requests
	ASes Handling New Updates from the Repository

	Comparison to Key Rollover

	Benefits Under Partial Adoption
	Evaluation

	Compatibility with BGP Routers
	Attaching RouteIDs
	Filtering Withdrawn Routes

	Deployment Considerations
	Privacy
	Repository Faults

	Related Work
	Conclusion
	Acknowledgments
	RoST Pseudocode

