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ABSTRACT

Currently, depression treatment relies on closely monitoring patients’ response to treatment and adjusting
the treatment as needed. Using self-reported or physician-administrated questionnaires to monitor treatment
response is, however, subjective, costly and suffers from recall bias. In this paper, we explore using location
sensory data collected passively on smartphones to predict treatment outcome. To address heterogeneous
data collection on Android and iOS phones, the two predominant smartphone platforms, we explore using
domain adaptation techniques to map their data to a common feature space, and then use the data jointly to
train machine learning models. We further explore integrating contrastive learning with domain adaptation
to augment data and learn feature embeddings. These learned embeddings are then used to train machine
learning models to predict depression treatment outcomes. Our evaluation shows that using the embeddings
learned by jointly integrating contrastive learning and domain adaptation leads to the best prediction accuracy.
In addition, our results show that using location features and baseline self-reported questionnaire score
can lead to F1 score up to 0.76. This accuracy is comparable to that obtained using periodic self-reported
questionnaires, indicating that using location data is a promising direction for predicting depression treatment
outcome. Last, when all location and questionnaire data are used together, the F1 score further increases to
0.79.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing; • Computing
methodologies→ Transfer learning.
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1 Introduction
Depression is a highly prevalent and debilitating mental health disorder that can have significant
impacts on both individuals and society as a whole [14, 28]. Improving depression treatment is
essential for reducing its burden and promoting better public health outcomes [43, 62]. However,
very few clinical characteristics, biomarkers, or genetic variations have been identified that can
reliably predict differential effectiveness of specific depression treatments [12, 29, 54]. As a result, it
remains difficult to find the perfect treatment for individual patients, and the best approach thus far
is closely monitoring the treatment status, assessing depression symptoms over time, and adjusting
the treatment as needed [21, 39].
The current methods for assessing depression symptoms rely on self-reported or physician-

administrated questionnaires, which have multiple limitations such as long intervals between
assessments, recall bias, and social desirability bias [3, 56]. It is crucial to have objective, accurate, and
timely assessments to help physicians provide personalized treatment for patients with depression.
Mobile devices such as smartphones and wearables can be used to collect sensory data passively,
which can be used for long-term monitoring of behavioral manifestations of depression symptoms,
without relying on subjective questionnaires (see §2). However, most existing studies focus on
detecting depression onset or relapse; there is much less work on predicting improvement or lack of
improvement of depression symptoms using sensory data over time to guide depression treatment.
In this paper, we explore using location sensory data collected from smartphones to predict

depression treatment outcome, i.e., whether a patient is improving or not after initiating treatment.
The premise of our study is that location data can be used to infer a rich set of behavioral features
such as regularity of movement patterns, variance of locations visited, and proportion of time spent
at home, which have been shown to be correlated with depression symptoms [6, 19, 20, 45, 49, 64, 68].

One challenge we face is that location features derived from sensory data collected on Android
and iOS phones, the two primary smartphone platforms, are not compatible, due to various system
related differences and differences in data collection mechanisms (see §3). Developing machine
learning models using the data from each platform individually will lead to reduced sample size,
diminishing the power of any analysis. The study in [34] addresses this issue using a multi-task
learning framework, which is not suitable for our study since we address a single-task problem (i.e.,
predicting treatment status). Instead, we adopt domain adaptation [1, 42, 44] to align the datasets
and then use the datasets jointly to train prediction models. Additionally, we explore integrating
contrastive learning [26, 30, 60, 61] with domain adaptation to augment data and learn feature
embeddings to further improve prediction accuracy.
Using a dataset from a community sample of 66 participants, our study makes the following

main contributions:
• We explore a novel direction that uses domain adaptation to address heterogeneous data
collection on different platforms. Specifically, we design three domain adaptation methods
based on the approach in [58] to transform the iPhone and Android features into the same
feature space to facilitate later machine learning tasks. Our evaluation shows that all three
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methods are effective in aligning the distributions of the location features extracted from
these two platforms.

• We further explore integrating contrastive learning [26, 60, 61] with domain adaptation,
where we use contrastive learning to augment the original Android and iOS datasets and
learn effective knowledge representations for downstream machine learning tasks. Specifi-
cally, we develop two methods, one integrating contrastive learning and domain adaptation
sequentially, and the other integrating them jointly.

• We use the embeddings learned using contrastive learning and domain adaptation as inputs
to train a family of machine learning models, based on Support Vector Machine [7] and
XGBoost [9], to predict depression treatment outcome. Specifically, we investigate prediction
in multiple scenarios, including using self-reported scores alone, using current location data
alone, incorporating location baseline, and incorporating baseline self-reported scores.

• Our results show the best prediction accuracy when using classifiers with the joint con-
trastive learning and domain adaptation approach. In addition, we show that using only
passively collected location data and baseline self-reported questionnaire scores can achieve
comparable predictive performance (F1 score up to 0.76) as using periodic self-reported
questionnaire scores, indicating that it is an effective alternative for depression treatment
outcome prediction.

The rest of the paper is organized as follows. We briefly review related work in Section 2. We
then present data collection and pre-processing in Sections 3 and 4, respectively. After that, we
present feature extraction in Section 5, and cross-platform domain adaptation and correlation
analysis in Section 6. Section 7 presents our approach of integrating contrastive learning and
domain adaptation. Section 8 presents our machine learning based prediction. Discussion and
limitation of this work are presented in Section 9. Finally, Section 10 concludes the paper.

2 Related Work
Predict depression treatment outcome and severity changes. Our work is in the category of
predicting depression treatment outcome, specifically, whether the depression symptom severity
level has improved or not, after initiating a treatment. While there is extensive research on this
topic, only recent studies have developed machine learning models [8, 33, 46], and most of them
utilized baseline clinical data, instead of sensory data that can be continuously collected. A recent
study [15] used baseline clinical characteristics along with the first 2-month sensory data collected
by wearable devices to predict the efficacy of a new depression treatment for individual patients. It
proposed a multi-task learning model that is trained on both intervention and control groups. The
studies in [50, 71] use sensory data collected by smartphones and wearables in the first 2-4 weeks
of the treatment to predict the outcome for a later time (12th week). The study in [53] uses sleep
data collected from Fitbit to predict treatment improvement. Another recent study [51] uses daily
mood and anxiety survey collected from smartphones to predict treatment improvement. Our work
differs from them in that we use location sensory data collected from smartphones, and address the
incompatibility of the data on different platforms using domain adaptation.
Several studies [2, 10, 16, 37] used sensory data to predict depression severity level changes.

Unlike our study, these existing studies are not in clinical settings; they do not use clinician
assessment as ground truth, and do not predict treatment outcome after patients initiate new
treatments. Most of these studies use a variety of sensor modalities, instead of only location data
as in this study. As our study, the study in [6] also only considered mobility data. It used PHQ
score [55] as the ground truth, and trained personalized and general machine learning models to
predict whether the current PHQ score exceeds the average PHQ score added by one standard

ACM Trans. Intell. Syst. Technol., Vol. 0, No. 0, Article 0. Publication date: 2025.



0:4
Soumyashree Sahoo, Md. Zakir Hossain,Chinmaey Shende, Parit Patel, Yushuo Niu, Reynaldo Morillo, Xinyu Wang,

Shweta Ware, Jinbo Bi, Jayesh Kamath, and Alexander Russel, Dongjin Song, Qian Yang, Bing Wang

deviation. Our study differs from [6] in that we use clinical assessment, not self-reported scores, as
the ground truth, and handle location data from different platforms.

Predict depression using sensory data. A large number of recent studies have used sensory
data (e.g., physical activity, location, sleep) collected on smartphones and/or wearables for detecting
depression or depressive mood [2, 6, 10, 11, 19, 20, 22–24, 34, 36, 41, 49, 57, 63–65, 68–70]. These
studies extract behavioral features from the sensory data, show that they are correlated with
depression symptoms, and develop machine learning models or statistical techniques to predict
depression [38]. Our work differs from them in that we focus on predicting depression treatment
outcome, instead of the the onset or relapse of depression.
Domain adaptation. Our study leverages existing domain adaptation techniques to align the

distributions of Android and iPhone location features. The main purpose of domain adaptation
is adapting a machine learning model that is trained on data from one domain to perform well
on data from a different, but related domain [1, 42, 44]. The goal is to overcome the problem of
distributional shift, where the distribution of the input data in the target domain may be different
from that in the source domain. In this paper, we use the technique in [58] to transform data from
two smartphone platforms (Android and iOS phones) into one common feature space, and then
use them jointly to train machine learning models. Specifically, we explore three forms of domain
adaptation (see §6.1); the dual-transformed approach extending the technique in [58].
Contrastive learning. Our study explores integrating contrastive learning and domain adap-

tation to learn embeddings for the downstream prediction tasks. Contrastive learning is a self-
supervised approach for learning meaningful representations without requiring labeled data [26,
60, 61]. We use a simple and effective contrastive learning framework, SimCLR [60], for our dataset,
and explore combining it sequentially or jointly with domain adaptation.

3 Data Collection
We collected sensory data and self-reported questionnaire scores on smartphones. Each participant
is assigned a random user ID for this study. The data collected by the app is only associated with
the random ID. It is encrypted before being stored on the phone, and then sent to a secure server
to protect user privacy. In the following, we first describe participant recruitment and then data
collection.
Recruitment. The participants of this study were recruited from January 2020 to December

2023, from several mental health clinics. Based on the enrollment criteria, all the participants were
diagnosed with depression, at least 18 years old, English speaking, and starting a new pharmacolog-
ical treatment for depression (i.e., starting a new medication or increasing the dose of the current
medication). Participants who had any co-morbid severe mental illness such as bipolar disorder,
schizophrenia, or other psychotic disorders were excluded from the study. The study protocols and
procedures were approved by the Institutional Review Board (IRB) of the University of Connecticut.
All participants met with our study clinician for informed consent and initial screening before
being enrolled in the study.

We recruited a total of 104 participants for this study. The participants use either Android or iOS
phones (iOS is the operating system of iPhones; we use iOS phone and iPhone interchangeably in
this paper). Specifically, 31 used Android and 73 used iOS phones. Out of the 31 Android users, 3
withdrew during the first week of study, 3 had not responded to monthly followup assessments. Out
of 73 iOS users, 9 withdrew within a few days of study, 6 had not responded to monthly followup
assessments. Summarizing the above, the data analysis below is for 25 Android and 58 iOS users.
Since almost all the participants used their own phones (either iOS or Android), we expect to collect
data with a reasonably good quality, as people tend to carry and actively use their own phones.
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Self-reportQuestionnaire. WeusedQuick Inventory of Depressive Symptomatology (QIDS) [47],
a widely used self-assessment questionnaire, for this study. QIDS measures 16 factors across 9
different criterion domains including mood, concentration, self-criticism, suicidal ideation, interests,
energy/fatigue, sleep disturbance, decrease or increase in appetite or weight, and psychomotor
agitation or retardation. The total score of QIDS ranges from 0 to 27; higher scores indicate higher
severity. The participants filled in QIDS at the beginning of the study, which were treated as their
baseline QIDS score. Only those with baseline QIDS score ≥ 11 were recruited into the study, since
QIDS score of 11 is often used as a cutoff value that indicates moderate depression. Once enrolled,
participants filled in QIDS every 7 days on their phones. A notification was sent to their phones on
the due date.

Clinical Assessment. Our study clinician screened the participants at the enrollment time and
end of each month to determine the corresponding Clinical Global Impressions (CGI) [25] score.
CGI comprises two companion one-item measures. One is CGI-S that evaluates the severity of
psychopathology from 1 (normal) to 7 (amongst the most extremely ill patients). The other is CGI-I
that evaluates the improvement/change of the symptoms relative to the baseline (i.e., the initiation
of the new or increased medication in our context) on a similar seven-point scale, from 1 (very
much improved) to 7 (very much worse). In the rest of the paper, we use CGI-I score as the ground
truth for patient treatment improvement status. CGI-I value 1 (very much improved) or 2 (much
improved) is considered as improved, while the other values (i.e., 3-7, corresponding to minimally
improved to very much worse) is considered as not improved.
Sensory Data.We collected location sensory data on both Android and iOS platforms. While

Android allows periodic data collection in the background, iOS has much stricter rules about
collecting data in the background. Several mobile sensing frameworks [20, 27, 40, 67] can collect
location data for iOS. Among them, AWARE-iOS [40] allows periodic sensing data collection for
iOS. It, however, relies on a push notification service from a remote server to sustain the data
collection on a phone when there is no frequent user activities with the app. In this study, we chose
to use LifeRhythm app [20], since our study requires minimum interaction with users, and some
users do not have cellular data services to maintain consistent connection with a remote server
(for push notification).

Specifically, we used the app to collect two types of location data, GPS and WiFi association
data; the latter is relevant since, if a phone is associated with an AP, then we can use the location
of the AP to approximate the location of the user. After that, we used the approach in [68] to fuse
GPS and WiFi data to obtain more complete location information. We next briefly describe data
collection and then the location fusion approach.
GPS data collection. LifeRhythm app [20] collects GPS data using different mechanisms on

Android and iOS platforms due to the different restrictions of their operating systems. On Android
phones, GPS location was collected periodically every 10 minutes. On iOS phones, locations were
collected using an event based mechanism, since iOS does not provide APIs to schedule periodic
data collection. Specifically, the app subscribes to the location services provided by the operating
system and obtains location updates after a user has traveled a certain distance (which is set to 50
meters to 1 mile based on user activity) [20]. When such an event occurs, the app will sense and
record the event. The desired accuracy is switched between 10 and 100 meters depending on user’s
activity to achieve accurate location collection, while minimizing the impact on battery life (higher
accuracy leads to more energy consumption). Each location sample contains longitude, latitude,
user ID, and error (in meters). Following [20], we removed the samples that had errors larger than
165 meters to retain most of the samples while eliminating the samples with large errors.

ACM Trans. Intell. Syst. Technol., Vol. 0, No. 0, Article 0. Publication date: 2025.



0:6
Soumyashree Sahoo, Md. Zakir Hossain,Chinmaey Shende, Parit Patel, Yushuo Niu, Reynaldo Morillo, Xinyu Wang,

Shweta Ware, Jinbo Bi, Jayesh Kamath, and Alexander Russel, Dongjin Song, Qian Yang, Bing Wang

(a) Android (b) iOS
Fig. 1. Time duration for which a location measurement is valid when merging GPS and WiFi location data
(considering the data collected 6am - 10pm each day).

WiFi association data. We also used LifeRhythm app to collect WiFi association and dissociation
events. The entry for each event includes a timestamp and MAC address of the access point (AP),
which serves as the unique identifier of the AP.

Fusing GPS and WiFi data. The goal of data fusion is combining GPS and WiFi association data
to output a sequence of locations (in longitude and latitude coordinates) for each user on each day.
As described in [68], it contains two steps: (i) estimate the longitude and latitude coordinates for
the APs, and (ii) fuse GPS and WiFi location samples together.
To estimate the longitude and latitude coordinates for an AP 𝑎, we consider all the association

events for 𝑎 from a user and the GPS samples that were collected from the same user during a time
interval 5 minutes before and after each association event, and use the mean of the GPS coordinates
as the location of 𝑎. Correspondingly, we obtain the geographic locations of 6054 and 670 APs for
iOS and Android users, respectively.
In the second step, we consider a sequence of time points {𝑡𝑖 }, where each time point 𝑡𝑖 has a

location sample (obtained from GPS or WiFi). We determine the duration for which the location at
𝑡𝑖 is valid following the approach in [68]. Specifically, we consider two thresholds, 𝑇𝐺 and 𝑇𝑊 , for
GPS data and WiFi respectively. If the location for 𝑡𝑖 is obtained using GPS, then the duration for
which the user is assumed to be at this location is [𝑡𝑖 ,min(𝑡𝑖 +𝑇𝐺 , 𝑡𝑖+1)]. Similarly, if the location
for 𝑡𝑖 is obtained using WiFi, then the duration for which the user is assumed to be at this location
is [𝑡𝑖 ,min(𝑡𝑖 +𝑇𝑊 , 𝑡𝑖+1)]. For Android, 𝑇𝐺 is set to 15 minutes, and 𝑇𝑊 is set to 4 and 6 hours for
weekdays and weekends respectively for 6am to 10pm; and set to 8 hours otherwise. For iOS, 𝑇𝐺
and 𝑇𝑊 are both set as 𝑇𝑊 for Android. Fig. 1a and b plot the distribution of the duration for which
a location measurement is valid for Android and iOS, respectively. They are for the data collected
during 6am - 10pm. As expected, for Android, these intervals tend to be within 15 minutes, since
the GPS location for Android is collected periodically every 10 minutes. For iOS, these intervals are
more widely spread due to the event-based data collection. On the other hand, 81% of the intervals
are within 130 minutes. After that, we use upsampling to obtain location data at 1-minute intervals,
which will be used for feature extraction (see §6). More details of the data fusion methodology are
found in [68].

4 Data Pre-processing
The analysis in the rest of the paper is on QIDS intervals. Each QIDS interval ends with the day
when a participant fills in QIDS questionnaire and includes the previous 7 days, since QIDS asks
about the behaviors in the past 7 days. The location data associated with a QIDS interval is obtained
through smartphone sensing as described earlier.
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(a) Android QIDS length (b) Android samples (c) iOS QIDS length (d) iOS samples
Fig. 2. (a)-(b) show the distributions of the number of days with location data and the number of location
samples in a QIDS interval for the Android dataset. (c)-(d) show the corresponding distributions for the iOS
dataset.

Missing Data. Despite the data fusion procedure that combines GPS and WiFi data, we still
observed a significant amount of missing data, and sometimes no location data was collected at all
in a day. Fig. 2a plots the histogram of the number of days with location data in a QIDS interval
for the Android dataset. We see that 78% of the QIDS intervals have at least 5 days of data, 63% of
the QIDS intervals have 6 days of data, while no QIDS interval has 7 days of data (the maximum
number of days with data). Fig. 2b plots the cumulative distribution function (CDF) of the number of
samples in the QIDS intervals for the Android dataset. Given the earlier observation that there are
at most 6 days with data in a QIDS interval in the Android dataset, the maximum number of samples
in a QIDS interval is 60× 24× 6 = 8, 640, since the location data is at 1-minute intervals. Most of the
samples are below this value. On the other hand, we see that 76% of the QIDS intervals have at least
2000 samples, significantly higher compared to that without merging GPS data with WiFi, which
have only 34% of the QIDS intervals with at least 2000 samples (blue curve in Fig. 2b). Considering
that we need to have reasonable number of QIDS intervals and yet each QIDS interval needs to
have a reasonable number of samples for feature extraction and data analysis, we excluded all QIDS
intervals that have less than 5 days of data or have less than 2000 of samples. After applying the
above criteria, out of the 25 Android users, 4 users were excluded since they did not have any QIDS
interval that satisfies the above criteria.
Fig. 2c and Fig. 2d plot the histogram of the number of days with data and CDF of the number

of samples in a QIDS interval for the iOS dataset, respectively. We similarly observe a significant
amount of missing data: although 73% of the QIDS intervals have at least 5 days of data, no QIDS
interval has 7 days of data, and 73.5% of the QIDS intervals have more than 2000 samples. This is
significantly higher compared to that without merging GPS and WiFi data, which only has 11%
(blue curve in Fig. 2d) of the QIDS intervals with at least 2000 samples. When using the same
filtering criteria as that used for the Android dataset, 13 out of the 58 iOS users were not included
in further data analysis.

Summarizing the above, the rest of the paper considers the data from these 66 users (21 Android
and 45 iOS users). Of them, 83.3% were female (17 Android and 38 iOS users) and 16.7% were male
(4 Android and 7 iOS users). In terms of ethnicity, they were 65.6% white, 10.9% Asian, 6.3% African
American, and 17.2% had more than one race. Each participant was in the study for up to 12 weeks.
For Android users, the days of participation varies from 32 to 84 days with a mean of 72 days; for
iOS users, it varies from 32 to 84 days with a mean of 76 days.
QIDS Scores. Fig. 3 plots the baseline QIDS score (i.e., the QIDS score at the enrollment) for

the Android and iOS users. We see that for Android users, the baseline QIDS score varies from
11 to 23 with a mean of 16.0. For iOS users, the variation is similar, from 11 to 24 with a mean of
15.3. Fig. 4 plots the distributions of QIDS score changes (i.e., a collected QIDS score subtracted
by the baseline QIDS score) for Android and iOS users. We see that most of the score changes are
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(a) Android (b) iOS
Fig. 3. Baseline QIDS score for Android and iOS users.

(a) Android (b) iOS
Fig. 4. Histogram of QIDS score changes for Android and iOS users.

negative, indicating less severe depression symptoms after the enrollment. The average changes
for Android and iOS users are -2.8 and -6.1, respectively. Particularly, for Android users, 30% of
the QIDS scores are more than 5 points below the baseline value; for iOS users, the corresponding
value is 56.7%. A small fraction of the score changes is positive.

Improvement Status. As mentioned earlier, we use CGI-I score as the ground truth to classify
the improvement status for each QIDS interval. Specifically, suppose a CGI is obtained for a
participant on day 𝑡 , and the previous CGI is obtained on day 𝑡 ′, or 𝑡 ′ is the enrollment day. If the
CGI on day 𝑡 indicates improved status, then we refer to the time period between day 𝑡 ′ and 𝑡 as
improved. We define not-improved periods similarly. For one participant, the improvement status
may be stable over the entire duration of the study (i.e., remain improved or not-improved), or
change over time. For the 21 Android participants, only 5 participant had change in improvement
status from not-improved to improved, whereas 2 participants had change in the other direction.
For the 45 iOS participants, 9 participants had one change in improvement status (9 had the change
from not-improved to improved, and 2 had the change in the opposite direction). Following the
above procedure, for the Android dataset, 39 QIDS intervals (from 9 participants) are marked as
improved, while 163 QIDS intervals (from 19 participants) are marked as not-improved. For the
iOS dataset, 194 QIDS intervals (from 24 participants) are marked as improved, while 268 QIDS
intervals (from 32 participants) are marked as not-improved. In summary, the Android dataset
contains 202 samples from 21 users, while the iOS dataset contains 462 samples from 45 users.

5 Feature Extraction
We extract 8 location features from the location data for each QIDS interval. These features are
similar to those in [20, 48, 49, 68]. Specifically, the first four features are directly based on location
data, while the last four features are obtained based on locations clusters. Specifically, we use
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(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 5. Top row: distributions of four features for the data collected during COVID-19 (2020-2022). Bottom
row: corresponding distributions post COVID-19 (2023).

DBSCAN [18], a density based clustering algorithm to cluster the stationary points. DBSCAN
requires two parameters, epsilon (the distance between points) and the minimum number of points
that can form a cluster (i.e., the minimum cluster size). Following the approach in [68], we set
epsilon to 20 meters and the minimum number of points to 2.5 hours of stay (i.e., 160 points as two
consecutive locations are one minute apart).
Location variance: This feature measures the variability in a participant’s location. It is

calculated as log(𝜎2
long + 𝜎2

lat), where 𝜎
2
long and 𝜎2

lat represent the variance of the longitude and
latitude of the location coordinates, respectively [49].
Time spent in moving: This feature represents the percentage of time that a participant is

moving. We differentiate moving and stationary samples using the approach in [49]. Specifically,
we estimate the moving speed at a sensed location. If the speed is larger than 1 km/h, then we
classify it as moving; otherwise, we classify it as stationary.
Total distance: Given the longitude and latitude of two consecutive location samples for a

participant, we use Harversine formula to calculate the distance traveled in kilometers between
these two samples. The total distance traveled during a time period is the total distance normalized
by the time period [49].
Average moving speed: This feature represents the average moving speed, where movement

and speed are identified in the same way as what is used for the total distance feature.
Number of unique locations: It is the number of unique clusters from the DBSCAN algorithm,

denoted as 𝑁𝑙𝑜𝑐 [20]
Entropy: It measures the variability of time that a participant spends at different locations [49].

Let 𝑝𝑖 denote the percentage of time that a participant spends in location cluster 𝑖 . The entropy is
calculated as 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑

𝑖 (𝑝𝑖 log 𝑝𝑖 ).
Normalized entropy: It is 𝐸𝑛𝑡𝑟𝑜𝑝𝑦/log𝑁𝑙𝑜𝑐 , and hence is invariant to the number of clusters

and depends solely on the distribution of the visited location clusters [49].
Time spent at home:We use the approach in [20, 49] to identify “home” for a participant as

the location cluster that the participant is most frequently found between [12, 6]am. After that, we
calculate the percentage of time when a participant is at home.
Impact of COVID-19 on location features. Our dataset spans the years 2020 to 2023, including
the COVID-19 pandemic period. To assess the potential impact of the COVID-19 pandemic on user
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behavior and location patterns, we divide the data into two sets: during and post COVID-19. The
Android dataset includes 12 users during COVID-19 (2020–2022), and 9 users post COVID-19 (2023).
For the iOS dataset, the corresponding numbers are 27 and 18.
We compared the distributions of location features during and post COVID-19 for both the

Android and iOS datasets, and found that they are similar, with no substantial shifts. Fig. 5 shows
the CDFs for four out of the eight location features as examples. Hence we use the data during and
post COVID-19 together in the rest of the data analysis.

6 Cross-platform Domain Adaptation and Correlation Analysis
6.1 Domain Adaptation
The Android and iOS datasets that we collected are not compatible due to different data collection
mechanisms (see §3). As a result, the location features extracted from these two datasets have
significantly different distributions. We next explore using domain adaptation to transform the
Android and iOS feature space to be compatible, which can then be combined for correlation
analysis (see §6.2) and to form larger training sets to train machine learning models (see §8).

Domain adaptation [1, 42, 44], which is broadly in the area of transfer learning, can be used to align
two domains that have different distributions.While many domain adaptation approaches have been
proposed in the literature, in the following, we adapt a recent technique, CORrelation ALignment
(CORAL) [58], to align the distributions of the features from the Android and iOS datasets. CORAL
minimizes the shift between two domains, referred to as source and target domains, by aligning
the second-order statistics of source and target distributions. While CORAL is extremely simple,
it has been shown to be effective, efficient, and achieve similar performance as more complex
approaches [59].

We next present three approaches of domain adaptation for our dataset. The first approach treats
Android dataset as the source, and the iOS dataset as the target, which we refer to as Android-
transformed. The second method switches the roles of Android and iOS datasets, and we refer to it
as iOS-transformed. In the third method, we transform both Android and iOS datasets to a common
feature space, which we refer to as dual-transformed. All three approaches need balanced datasets
for Android and iOS datasets. We therefore first describe data balancing, and then describe the
three domain adaptation approaches.

Data balancing. The Android dataset has much less samples than the iOS dataset (202 vs. 462).
In addition, the Android dataset has 39 improved and 163 not-improved samples, significantly
more imbalanced compared to the relatively balanced samples for iOS (194 improved and 268
not-improved). To balance the Android dataset, we first upsampled the 39 improved samples by
a factor of 4 by duplication to form 156 improved samples. This upsampling also increased the
Android dataset to a total of 319 samples, which is still significantly less than the total number of
samples in the iOS dataset. We then uniformly upsampled the Android dataset by a factor of 1.4
(again by duplication) to increase it to 447 samples. We then apply domain adaptation to the 447
Android samples and 462 iOS samples.

Android-transformed. As mentioned earlier, this approach treats Android dataset as the source
and iOS dataset as the target. It follows CORAL domain adaptation directly. Let 𝑋𝑠 and 𝑋𝑡 denote
the source and target domain feature matrices, respectively, where 𝑋𝑠 is of size 𝑛𝑠 × 𝑑 and 𝑋𝑡 is of
size 𝑛𝑡 × 𝑑 , 𝑛𝑠 and 𝑛𝑡 are the number of samples for the source and target domains, respectively,
and 𝑑 is the dimension of the feature space. Let 𝜇𝑠 and 𝜇𝑡 denote the feature vector mean for the
source and target domain features, respectively. For both source and target domains, we normalize
the features (i.e., subtracting the mean value for each feature so that the mean of the normalized
feature values is zero). After feature normalization, we obtain the feature covariance matrices,
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(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 6. Android-transformed: distributions of location features. Each plot shows the original iOS features,
and the original and transformed Android features.

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 7. Dual-transformed: distributions of location features. Each plot shows the original iOS and Android
features, and transformed iOS and Android features.

denoted as 𝐶𝑠 and 𝐶𝑡 for the source and target domain, respectively. To minimize the distance
between the second-order statistics (covariance) of the source and target features, CORAL applies
a linear transformation 𝐴 to the original source features and uses the Frobenius norm as the matrix
distance metric. Specifically, the objective function is

minimize𝐴 ∥𝐴𝑇𝐶𝑠𝐴 −𝐶𝑡 ∥2𝐹 , (1)

where ∥·∥2
𝐹
represents the matrix Frobenius norm. Once 𝐴 is determined, the transformed feature

of the source is 𝑋̃𝑠𝐴 + 𝜇𝑡 , where 𝑋̃𝑠 = 𝑋𝑠 − 𝜇𝑠 (i.e., 𝑋̃𝑠 is the normalized 𝑋𝑠 ).
Fig. 6 shows the distributions of the eight location features. For each feature, it compares the

distributions of the original and transformed Android features, and the original iOS feature. We see
that each transformed Android feature indeed exhibits greater similarity to the corresponding iOS
feature than the original Android feature.
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Table 1. Correlation results for dual-transformed iOS and Android features.

All Improved Not-improved
Features r-values p-values r-values p-values r-values p-values
location variance -0.08 0.04 -0.02 0.73 -0.13 0.01
time spent moving -0.04 0.26 -0.01 0.84 -0.10 0.04
total distance 0.05 0.24 0.06 0.34 0.06 0.18
AMS 0.04 0.33 0.06 0.38 0.16 0.05
unique locations -0.17 10−5 -0.03 0.06 -0.19 6 × 10−5
entropy -0.17 10−5 -0.04 0.06 -0.19 10−4
normalized entropy -0.14 2 × 10−4 -0.08 0.06 -0.14 3 × 10−3
time home 0.08 0.04 0.01 0.37 0.10 0.04

iOS-transformed. This approach is similar to Android-transformed approach except that it
treats iOS feature space as the source, and transforms it to resemble the Android feature space. We
observe that the various transformed iOS features are indeed closer to their corresponding Android
features (figure omitted).

Dual-transformed. In this approach, we extend CORAL to transform Android and iOS feature
spaces to a common space. Let 𝑋𝑎 and 𝑋𝑖 denote the feature matrices for the Android and iOS
datasets, respectively. Let 𝜇𝑎 and 𝜇𝑖 denote their respective mean. Let 𝐶𝑎 and 𝐶𝑖 denote their
respective covariance matrix after the normalization process as described earlier (i.e., subtracting
𝜇𝑎 and 𝜇𝑖 from 𝑋𝑎 and 𝑋𝑖 , respectively). Let 𝑋𝑎,𝑖 denote the combined feature matrices for Android
and iOS, which is of dimension (𝑛𝑎 + 𝑛𝑖 ) × 𝑑 , where 𝑛𝑎 and 𝑛𝑖 are the number of samples for
the Android and iOS datasets, respectively, and 𝑑 is the dimension of the feature space. Let 𝜇𝑎,𝑖
denote the feature vector mean of 𝑋𝑎,𝑖 . We then apply a similar normalization process to 𝑋𝑎,𝑖 (i.e.,
subtracting 𝜇𝑎,𝑖 from 𝑋𝑎,𝑖 ), and denote the covariance matrix after the normalization as 𝐶𝑎,𝑖 .

The dual-transformed approach finds transformation matrix, 𝐴𝑎 , for the Android feature space,
and transformation matrix, 𝐴𝑖 , for the iOS feature space by solving the following two minimization
problems, respectively

min
𝐴𝑎

∥𝐴𝑇
𝑎𝐶𝑎𝐴𝑎 −𝐶𝑎,𝑖 ∥2𝐹 ,

min
𝐴𝑖

∥𝐴𝑇
𝑖 𝐶𝑖𝐴𝑖 −𝐶𝑎,𝑖 ∥2𝐹 .

Once 𝐴𝑎 and 𝐴𝑖 are determined, the transformed features for Android and iOS are 𝑋̃𝑎𝐴𝑎 + 𝜇𝑎,𝑖 and
𝑋̃𝑖𝐴𝑖 + 𝜇𝑎,𝑖 , where 𝑋̃𝑎 and 𝑋̃𝑖 are normalized 𝑋𝑎 (Android dataset) and 𝑋𝑖 (iOS dataset), respectively.

Fig. 7 plots the distributions of the transformed Android and iOS features together with their
original features. We see that, for each feature, the distributions of the transformed features are
indeed closer than those of the original features, demonstrating the effectiveness of this domain
adaptation approach.

6.2 Correlation Analysis
We obtain Pearson correlation coefficients between location features and self-reported QIDS scores
for each QIDS interval, using both the original datasets and the transformed datasets (using all
three approaches of Android-transformed, iOS-transformed, and dual-transformed). In each case,
we find features that are correlated with QIDS scores, indicating that location features can be used
to predict depression status.
In the interest of space, we next only present the correlation results for the dual-transformed

approach; the correlation results for other settings show similar trends. The results are shown in
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Table 1. It shows the correlation for three categories, all the samples, improved samples only, and
not-improved samples only, considering transformed Android and iOS data. We see that for all the
samples, five features, location variance, unique locations, entropy, normalized entropy and time
spent at home, are significantly correlated with QIDs scores. Specifically, the first four features are
negatively correlated with QIDS score, while the last (time spent at home) is positively correlated
with QIDS score. This is consistent with findings in earlier studies [5, 11, 31, 32, 35, 49, 52] that
depression is often linked with social isolation. Similar observations hold for not-improved samples,
and an additional feature, time spent in moving, is also negatively correlated with QIDS score. For
improved samples, only three features, unique locations, entropy, and normalized entropy, are
significantly correlated with QIDS score, with low 𝑟 -values.

7 Integrating Contrastive learning with Domain Adaptation
Domain adaptation (Section 6.1) enables the alignment of location features from Android and iOS
platforms, allowing downstream machine learning models to leverage the combined data. However,
even with the combined data, our dataset only contains 664 samples (202 from Android and 462 from
iOS users). In this section, we integrate contrastive learning [26, 60, 61] with domain adaptation,
where we use contrastive learning to augment the original dataset and learn representations.
Specifically, we investigate two approaches, the first integrates contrastive learning and domain
adaptation sequentially, and the second integrates them jointly. As we shall see (Section 8), these
two approaches with classifiers lead to better prediction results than using domain adaptation
alone.

7.1 Sequential Contrastive Learning and Domain Adaptation
Contrastive learning trains a function to map input data into an embedding space, where similar
items are positioned closely together and dissimilar items are placed far apart, and no class labels
are needed in the training process. We developed a contrastive learning method inspired by
SimCLR [60], a simple and powerful contrastive learning framework. Consider 𝑁 input samples
(𝑁 = 664 considering both Android and iOS data). For the 𝑘-th sample, x𝑘 , we created two
augmented views x̃2𝑘−1 and x̃2𝑘 , by adding a small amount of Gaussian noise N(0, 𝜎2), with zero
mean and variance of 𝜎2, to 𝑥𝑘 . These two views are then passed to a multi-layer perceptron (MLP)
encoder to obtain embeddings, z2𝑘−1 and z2𝑘 , which are treated as a positive pair. The model is
then trained to minimize the distance of positive pairs, with the loss calculated as

ℓ (𝑖, 𝑗) = − log
exp(sim(𝑧𝑖 , 𝑧 𝑗 )/𝜏)∑2𝑁

𝑘=1 1[𝑘≠𝑖 ] exp(sim(𝑧𝑖 , 𝑧𝑘 )/𝜏)
,

where 1[𝑘≠𝑖 ] is an indicator function: it is 1 if 𝑘 ≠ 𝑖 , and 0 otherwise, sim(·, ·) denotes cosine
similarity, and 𝜏 is a temperature hyperparameter that controls the sharpness of the similarity. The
final loss is computed across all positive pairs as

LCL =
1
2𝑁

𝑁∑︁
𝑘=1

[ℓ (2𝑘 − 1, 2𝑘) + ℓ (2𝑘, 2𝑘 − 1)] . (2)

Following contrastive learning, the resultant embeddings serve as input for the next step, domain
adaptation, to align the Android and iOS data into the same space. Specifically, we used three
methods, Android-transformed, iOS-transformed, and dual-transformed as described in Section 6.1,
for domain adaptation. After that, the embeddings are input to classification models (see Section 8)
to predict depression treatment outcome. The performance of the classification models is assessed
using stratified 𝑘-fold cross-validation with gender-based stratification; see Section 8.
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Hyperparameter tuning.We used a two-layer MLP with hidden layer sizes varied across {16, 32,
64} as the encoder for contrastive learning. The output embedding dimension was fixed at 64, and
batch sizes were tuned over {12, 32, 64}. We varied the total number of training epochs over {100,
200}, and the Gaussian noise standard deviation (𝜎) used for contrastive augmentation is varied
over {0.005, 0.01, 0.02}. The temperature parameter (𝜏 ) for the contrastive loss was chosen from {0.05,
0.1, 0.2}. The learning rate was selected from {10−1, 10−3, 10−4, 10−5}. The optimal hyperparameter
values were chosen to maximize the average F1 score across the 𝑘 folds in classification.

7.2 Joint Contrastive Learning and Domain Adaptation
We now describe a method that uses contrastive learning and domain adaptation jointly. Compared
to the sequential method (Section 7.1), this method provides improved integration, and leads to
better prediction results, as we shall see in Section 8.

This joint method considers the losses of contrastive learning and domain adaptation together to
simultaneously encourage task-relevant representation learning and domain alignment. The loss of
contrastive learning, LCL, is defined in (2). The loss of domain adaptation, specified as CORAL loss
LCORAL, is defined in [59] and is briefly described below. Let 𝑋𝑎 ∈ R𝑛𝑎×𝑑 and 𝑋𝑖 ∈ R𝑛𝑖×𝑑 represent
embeddings from Android and iOS data respectively, where 𝑑 is the embedding dimension1. Let
1 ∈ R𝑛 be a column vector of ones. The empirical covariance matrices 𝐶𝑎 and 𝐶𝑖 are computed as

𝐶𝑎 =
1

𝑛𝑎 − 1

(
𝑋𝑇
𝑎 𝑋𝑎 −

1
𝑛𝑎

(1𝑇𝑋𝑎)𝑇 (1𝑇𝑋𝑎)
)
,

𝐶𝑖 =
1

𝑛𝑖 − 1

(
𝑋𝑇
𝑖 𝑋𝑖 −

1
𝑛𝑖

(1𝑇𝑋𝑖 )𝑇 (1𝑇𝑋𝑖 )
)
.

The CORAL loss is defined as

LCORAL =
1
4𝑑2

∥𝐶𝑎 −𝐶𝑖 ∥2𝐹 , (3)

where ∥·∥2
𝐹
is the Frobenius norm. With the loss functions for contrastive learning and domain

adaptation, the combined loss is defined as

L = LCL + 𝛼 · LCORAL,

where 𝛼 > 0 is a weighting hyperparameter that controls the contribution of the domain alignment
loss relative to the contrastive learning loss.

We used a 2-layer MLP encoder to encode the Android and iOS location features to embeddings
to optimize the above combined loss. The embeddings after the above joint training process were
then fed to the classifiers to predict treatment outcome using 𝑘-fold cross-validation (Section 8).
The ranges for the various hyperparameters were selected in the same way as in the sequential
method. In addition, the weight parameter, 𝛼 , was varied in {0.01, 0.05, 0.1, 0.5, 1.0, 10}. The optimal
hyperparameter values were chosen to maximize the average F1 score for the 𝑘-fold cross-validation.

8 Predicting Depression treatment Outcome
In this section, we compare the performance of various predictive approaches for estimating depres-
sion treatment outcomes using location features. We first describe the classification methodology,
and then the prediction results.

1Here 𝑋𝑎 and 𝑋𝑖 represent respectively the embeddings of the Android and iOS data after the 2-layer MLP encoder, with
the dimension 𝑑 = 64. In Section 6.1, 𝑋𝑎 and 𝑋𝑖 represent the original Android and iOS location feature data with 𝑑 = 8.
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8.1 Classification Methodology
The classification is for each QIDS interval, which contains the QIDS score and the location features
extracted from the location data collected in the interval (a week). In addition, we further consider
location baseline, which represents location-related behavior at the beginning of the treatment and
is obtained using the location data collected in the week right after the enrollment. The clinical
ground truth, i.e., CGI-I score assessed by the study clinician, served as the label for improvement
status (see §3 and §6).
For all prediction tasks, we employed a gender-stratified 𝑘-fold cross-validation procedure

to ensure that each fold maintained the overall gender distribution, thereby reducing potential
demographic bias. The combined Android and iOS datasets include a total of 55 female and 11
male participants (see §6). Accordingly, we used 11-fold stratified cross-validation, with each fold
containing one male participant and an approximately preserved male-to-female ratio. In each
iteration, the model was trained on 𝑘 − 1 folds and tested on the remaining fold, ensuring that each
participant’s data was used either for training or testing, but not both (since the data from one
participant can be correlated). To summarize model performance, we computed multiple evaluation
metrics, including F1 score, precision, recall, specificity, and Area Under the Receiver Operating
Characteristic (AUROC), for each fold based on the prediction. In the following, we report the mean
(𝜇) and standard deviation (𝜎) of each metric across all folds.

Classification Algorithms.We explored two classification algorithms: Support Vector Machine
(SVM) [4, 13] with a radial basis function (RBF) kernel [7], and XGBoost [9], and compared their
prediction performance. Each algorithm involves tuning multiple hyperparameters, and we selected
the configuration that achieved the highest validation F1 score, defined as the harmonic mean
of precision and recall: 2(precision × recall)/(precision + recall). The F1 score ranges from 0 to 1,
with higher values indicating better predictive performance.

• SVM with RBF kernel has two key hyperparameters: the cost parameter 𝐶 and the kernel
width 𝛾 . Lower values of𝐶 increase regularization, helping to prevent overfitting by allowing
larger margins. Smaller 𝛾 values lead to smoother decision boundaries, while larger values
may overfit by capturing noise. Both 𝐶 and 𝛾 were varied over the range 2−15 to 215, and the
best combination was selected based on validation F1 score.

• XGBoost hyperparameters were tuned to balance model complexity and overfitting. Maxi-
mum tree depth (2–10) controls model capacity; shallower trees reduce overfitting. Minimum
child weight (1–6) prevents splits on small, potentially noisy data. Subsample and column
subsample ratios (0.1–0.5) add randomness and prevent overfitting. Gamma (0.1–7) penalizes
complex splits, and a lower learning rate (0.1–0.3) ensures more conservative updates. The
best setting was chosen using gender-stratified cross-validation based on F1 score.

8.2 Prediction Results
We first report overall prediction results for the combined Android and iOS dataset in Section 8.2.1.
Next, we report the results for the Android and iOS platforms separately; see Section 8.2.2.

We aim to address two primary research questions: (i) Does domain adaptation enhance predic-
tion performance compared to using the original features with no domain adaptation? (ii) Does
integrating contrastive learning with domain adaptation further improve the performance beyond
domain adaptation alone? To answer these questions, we compare the following three approaches
for processing data before classification:

• Domain adaptation (DA) only, specifically through Android-transformed, iOS-transformed,
or dual-transformed approaches (see Section 6.1). In the following, we only present the
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results for the dual-transformed approach, which tends to lead to better results than Android-
transformed and iOS-transformed approaches.

• Sequential contrastive learning (CL) + DA, i.e., first apply CL and then DA (see Section 7.1).
Similarly as the DA only approach, we only report the results when using dual-transformed
for the DA step.

• Joint CL + DA, which encodes the original data by minimizing a combined loss considering
CL and DA jointly (see Section 7.2).

We compare the above three approaches with a baseline approach that uses the original data (i.e.,
no CL or DA).
For each of the above approaches, depending on the features that are used for prediction, we

explore the following six prediction scenarios:

• QIDS + QIDS baseline, which uses the current QIDS score in the QIDS interval and the
baseline QIDS score.

• Location, which uses the 8 location features (see §6) obtained from the current QIDS interval.
• Location + Location baseline, where location baseline includes the 8 features extracted
using the data in the first week after the enrollment.

• Location + QIDS baseline, which uses 9 features, including the baseline QIDS score, and
the 8 location features for the QIDS interval.

• Location + QIDS baseline + Location baseline, which uses 17 features as input, including
the 8 location features for the current QIDS interval, the baseline QIDS score, and the 8
location baseline features.

• All, which uses QIDS + QIDS Baseline + location + location baseline, a total of 18 features
as input, including 2 QIDS related features (current and baseline QIDS scores), 8 location
features for the current QIDS interval, and 8 baseline location features.

In the above, the setting using QIDS + QIDS baseline serves as a baseline setting since it represents
the current practice of using self-reported questionnaire to keep track of depression symptom
improvement status. The two settings, Location (L.) and Location + Location baseline (L.+Lbs),
only leverage automatically collected sensory data, requiring no user interaction. The two settings
that involve QIDS baseline and location sensory data, i.e., Location + QIDS baseline (L.+Qbs) and
Location + QIDS baseline + Location baseline (L.+Lbs+Qbs), require little effort from participants
since baseline questionnaire score is often collected routinely before treatment starts. The last
setting that uses all the QIDS and location sensory data (All) serves to quantify how much benefits
we obtain by using both types of data.

8.2.1 Overall Prediction Results. Tables 2 and 3 summarize the overall prediction results using
SVM and XGBoost classifiers on the combined dataset of Android and iOS users, respectively. We
compare the results using the multiple methods across the multiple scenarios as described earlier.
In the following, we only describe the results using SVM, since it achieves better results than using
XGBoost in nearly all the settings.

The top two rows in Table 2 shows the results for the baseline setting Q.+Qbs (QIDS + QIDS
baseline). The Q.+Qbs (w/ CL) setting refers to using QIDS and baseline QIDS scores to obtain
embeddings through contrastive learning, which are then used as input to classifiers for prediction.
In contrast, the Q.+Qbs (w/o CL) setting directly uses the QIDS values without contrastive learning.
We see Q.+Qbs (w/ CL) leads to F1 score of 0.75 (𝜎 = 0.02), significantly better than that without CL,
indicating that CL improves the ability of the model to capture meaningful representations from
self-reported questionnaires.
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Table 2. Overall prediction results using SVM models.

Approach Setting F1 Prec. Rec. Spec. AUROC
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

w/ CL Q.+Qbs 0.75 0.02 0.79 0.07 0.72 0.08 0.80 0.10 0.76 0.03
w/o CL Q.+Qbs 0.70 0.06 0.67 0.08 0.76 0.08 0.78 0.07 0.73 0.05

Joint
CL + DA

L. 0.68 0.06 0.70 0.05 0.67 0.09 0.72 0.06 0.69 0.05
L.+Lbs 0.70 0.04 0.68 0.02 0.73 0.08 0.66 0.06 0.71 0.03
L.+Qbs 0.73 0.05 0.79 0.06 0.75 0.06 0.73 0.07 0.74 0.04
L.+Lbs+Qbs 0.76 0.04 0.74 0.04 0.77 0.06 0.73 0.06 0.78 0.04
All 0.79 0.05 0.77 0.06 0.79 0.03 0.77 0.08 0.80 0.05

Sequential
CL + DA

L. 0.63 0.08 0.70 0.07 0.58 0.10 0.74 0.07 0.66 0.05
L.+Lbs 0.65 0.10 0.73 0.08 0.60 0.12 0.78 0.07 0.69 0.08
L.+Qbs 0.66 0.07 0.69 0.06 0.63 0.10 0.72 0.06 0.68 0.06
L.+Lbs+Qbs 0.69 0.07 0.73 0.08 0.66 0.09 0.75 0.09 0.70 0.06
All 0.73 0.08 0.73 0.07 0.72 0.10 0.74 0.08 0.73 0.07

DA only

L. 0.57 0.05 0.51 0.03 0.67 0.09 0.51 0.06 0.58 0.04
L.+Lbs 0.59 0.04 0.52 0.03 0.68 0.09 0.51 0.07 0.60 0.03
L.+Qbs 0.61 0.04 0.52 0.02 0.76 0.09 0.52 0.09 0.62 0.03
L.+Lbs+Qbs 0.63 0.03 0.60 0.02 0.69 0.09 0.53 0.08 0.63 0.02
All 0.68 0.05 0.62 0.04 0.75 0.09 0.54 0.07 0.67 0.05

No CL or DA

L. 0.53 0.12 0.52 0.14 0.55 0.12 0.89 0.05 0.54 0.07
L.+Lbs 0.56 0.09 0.43 0.09 0.83 0.16 0.78 0.05 0.56 0.08
L.+Qbs 0.55 0.07 0.42 0.06 0.84 0.16 0.76 0.07 0.57 0.07
L.+Lbs+Qbs 0.60 0.05 0.47 0.05 0.84 0.14 0.81 0.05 0.59 0.06
All 0.64 0.07 0.55 0.08 0.82 0.16 0.86 0.06 0.64 0.07

The rest of the rows in Table 2 show the results for the settings that involve location data. For each
setting, we see that Joint CL + DA consistently leads to the best F1 score, followed by Sequential
CL + DA, DA only, and last the baseline approach that uses the original data (i.e., no CL or DA).
This highlights the benefit of applying DA, as well as integrating CL and DA, particularly jointly.
For Joint CL + DA, the setting of L.+Lbs+Qbs (i.e., combining location features, QIDS baseline, and
location baseline) leads to better F1 score than using location features alone, and the two settings
that combining location data with either location baseline or QIDS baseline. It also leads to good
performance in terms of other metrics (precision, recall, specificity, and AUROC). In addition, the
F1 scores of L.+Qbs and L.+Lbs tend to be better than those using location features alone.
These results are consistent with earlier results reported in [53], which showed that baseline

features can capture initial individual variations and enhance model accuracy. For Joint CL + DA,
the F1 score of L.+Lbs+Qbs (mean 0.76, 𝜎 = 0.04) is similar to the result of Q.+Qbs (w/ CL), while
does not require users to input QIDS scores periodically. Not surprisingly, when using all the
features (i,e., location features, location baseline, QIDS baseline, and QIDS scores), the highest F1
score of 0.79 is achieved.

8.2.2 Prediction Results for iOS and Android Datasets. We next present the prediction results for the
iOS and Android datasets separately. Specifically, for each fold, we obtain the prediction results for
the subsets of iOS and Android users, respectively, and then obtain the mean and standard deviation
for each metric for these two subsets of users across the folds. We again find that SVM outperforms

ACM Trans. Intell. Syst. Technol., Vol. 0, No. 0, Article 0. Publication date: 2025.



0:18
Soumyashree Sahoo, Md. Zakir Hossain,Chinmaey Shende, Parit Patel, Yushuo Niu, Reynaldo Morillo, Xinyu Wang,

Shweta Ware, Jinbo Bi, Jayesh Kamath, and Alexander Russel, Dongjin Song, Qian Yang, Bing Wang
Table 3. Overall prediction results using XGBoost models.

Approach Setting F1 Prec. Rec. Spec. AUROC
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

w/ CL Q.+Qbs 0.71 0.07 0.80 0.10 0.65 0.11 0.79 0.05 0.73 0.05
w/o CL Q.+Qbs 0.68 0.07 0.65 0.14 0.75 0.12 0.77 0.10 0.71 0.05

Joint
CL + DA

L. 0.64 0.04 0.58 0.02 0.73 0.11 0.56 0.10 0.64 0.01
L.+Lbs 0.65 0.04 0.63 0.04 0.68 0.11 0.60 0.09 0.67 0.02
L.+Qbs 0.67 0.07 0.62 0.04 0.74 0.11 0.56 0.07 0.67 0.05
L.+Lbs+Qbs 0.70 0.04 0.70 0.05 0.70 0.07 0.70 0.09 0.72 0.05
All 0.76 0.03 0.76 0.02 0.76 0.05 0.76 0.02 0.77 0.03

Sequential
CL + DA

L. 0.59 0.07 0.60 0.06 0.59 0.10 0.60 0.11 0.61 0.07
L.+Lbs 0.62 0.05 0.65 0.04 0.59 0.09 0.67 0.08 0.63 0.04
L.+Qbs 0.62 0.07 0.63 0.05 0.61 0.10 0.64 0.10 0.63 0.06
L.+Lbs+Qbs 0.66 0.05 0.69 0.05 0.63 0.08 0.72 0.06 0.68 0.04
All 0.70 0.06 0.72 0.07 0.69 0.06 0.73 0.08 0.71 0.05

DA only

L. 0.43 0.08 0.31 0.03 0.59 0.26 0.54 0.14 0.45 0.07
L.+Lbs 0.47 0.06 0.33 0.05 0.65 0.09 0.56 0.09 0.49 0.08
L.+Qbs 0.53 0.08 0.46 0.05 0.64 0.17 0.78 0.06 0.55 0.07
L.+Lbs+Qbs 0.57 0.12 0.56 0.09 0.60 0.12 0.87 0.05 0.60 0.10
All 0.66 0.10 0.59 0.13 0.81 0.09 0.82 0.08 0.67 0.08

No CL or DA

L. 0.35 0.08 0.27 0.06 0.54 0.17 0.55 0.08 0.39 0.07
L.+Lbs 0.36 0.09 0.26 0.06 0.58 0.17 0.51 0.09 0.40 0.08
L.+Qbs 0.51 0.16 0.51 0.25 0.63 0.22 0.82 0.14 0.55 0.11
L.+Lbs+Qbs 0.50 0.10 0.41 0.10 0.67 0.12 0.79 0.09 0.50 0.07
All 0.64 0.12 0.58 0.12 0.75 0.15 0.89 0.04 0.61 0.08

XGBoost across nearly all settings. Therefore, we focus on SVM results in the remainder of this
section.
Table 4 summarizes the SVM results for the iOS dataset. It shows similar trends as the overall

results: Joint CL + DA outperforms Sequential CL + DA, followed by DA only, and the baseline case
of using no CL or DA leads to the worst performance. In addition, for Joint CL + DA, the setting
of using location features with location and QIDS baselines (L.+Lbs+Qbs) leads to better results
than using location features alone, or location features with only location or QIDS baseline. The
F1 score of this setting is 0.78 (𝜎 = 0.03), comparable to that when using QIDS and QIDS baseline
with CL (mean 0.77, 𝜎 = 0.04). Again, when using all the features, the F1 score (0.80) is the highest
among all the settings.

Table 5 summarizes the SVM results for the Android dataset. We see that in general the results
are worse than the overall results and the results for the iOS dataset. This might be because of the
much smaller dataset for Android as well as the imbalance between improved and not-improved
samples in this dataset. For each setting, the results using Joint CL + DA are significantly better
than other methods, indicating that this method is particularly beneficial for small and imbalanced
datasets. Specifically, using this method, the highest average F1 score is 0.67 (𝜎 = 0.08), for the
setting when combining location features and QIDS baseline (L.+Qbs). It is slightly better than the
average F1 score of 0.65 (𝜎 = 0.09) for the setting of L.+Lbs+Qbs, and is comparable to the average
F1 score of 0.68 (𝜎 = 0.07) using QIDS and QIDS baseline with CL.
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Table 4. Prediction results for iOS users using SVM models.

Approach Setting F1 Prec. Rec. Spec. AUROC
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

w/ CL Q.+Qbs 0.77 0.04 0.81 0.05 0.74 0.10 0.78 0.09 0.78 0.03
w/o CL Q.+Qbs 0.72 0.07 0.69 0.09 0.77 0.09 0.74 0.09 0.76 0.06

Joint
CL + DA

L. 0.70 0.06 0.74 0.05 0.67 0.10 0.67 0.09 0.69 0.05
L.+Lbs 0.72 0.04 0.71 0.03 0.72 0.08 0.60 0.05 0.72 0.04
L.+Qbs 0.75 0.05 0.80 0.06 0.76 0.06 0.67 0.07 0.76 0.04
L.+Lbs+Qbs 0.78 0.03 0.76 0.04 0.79 0.06 0.66 0.08 0.77 0.04
All 0.80 0.04 0.80 0.06 0.81 0.05 0.71 0.08 0.81 0.05

Sequential
CL + DA

L. 0.66 0.07 0.69 0.06 0.63 0.10 0.72 0.06 0.68 0.06
L.+Lbs 0.70 0.10 0.75 0.09 0.67 0.09 0.75 0.09 0.71 0.08
L.+Qbs 0.67 0.10 0.68 0.07 0.66 0.10 0.68 0.08 0.67 0.09
L.+Lbs+Qbs 0.71 0.09 0.76 0.08 0.66 0.12 0.77 0.09 0.72 0.08
All 0.75 0.10 0.77 0.15 0.75 0.10 0.78 0.09 0.76 0.09

DA only

L. 0.63 0.07 0.58 0.05 0.70 0.11 0.50 0.07 0.61 0.06
L.+Lbs 0.64 0.07 0.58 0.05 0.71 0.12 0.52 0.08 0.64 0.06
L.+Qbs 0.66 0.05 0.57 0.05 0.78 0.11 0.54 0.10 0.64 0.04
L.+Lbs+Qbs 0.65 0.05 0.63 0.06 0.68 0.09 0.52 0.11 0.67 0.05
All 0.69 0.07 0.65 0.06 0.74 0.12 0.53 0.10 0.68 0.06

No CL or DA

L. 0.52 0.11 0.52 0.13 0.53 0.12 0.86 0.07 0.54 0.07
L.+Lbs 0.56 0.09 0.41 0.08 0.90 0.14 0.64 0.08 0.56 0.08
L.+Qbs 0.57 0.07 0.42 0.06 0.91 0.16 0.66 0.09 0.58 0.07
L.+Lbs+Qbs 0.61 0.06 0.47 0.08 0.91 0.14 0.71 0.09 0.62 0.06
All 0.65 0.07 0.54 0.07 0.86 0.16 0.79 0.09 0.65 0.07

9 Discussion
Main findings. Our results demonstrate that applying domain adaptation and contrastive learning
are effective strategies for leveraging combined Android and iOS data to train machine learning
models for predicting depression treatment outcomes. Specifically, these approaches consistently
outperform models trained without domain alignment or representation learning across all user
groups. Among the methods that we explored, the Joint CL + DA approach closely integrates CL
and DA, leading to the best prediction results when used with classifiers.
Our findings also highlight that using passively collected location features, when combined

with baseline QIDS score, can achieve a mean F1 score as high as 0.76, comparable to that when
using QIDS and baseline QIDS scores. These results indicate that using passively collected location
data, without the need for periodic self-report questionnaires, offers a promising alternative for
predicting depression treatment outcomes.

Limitations of our work. Our work uses a small sample size from 66 participants. Therefore,
our results need to be validated using larger datasets. In addition, the dataset that we analyzed
comes predominantly from female participants, which can bias the results. This gender imbalance is
consistent with the findings that women are approximately twice as likely as men to be diagnosed
with depression [17], and are more likely to seek treatment (and participate in clinical studies) [66].
In our analysis, we used stratified 𝑘-fold cross-validation to address this gender imbalance. One
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Table 5. Prediction results for Android users using SVM models.

Approach Setting F1 Prec. Rec. Spec. AUROC
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

w/ CL Q.+Qbs 0.68 0.07 0.73 0.11 0.68 0.12 0.82 0.08 0.71 0.05
w/o CL Q.+Qbs 0.65 0.14 0.65 0.18 0.73 0.24 0.85 0.09 0.69 0.12

Joint
CL + DA

L. 0.61 0.09 0.58 0.11 0.66 0.09 0.79 0.09 0.62 0.08
L.+Lbs 0.64 0.08 0.56 0.03 0.77 0.13 0.75 0.09 0.65 0.07
L.+Qbs 0.67 0.08 0.79 0.08 0.67 0.08 0.81 0.09 0.67 0.07
L.+Lbs+Qbs 0.65 0.09 0.63 0.09 0.66 0.10 0.84 0.05 0.67 0.08
All 0.67 0.09 0.66 0.09 0.69 0.10 0.85 0.10 0.69 0.08

Sequential
CL + DA

L. 0.49 0.19 0.66 0.21 0.47 0.28 0.83 0.13 0.52 0.12
L.+Lbs 0.55 0.12 0.70 0.14 0.47 0.14 0.84 0.08 0.55 0.09
L.+Qbs 0.62 0.12 0.72 0.10 0.58 0.20 0.79 0.12 0.65 0.06
L.+Lbs+Qbs 0.65 0.14 0.68 0.11 0.65 0.20 0.72 0.16 0.69 0.10
All 0.71 0.10 0.72 0.09 0.70 0.13 0.71 0.11 0.70 0.10

DA only

L. 0.41 0.15 0.36 0.17 0.54 0.17 0.40 0.09 0.44 0.12
L.+Lbs 0.43 0.13 0.36 0.16 0.56 0.14 0.40 0.20 0.44 0.10
L.+Qbs 0.46 0.13 0.37 0.12 0.66 0.15 0.49 0.12 0.46 0.08
L.+Lbs+Qbs 0.57 0.13 0.50 0.15 0.70 0.16 0.55 0.14 0.62 0.09
All 0.60 0.13 0.51 0.12 0.76 0.21 0.56 0.09 0.65 0.09

No CL or DA

L. 0.37 0.40 0.35 0.39 0.44 0.47 0.96 0.05 0.40 0.23
L.+Lbs 0.39 0.47 0.45 0.52 0.36 0.46 0.99 0.04 0.42 0.23
L.+Qbs 0.39 0.47 0.36 0.45 0.45 0.52 0.92 0.07 0.39 0.28
L.+Lbs+Qbs 0.44 0.50 0.42 0.50 0.45 0.52 0.96 0.06 0.47 0.28
All 0.48 0.48 0.52 0.50 0.48 0.50 0.97 0.06 0.52 0.26

future direction is developing enrollment strategies to achieve gender balance and analyze the
gender balanced datasets to validate our results.

Our dataset is also imbalanced in the amount of data coming from the iOS and Android platforms.
The Android dataset is much smaller than the iOS dataset. As a result, we observed better prediction
results for iOS than Android, despite data augmentation to balance the two datasets. Having more
balanced data from these two platforms might lead to better results, which needs to be further
investigated.
Despite using the data fusion methodology in [68] to handle missing location data, we still

observed a significant amount of missing data, which reduced the dataset that we can analyze.
More reliable data collection strategies can reduce the amount of missing data. Along similar lines,
developing more effective data imputation techniques, particularly those that can handle a large
amount of missing data, can be helpful future directions.

Last, our study focused only on location features. Adding other sensing modalities (e.g., motion
from accelerometers or sleep patterns) can provide insights into different aspects of human behavior
and further improve prediction accuracy. Exploring such additional sensing data is an important
direction for future work to enhance passive monitoring of mental health outcomes.

Relevance to clinical setting. Our study followed a rigorous study design that enrolled partic-
ipants right after they started a new pharmacological treatment for depression and followed up
the participants monthly during their enrollment in the study. While our results are promising,
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indicating that real-time data collected on smartphones can assist depression treatment outcome
prediction, a significant amount of work is needed to use real-time sensory data in clinical setting.
One challenge is designing a system that is compatible with the workflow in the clinical setting.
Another challenge is further improving prediction accuracy, and providing more interpretable
machine learning results to clinicians. Since such sensing data has not been used in clinical settings,
it is not clear what prediction accuracy is meaningful for using such data in practice. We believe
higher prediction accuracy can be achieved through more innovative machine learning approaches
and combining multiple types of sensing data.

10 Conclusions
In this paper, we have explored using domain adaptation techniques to align location features col-
lected on iOS and Android platforms to form a larger dataset. We have further explored integrating
contrastive learning and domain adaptation sequentially or jointly to learn feature embeddings.
Using the embeddings, we have trained machine learning models to predict the status of depression
treatment. Our results show that using embeddings obtained from joint contrastive learning and
domain adaptation leads to the best prediction accuracy. In addition, we show that using location
sensory data combined with baseline self-reported questionnaire score can lead to F1 score up to
0.76, comparable to the F1 score obtained using periodic self-reported scores.
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