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Wireless sniffers are often used to monitor access points (APs) in wireless LANs (WLANs) for network
management, fault detection, and traffic characterization. It is cost effective to deploy single-radio snif-
fers that can monitor multiple nearby APs. To achieve this, a sniffer needs to switch among multiple chan-
nels since these APs often operate on orthogonal channels. In this paper, we formulate and solve two
optimization problems on sniffer channel selection. Both problems require that each AP be monitored
by at least one sniffer. In addition, one optimization problem requires minimizing the maximum number
of channels that a sniffer listens to, and the other requires minimizing the total number of channels that
the sniffers listen to. We prove that both optimization problems are NP-hard. For each problem, we pro-
pose three algorithms to solve it, one based on integer programming (IP), one based on LP-relaxation, and
the third based on a greedy heuristic. We evaluate the performance of the various algorithms using two
real-world datasets. Our results show that, for each problem, all the three algorithms are effective in
achieving their optimization goals, and overall, the LP-based algorithm outperforms the other two
algorithms.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Wireless LANs (WLANs) have been widely deployed in enter-
prise and campus networks. With this wide deployment, it be-
comes increasingly important to understand the behavior of
WLANs, and automatically manage WLANs to ensure their normal
operation and security. A widely-used and effective technique for
understanding and monitoring WLANs is air sniffing, where a set
of sniffers (also called air monitors, wireless monitors, or radio
monitors) are placed inside a WLAN, each passively listening to
the air waves in its vicinity, and collecting detailed MAC/PHY
information (e.g., [31,19,12,20,14,13,23,21,10,9,25], more details
in Section 2). Air sniffing has been shown to complement wire
side monitoring that uses SNMP and base-station logs
[31,19,14,15,10,9]. This is because the detailed MAC/PHY informa-
tion (e.g., signal strength, spectrum density, collision, retransmis-
sions, and backoff times) provides valuable insights into the
behavior of wireless medium and protocols, which can help net-
work administrators to optimize radio coverage and determine
the root causes of network faults for effective trouble shooting. In
addition, for mission critical WLANs with high security require-
ments, such as those deployed in banks or military bases [1],
ll rights reserved.
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PHY/MAC visibility provided by the sniffers is critical, as wired
solution can only detect upper layer threats.

While requiring additional infrastructure, the insights and ben-
efits achieved by air sniffing cannot be obtained from traditional
monitoring techniques (e.g., SNMP). On the other hand, large-scale
WLAN monitoring through air sniffing faces several challenges.
First, it requires a large number of sniffers, which can be costly to
deploy and difficult to manage. This problem is compounded by
the fact that access points (APs) in WLANs can operate on different
channels (e.g., 802.11b/g supports 3 orthogonal channels, and
802.11a supports 13 orthogonal channels), while an air sniffer can
only listen to a single channel at a given point of time (although a
sniffer may use multiple radios to monitor multiple channels simul-
taneously, such type of sniffers are large and expensive to deploy
[16]). Therefore, in the worst case, the required number of sniffers
can be the same as the number of APs. Secondly, the sniffers gener-
ate a large amount of measurement data, which can be expensive to
store, transfer and process. For instance, in [14], up to 80 Mbps of
traffic is generated for monitoring an academic building, which
needs to be transferred and processed at a central server.

The above challenges in large-scale air sniffing can be overcome
by channel sampling, where each sniffer samples the network traffic
by visiting multiple channels periodically [16]. Using channel sam-
pling, a sniffer can monitor multiple nearby APs that operate on
different channels, and hence less sniffers are needed. Further-
more, traffic sampling leads to less amount of measurement data.
r monitoring wireless LANs, Comput. Commun. (2012), http://dx.doi.org/
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Table 1
Key notation.

Notation Definition

V Set of APs
C Set of channels that the APs use
cv Channel that AP v uses, v 2 V ; cv 2 C
M Set of sniffers
Mv Set of sniffers that can hear the transmission from AP v
uðvÞ Assignment to AP v (the set of sniffers that monitor v)
CuðmÞ Set of channels that sniffer m listens to based on assignments uð�Þ
Mu Set of sniffers that are used based on assignments uð�Þ
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As shown in [16], although not capturing all the traffic, channel
sampling is useful for a number of applications, including security
monitoring, anomaly detection, fault diagnosis, network character-
ization, and assistance to AP deployment.

In this paper, we address an important problem in channel sam-
pling, namely, how to select channels for the sniffers to reduce the
monitor cost. More specifically, we consider two problems. Both of
them require that each AP be monitored by at least one sniffer, and
in addition, one problem minimizes the maximum number of
channels that a sniffer listens to, while the other minimizes the to-
tal number of channels that the sniffers listen to. Both optimization
problems aim at reducing the number of channels that a sniffer
needs to scan (in terms of worst case and average sense, respec-
tively) since when a sniffer scans less channels, it can spend more
time on each channel to improve sampling quality.1 We prove that
both optimization problems are NP-hard. For each problem, we pro-
pose three algorithms to solve it, one based on integer programming
(IP), one based on LP-relaxation, and the third based on a greedy
heuristic. We evaluate the performance of the various algorithms
using two real-world datasets. Our results show that, for each prob-
lem, all the three algorithms are effective in achieving their optimi-
zation goals, and overall, LP-based algorithms outperform the other
two algorithms.

The rest of the paper is organized as follows. Section 2 describes
related work. Section 3 describes the problem setting. Sections 4
and 5 describe our sniffer channel selection algorithms for the
two optimization problems, respectively. Section 6 presents per-
formance evaluation. Finally, Section 7 concludes the paper and de-
scribes future work.
2 One motivation of scanning all the channels in [16,17] is that it can capture rogue
2. Related work

Several studies use air sniffing to understand and/or manage
WLANs. Adya et al. [8] propose a client-based architecture that
instruments wireless clients and (if possible) APs to monitor wire-
less medium and their nearby devices to detect and diagnose
faults. Bahl et al. [11] propose using dense array of inexpensive
radios (DAIR) through USB wireless adaptors that are attached to
desktops to detect rogue wireless devices and Denial of Service
attacks on WLANs. Later on, Chandra et. al. extend this DAIR archi-
tecture to incorporate location estimation and develop a location-
based management system for WLANs [12]. Yan and Chen propose
a model-based fault diagnosis approach that detects and localizes
faults through self-monitoring at the APs [29]. Yeo et al. propose
a framework that merges link-level measurement from multiple
distributed air sniffers for WLAN management [31,32]. This frame-
work is substantially extended in Jigsaw [14] and Wit [20], where
the authors provide formal and systematic techniques to construct
a global view of the network by merging and synchronizing traces
from multiple locations. The global view has been used for under-
standing many aspects of WLANs, including congestion [19], link-
layer losses and anomalies [20,31], co-channel interference [14],
and sources of delays [13]. It has also been used to determine
root-cause of physical-layer anomalies [23], and identify threats
and attacks [21,22]. In addition to the above studies in academia,
air sniffing has also been used in many commercial products
(e.g., [2,4,5,3,7]). Our study uses air sniffers to monitor APs, and fo-
cuses on sniffer channel assignment, which has not been studied in
these literatures.

As described earlier, air sniffing through dedicated sniffers can
lead to high deployment cost and a large amount of monitoring
1 We discuss tradeoffs of these two optimization problems in Section 3. In practice,
a network administrator may choose to use one of these two optimization objectives
based on the goals of the WLAN monitoring.
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traffic. The studies of [16,17] propose channel sampling to address
the above two issues. In particular, the study of [16] proposes two
sampling strategies, equal-time sampling where a sniffer spends
equal amount of time scanning each channel, and proportional
sampling where the amount of time that a sniffer spends on a
channel is proportional to the amount of traffic on that channel.
These two strategies are improved in [17] where the scanning of
the sniffers are coordinated to increase the number of unique
frames. Our study determines the set of channels that a sniffer
scans during channel sampling. We require each sniffer to monitor
a subset of selected channels, while [16,17] require each sniffer to
monitor all available channels, regardless of whether the channels
are being used or not by the nearby APs.2 By eliminating the scan-
ning over unused channels, our approach provides more effective
traffic sampling. Several recent studies design centralized or distrib-
uted sniffer channel assignment algorithms [10,9,24,25]. These stud-
ies assume that the sniffers have multiple radios or assign channels
to sniffers in a probabilistic manner, which differ from the context of
channel sampling as in our study.

3. Problem setting

We now describe the problem setting. The key notation is sum-
marized in Table 1 for easy reference. Consider a WLAN with a set
of APs, V. Each AP uses a single radio, and hence a single channel, at
any point of time (if an AP uses multiple channels simultaneously,
we can regard it as multiple APs, each with a single channel). Let C
denote the set of channels that the APs operate on. In particular,
suppose AP v operates on channel cv , cv 2 C. A set of sniffers (or
monitors), M, is spread out in the WLAN to monitor the APs.3 Let
Mv denote the set of sniffers that are within the transmission range
of v (i.e., Mv is the set of sniffers that can overhear the transmission
of v when listening to channel cv ), Mv # M. We assume that
jMv jP 1, i.e., at least one sniffer can monitor v ; 8v 2 V . Each sniffer
has a single radio, and switches among multiple channels to monitor
its nearby APs when these APs operate on different channels.

Motivated by what is adopted by commercial products (e.g.,
[5]), we assume that the WLAN uses a centralized management
architecture, where a central controller manages the operation of
the APs. The central controller knows the coordinates of the APs,
and determines the channel for each AP. Furthermore, it knows
the location of the sniffers, and determines the set of channels that
each sniffer scans based on the locations of the APs and sniffers,
and the channels of the APs. The PHY/MAC information collected
by the sniffers is transmitted to the central controller for fault diag-
nosis and security analysis. This centralized architecture has many
benefits: it reduces deployment and operating expenses, and
APs that operate on unused channels. Rogue APs, however, can be effectively detected
using other approaches such as [28,30].

3 The sniffers can be deployed as a separate infrastructure, or integrated on the APs
themselves as in [29]. In this paper, for ease of exposition, we assume sniffers are
deployed as a separate infrastructure.
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Fig. 1. Two examples to illustrate the problem setting. Both examples contain three APs, v1; v2 and v3, and three sniffers, m1; m2, and m3, where sniffer m1 can monitor v1

and v3; sniffer m2 can monitor v1 and v2; and sniffer m3 can monitor v2 and v3. In (a) APs v1; v2, and v3 use channels c1; c2; c3, respectively; in (b) APs v1 and v2 use channel
c1, and AP v3 uses channel c2.
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significantly simplifies daily operation and management of small
to large-scale WLANs. Fig. 1 illustrates the problem setting using
two examples. Both examples contain three APs, v1; v2; v3, and
three sniffers, m1; m2; m3, that are controlled by the central con-
troller. In addition, sniffer m1 is in the transmission ranges of v1

and v3; sniffer m2 is in the transmission ranges of v1 and v2; sniffer
m3 is in the transmission ranges of v2 and v3. They differ in the
channels that the APs use: in Fig. 1(a), APs v1; v2, and v3 use chan-
nels c1; c2; and c3, respectively, while in Fig. 1(b), APs v1; v2 use
channel c1, and v3 uses channel c2.

Our goal is to determine the set of channels that each sniffer
monitors. Let uðvÞ denote the set of sniffers that monitor AP v, re-
ferred to as assignment to v. Let CuðmÞ denote the set of channels
that sniffer m monitors based on the assignment uð�Þ. Then
CuðmÞ ¼ fcv jm 2 uðvÞg. Clearly, CuðmÞ ¼ ;, if m R uðvÞ; 8v 2 V .
In this case, sniffer m is not used, and does not need to be deployed.
We further define the workload of a sniffer as the number of chan-
nels that the sniffer scans. A sniffer is used if it monitors at least
one channel, i.e., its workload is non-zero. Let Mu # M denote the
set of sniffers that are being used. That is, Mu ¼ fmjCuðmÞ – ;g.

We consider two sniffer channel selection problems. Both vari-
ants require that each AP be monitored by at least one sniffer, i.e.,
uðvÞ– ;; 8v 2 V . In addition, the first variant minimizes the max-
imum number of channels that a sniffer listens to (i.e., minimizes
maxm2MjCuðmÞj), while the second variant minimizes the sum of
the channels that the sniffers listen to (i.e., minimizesP

m2MjCuðmÞj). We refer to these two variants as min–max and
min-sum sniffer channel selection problems, respectively. In the
min–max problem, the workloads of the sniffers are more balanced
than those in the min-sum problem. On the other hand, the min-
sum problem may need to use less sniffers and hence may have
a lower deployment cost. The intuition comes from a special case:
when there is a single channel, the min-sum problem minimizes
the number of sniffers that need to be used. This is because, in this
case, each sniffer needs to scan at most one channel, and hence
minimizing the sum of the channels is equivalent to minimizing
the number of sniffers that are used. Indeed, our extensive simula-
tion demonstrates that the min-sum problem generally needs less
sniffers than the min–max problem (see Section 6).

We further illustrate the difference of the min–max and min-
sum problems using the two examples in Fig. 1. The optimal solu-
tions of the two problems are the same for the example in Fig. 1(a),
while differ for the example in Fig. 1(b). Specifically, for the exam-
ple in Fig. 1(a), the optimal channel selection for both problems is
making sniffers m1; m2; m3 listen to channels c1; c2; c3, respec-
tively. For the example in Fig. 1(b), the optimal solution of the
min–max problem is one, i.e., m1 uses channel c1 to monitor
v1; m2 uses channel c1 to monitor v2, and m3 uses channel c2 to
Please cite this article in press as: X. Chen et al., Sniffer channel selection fo
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monitor v3, which requires three sniffers, and the sniffer work-
loads are balanced. This channel selection leads to a solution of
three for the min-sum problem, which is not optimal. The optimal
solution of the min-sum problem is two, e.g., achieved as m2 uses
channel c1 to monitor APs v1 and v2, and m3 uses channel c2 to
monitor v2, which only requires two sniffers, but the sniffer work-
loads are not balanced.

Last, neither optimization problem explicitly minimizes the
number of sniffers that is being used (i.e., jMuj). Therefore, after
solving the optimization problems, we post process the assign-
ments to remove redundant sniffers to reduce the number of snif-
fers that are being used (see Sections 4 and 5).
4. Algorithms for min–max sniffer channel selection

We prove that the min–max sniffer channel selection problem
is NP-hard by reducing 3-SAT (a known NP-complete problem) to
it; the proof is found in Appendix A. In the following, we develop
three algorithms to solve it. These three algorithms are based on
integer programming (IP), linear programming (LP), and a greedy
heuristic, referred to as IP-min–max, LP-min–max, and Greedy-
min–max, respectively. We next describe the three algorithms in
detail, and illustrate the results of solving the example in
Fig. 1(a) (all three algorithms provide the same solution for the
example in Fig. 1(b)). After obtaining a solution using one of the
three algorithms, some redundant sniffers may be removed while
still satisfying all the constraints. We therefore also propose a
post-processing procedure that removes redundant sniffers and
is applicable to all the three algorithms at the end of this section.

4.1. IP-min–max

Let xm;c be a 0–1 variable. In particular, xm;c ¼ 1 denotes that
sniffer m monitors channel c, and xm;c ¼ 0 denotes otherwise. Then
the min–max sniffer channel selection problem can be formulated
as an IP problem:

minimize : max
m2M

X
c2C

xm;c ð1Þ

subject to :
X

m2Mv

xm;cv P 1; 8v 2 V ð2Þ

xm;c 2 f0;1g ð3Þ

In the objective function,
P

c2Cxm;c , is the total number of channels
that sniffer m listens to, and Constraint (2) denotes that each AP
is monitored by at least one sniffer.

For a small-scale problem, the above IP problem can be solved di-
rectly (e.g., using CPLEX [6]) to obtain an optimal solution for the
r monitoring wireless LANs, Comput. Commun. (2012), http://dx.doi.org/
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4 Here we break ties arbitrarily. Developing other approaches for breaking ties is
left as future work.
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min–max problem. Afterwards, we determine the assignment for
each AP, and the set of channels for each sniffer as follows. For AP
v, let uðvÞ ¼ fmjm 2 Mv ; xm;cv ¼ 1g. That is, we let all the sniffers
that can overhear v and monitors cv (i.e., the channel that v operates
on) to monitor v. Correspondingly, we determine the set of channels
that each sniffer monitors, i.e., CuðmÞ ¼ fcjxm;c ¼ 1g;8m.

We now illustrate the results from IP-min–max using the exam-
ple in Fig. 1(a). Solving the IP problem, we have xmi ;ci

¼ 1; i ¼ 1;2;3;
others are 0, leading to an optimal solution of 1 for the min–max
problem. For AP v i; i ¼ 1;2;3, we have uðv iÞ ¼ fmig. And we have
CuðmiÞ ¼ ci; i ¼ 1;2;3.

4.2. LP-min–max

For large problems, we may not be able to solve the IP problem
in Section 4.1 directly. In our second algorithm, LP-min–max, we re-
lax the integer constraint on xm;c , and let ym;c 2 ½0;1� be the relaxed
value of xm;c. The original IP problem then becomes an LP problem,
which can be solved in polynomial time. After solving the LP prob-
lem, we choose channels based on ym;c as described in Algorithm 1.
In this algorithm, line 1 initializes uðvÞ; CuðmÞ and Mu to empty
sets, 8v 2 V ; 8m 2 M. Let Sv represent the set of APs that have al-
ready been considered. Line 2 initializes Sv to an empty set. The
algorithm then considers all the APs. For an AP v 2 V , if one moni-
tor, m, has already been selected to be used and can hear v (i.e.,
m 2 Mu \Mv), and furthermore m has been assigned to monitor
cv (i.e., cv 2 CuðmÞ), then we simply assign m to monitor v. If there
are multiple such monitors, all of them are recorded in uðvÞ. If no
such monitor exists, we pick a sniffer, m, that leads to the maximum
ym;cv among all the sniffers that are in the transmission range of AP v
(line 8). Once we add m to Mu, the APs that have already been con-
sidered may also be monitored by m. Lines 12–16 find such APs, and
assign m to monitor them as well. Line 18 updates Sv .

Algorithm 1. LP-min–max.

1: uðvÞ ¼ ;;8v 2 V , CuðmÞ ¼ ;;8m 2 M, Mu ¼ ;
2: Sv ¼ ;
3: for all v 2 V do
4: for all m 2 Mu \Mv and cv 2 CuðmÞ do
5: uðvÞ ¼ uðvÞ [ fmg
6: end for
7: if uðvÞ ¼ ; then
8: pick m ¼ arg maxm2Mv ym;cv

9: CuðmÞ ¼ CuðmÞ [ fcvg
10: uðvÞ ¼ fmg
11: Mu ¼ Mu [ fmg
12: for all v 0 2 Sv
13: if m 2 Mv 0 and cv 0 ¼ cv
14: uðv 0Þ ¼ uðv 0Þ [ fmg
15: end if
16: end for
17: end if
18: Sv ¼ Sv [ fvg
19: end for
20: Return ðu;Cu;MuÞ

We next briefly describe the complexity of LP-min–max. The LP
problem can be solved in polynomial time. In particular, when using
interior point method, the running time is OððjMkCjÞ4Þ, where jMkCj
is the number of variables. After solving the LP problem, the running
time of Algorithm 1 to assign sniffer channels is OðjV jÞ. Therefore, the
complexity of LP-min–max is OððjMkCjÞ4 þ jV jÞ ¼ OððjMkCjÞ4Þ.

We now illustrate LP-min–max using the example in Fig. 1(a).
Solving the LP problem, we have one solution, ym1 ;c1

¼
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0:5; ym1 ;c3
¼ 0:5, ym2 ;c1

¼ 0:5; ym2 ;c2
¼ 0:5, ym3 ;c2

¼ 0:5; ym3 ;c2
¼ 0:5.

Based on the values of ym;c; 8m 2 M; c 2 C, we assign m2 to monitor
v1 since both m1 and m2 can hear v1; ym1 ;c1

¼ ym2 ;c1
.4 Similarly, in the

next iteration, we can assign m2 to monitor v2. Finally, we choose m3

to monitor v3. Therefore, we have a solution from LP-min–max as
Cuðm2Þ ¼ fc1; c2g (m2 uses channel c1 and c2), and Cuðm3Þ ¼ fc3g,
leading to a suboptimal solution of 2 for the min–max problem.
The assignment results are uðv1Þ ¼ fm2g;uðv2Þ ¼ fm2g, and
uðv3Þ ¼ fm3g. Since Cuðm1Þ ¼ ;; m1 is not used.

Last, the following theorem states an approximation-ratio result
for LP-min–max; the proof is found in Appendix B.

Theorem 1. LP-min–max is an OðrÞ-approximation algorithm for the
min–max sniffer channel selection problem, where r ¼maxv2V jMv j,
i.e., r is the maximum number of sniffers that are in the transmission
range of an AP.
4.3. Greedy-min–max
Algorithm 2. Greedy-min–max.

1: uðvÞ ¼ fmjm 2 Mvg; 8v 2 V
2: CuðmÞ ¼ ;, Vm;c ¼ ;, 8m 2 M; c 2 C
3: for all v 2 V do
4: for all m 2 M do
5: if m 2 Mv then
6: CuðmÞ ¼ CuðmÞ [ fcvg
7: Vm;cv ¼ Vm;cv [ fvg
8: end if
9: end for
10: end for
11: Mu ¼ M
12: repeat
13: M0 ¼ ;
14: for all m 2 M
15: if 9c 2 CuðmÞ s.t. 8v 2 Vm;c; juðvÞjP 2 then
16: M0 ¼ M0 [m
17: end if
18: end for
19: if M0 – ; then
20: Suppose m 2 M0 monitors the largest number of

channels
21: C0uðmÞ ¼ fcjc 2 CuðmÞ; juðvÞjP 2;8v 2 Vm;cg
22: Pick c 2 C0uðmÞ that has the smallest jVm;cj
23: CuðmÞ ¼ CuðmÞ n fcg
24: if CuðmÞ ¼ ; then
25: Mu ¼ Mu n fmg
26: end if
27: uðvÞ ¼ uðvÞ n fmg; 8v 2 Vm;c

28: Vm;c ¼ ;
29: end if
30: until M0 is empty
31: Returnðu;Cu; MuÞ

The main idea of Greedy-min–max is as follows. Initially, a snif-
fer, m, is assigned to monitor an AP, v, as long as m is in the transmis-
sion range of v. The algorithm then runs in iterations. In each
iteration, it finds the sniffer with the maximum number of channels
and removes one channel from this sniffer when feasible (i.e., while
r monitoring wireless LANs, Comput. Commun. (2012), http://dx.doi.org/
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still satisfying the monitoring constraints) since our goal is to mini-
mize the maximum number of channels that a sniffer uses. The
iteration stops when none of the sniffers can remove any channel.

Algorithm 2 summarizes this algorithm. Line 1 initializes uðvÞ to
be the set of sniffers that are in the transmission range of v ; 8v 2 V .
Let Vm;c denote the set of APs that sniffer m monitors on channel c.
Lines 2–10 initialize CuðmÞ and Vm;c; 8m 2 M; c 2 C. Line 11 initial-
izes Mu, the set of sniffers that are being used, to be the entire set of
sniffers. In each iteration (lines 12–30), let M0 record the set of snif-
fers that can remove at least one channel. It then picks a sniffer, m,
that monitors the maximum number of channels from M0. After-
wards, it finds a channel, c, that can be removed and removes it from
CuðmÞ. If multiple such channels exist, it chooses to remove the
channel with the smallest number of APs (so that removing such a
channel may affect the least number of APs). If after removing the
channel, CuðmÞ becomes an empty set, then we remove the sniffer
m from Mu (lines 24 to 26). Last, line 27 removes m from the assign-
ment of all the APs in Vm;c (since m does not monitor channel c any
more), and line 28 sets Vm;c to an empty set.

We now briefly describe the complexity of Greedy-min–max.
The running time of lines 3–10 is OðjV jjMjÞ. In each iteration of loop
between lines 12–30, the algorithm picks one channel. So, in the
worst case, the running time of this loop is OðjMkCjÞ. The sub-loop
between line 14–18 can be finished within OðjMkVkCjÞ. We can ne-
glect the running time of line 19–29. In summary, the running time
of Greedy-min–max is OðjMj2jCj2jV jÞ.

We now illustrate Greedy-min–max using the example in
Fig. 1(a). Initially, we assign each sniffer to monitor two channels
at the beginning. In the iteration, we first set M0 ¼ fm1; m2; m3g,
and choose m1, and then remove channel 1 from Cuðm1Þ. Set
uðv1Þ ¼ fm2g;uðv2Þ ¼ fm2;m3g, and uðv3Þ ¼ fm1;m3g. In the sec-
ond iteration, we choose m2, and remove channel 2 from Cuðm2Þ.
Then set uðv2Þ ¼ fm3g;uðv3Þ ¼ fm1;m3g. In the last iteration, we
choose m3, and remove channel 3 from Cuðm3Þ. Therefore,
uðv3Þ ¼ fm1g. In summary, the Greedy-min–max solution is
Cuðm1Þ ¼ fc3g; Cuðm2Þ ¼ fc1g, and Cuðm3Þ ¼ fc2g. The assignment
results are uðv1Þ ¼ fm2g; uðv2Þ ¼ fm3g, and uðv3Þ ¼ fm1g. This is
also an optimal assignment, while it differs from the optimal solu-
tion from IP-min–max.
4.4. Remove redundant Sniffers

None of the above three algorithms explicitly minimizes the
number of sniffers that are being used. As a result, the solutions
may contain a large number of redundant sniffers. We next pro-
pose two algorithms to remove redundant sniffers. One is an opti-
mal algorithm, based on IP, and the other is a heuristic algorithm
that has much shorter running time.

The main idea of the IP-based algorithm is as follows. Given a
sniffer channel selection solution uð�Þ, it exhaustively searches
among the sniffers that are being used, and finds the maximum
number of sniffers that can be removed while still maintaining that
all the APs are being monitored by at least one sniffer. Specifically,
the IP formulation is

minimize : z ð4Þ
subject to :

X
m2uðvÞ

zm;cv P 1; 8v 2 V ð5Þ
X

m2Mu

zm;cm 6 z; 8cm 2 CuðmÞ; m 2 Mu ð6Þ

zm;c 2 f0;1g; 8m 2 M; 8c 2 C ð7Þ
zm;c ¼ 0; 8m R Mu; or c R CuðmÞ ð8Þ

In this formulation, we define an integer variable z that represents the
number of sniffers that are being used, and a set of binary variables
Please cite this article in press as: X. Chen et al., Sniffer channel selection fo
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zm;c , where zm;c ¼ 1 indicates that sniffer m listens channel c, and
zm;c ¼ 0 indicates otherwise, m 2 M; c 2 C. The objective function is
minimizing z. The value of zm;c depends on the channel assignment
solution uð�Þ: it is zero if sniffer m is not used or channel c is not in
CuðmÞ; otherwise, zm;c can be either 0 or 1 (see constrains (7) and
(8)). Constraint (5) requires the solution provided by zm;c covers all
of the APs. Since a sniffer is used if it monitors at least one channel,
the sum of zm;c for m 2 Mu; c 2 CuðmÞ is no less than the number of
sniffers that is used. The set of constraints in (6) lists all possible such
summations (there are Pm2Mu jCuðmÞj such summations).

We now apply the above IP-based algorithm to remove redun-
dant sniffers in the solutions provided by IP-min–max, LP-min–
max and Greedy-min–max for the example in Fig. 1(a). For the
solution from IP-min–max, constraint (6) is zm1 ;c1 þ zm2 ;c2þ
zm3 ;c3 6 z; for the solution from LP-min–max, constraint (6) is
zm2 ;c1 þ zm3 ;c3 6 z and zm2 ;c2 þ zm3 ;c3 6 z; and for the solution from
Greedy-min–max, constraint (6) is zm1 ;c3 þ zm2 ;c1 þ zm3 ;c2 6 z. For all
three solutions, solving the IP formulation (4)–(8), we find no sniffer
can be removed.

The IP Algorithm needs exponential running time, and hence is
not applicable to large-scale problems. We next propose a greedy
algorithm, Algorithm 3, that has a polynomial running time to re-
move redundant sniffers. In Algorithm 3, Vm;c denotes the set of
APs that are monitored by sniffer m on channel c. Lines 1–6 initial-
ize Vm;c based on the sniffer channel assignment. Lines 7–14 con-
sider all the sniffers that have been used, and for each sniffer, it
checks all the channels that have been selected for the sniffer,
and removes unnecessary channels (a channel is not necessary if
all the APs are still monitored by at least one sniffer after removing
this channel). At the end, lines 15–19 remove all the unnecessary
sniffers (i.e., sniffers that do not monitor any channel) from Mu.

Algorithm 3. Remove redundant sniffers (using a greedy
heuristic).

1: Vm;c ¼ ;, 8m 2 Mu; 8c 2 C
2: for all v 2 V do
3: for all m 2 uðvÞ do
4: Vm;cv ¼ Vm;cv [ fvg
5: end for
6: end for
7: for all m 2 Mu do
8: for all c 2 CuðmÞ do
9: if 8v 2 Vm;c , 9m0 – m s.t. v 2 Vm0 ;c

10: CuðmÞ ¼ CuðmÞ n fcg
11: uðvÞ ¼ uðvÞ n fmg; 8v 2 Vm;c

12: end if
13: end for
14: end for
15: for all m 2 M
16: if CuðmÞ ¼ ; then
17: Mu ¼ Mu n fmg
18: end if
19: end for

The running time of Algorithm 3 is
P

v2V juðvÞj þ
P

m2Mu
jCuðmÞj.

It may not provide optimal solutions. We compare the perfor-
mance of the two algorithms that remove redundant sniffers in
Section 6.

5. Algorithms for min-sum sniffer channel selection

It is easy to see that the min-sum sniffer channel selection prob-
lem is NP-hard. This is because when there is a single channel, it is
r monitoring wireless LANs, Comput. Commun. (2012), http://dx.doi.org/
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equivalent to the minimum set cover problem, which is NP-hard. We
also develop three algorithms to solve it, based on IP, LP-relaxation,
and a greedy heuristic, referred to as IP-min-sum, LP-min-sum, and
Greedy-min-sum, respectively. After running each algorithm, we
can again use the algorithms in Section 4.4 to remove redundant
sniffers. We next describe the three algorithms in detail.

IP-min-sum differs from IP-min–max in that it first solves an IP
problem with the objective function

minimize :
X
m2M

X
c2C

xm;c ð9Þ

instead of (1) as in IP-min–max. LP-min-sum differs from LP-min–
max in that it first solves an LP-relaxation problem for the min-
sum problem instead of the min–max problem. LP-min-sum has
the same complexity as LP-min–max. We have a similar approxi-
mate ratio result for LP-min-sum, as stated in the following theo-
rem. The proof is found in Appendix B.

Theorem 2. LP-min-sum is an OðrÞ-approximation algorithm for the
min-sum sniffer channel selection problem, where r ¼maxv2V jMv j,
i.e., r is the maximum number of sniffers that are in the transmission
range of an AP.

Algorithm 4. Greedy-min-sum.

1: uðvÞ ¼ ;; 8v 2 V , CuðmÞ ¼ ;; 8m 2 M, Mu ¼ ;
2: Vm;c ¼ ;, 8m 2 M; c 2 C
3: for all v 2 V do
4: for all m 2 M do
5: if m 2 Mv then
6: Vm;cv ¼ Vm;cv [ fvg
7: end if
8: end for
9: end for
10 V 0 ¼ V
11: repeat
12: pick m; c such that jVm;cj ¼maxm02M;c02C jVm0 ;c0 j
13: uðvÞ ¼ uðvÞ [ fmg; 8v 2 Vm;c

14: CuðmÞ ¼ CuðmÞ [ fcg
15: Mu ¼ Mu [ fmg
16: Vm0 ;c ¼ Vm0 ;c n Vm;c; 8m0 2 M
17: V 0 ¼ V 0 n Vm;c

18: until V 0 is empty
19: Return ðu;Cu;MuÞ

Greedy-min-sum models the sniffer channel selection problem as a
minimum set covering problem: we map each sniffer to jCj virtual
sniffers, each monitoring one channel in C, then the min-sum prob-
lem is equivalent to finding the minimum number of virtual sniffers
so that all APs are monitored and the number of virtual sniffers (and
hence the sum of the channels used by all the sniffers) is minimized.
Many algorithms have been proposed for the minimum set covering
problem. Greedy-min-sum follows a greedy algorithm for minimum
set covering problem [18]. It runs in iterations. In each iteration, it
picks a sniffer and channel pair that can monitor the maximum
number of APs. The iteration continues until all the APs are
monitored.

Algorithm 4 summarizes this algorithm (we used a similar
algorithm for scheduling sniffers to detect rogue APs in [30]). Let
Vm;c denote the set of APs that sniffer m could monitor if it listened
to channel c. Line 1 initializes CuðmÞ; Mu and uðvÞ to be empty
sets, 8m 2 M; v 2 V . Lines 2–9 initialize Vm;c; 8m 2 M; c 2 C. Line
10 initializes, V 0, the set of APs that have not been monitored, to
Please cite this article in press as: X. Chen et al., Sniffer channel selection fo
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V. The algorithm then runs in iterations until V 0 is empty. Using a
greedy strategy, line 12 chooses a monitor and channel pair, m
and c, that covers the maximum number of APs, i.e., jVm;cj ¼
maxm02M;c02C jVm0 ;c0 j (if multiple such sniffers exist, we choose the
one that monitors the minimum number of channels, i.e., with
the minimum jCuðmÞj). After choosing the monitor and channel
pair, m and c, line 13 assigns m to all the APs in Vm;c; line 14 adds
channel, c, into CuðmÞ; and line 15 adds monitor m to Mu. After-
wards, since the APs in Vm;c have already been monitored, line 16
removes Vm;c from Vm0 ;c;8m0 2 M, and line 17 removes Vm;c from V 0.

Following the results in [18], the approximation ratio of
Greedy-min-sum is Hd for the min-sum problem, where Hd ¼Pd

i¼11=i is the d-th harmonic number, and d is the maximum num-
ber of APs that a sniffer can monitor in its neighborhood. The
complexity of Greedy-min-sum is OðjMj2jCj2Þ: the dominant com-
plexity is in the loop between line 11–18; inside the loop, each
iteration chooses one monitor m and one channel c, leading to
OðjMjjCjÞ iterations, and inside an iteration, line 12 has running
time of OðjMjjCjÞ, and hence the total running time is OðjMj2jCj2Þ.

Last, we describe the assignment results when using the three
algorithms to solve the example in Fig. 1(b) (all three algorithms
obtain the same solution for the example in Fig. 1(a), details omit-
ted in the interest of space). When using IP-min-sum, we have
xm1 ;c1 ¼ 0; xm1 ;c2 ¼ 1; xm2 ;c1 ¼ 1; xm2 ;c2 ¼ 0; xm3 ;c1 ¼ 0, and xm3 ;c2 ¼
0, leading to an optimal solution of two. Specifically, the assign-
ment is uðv1Þ ¼ uðv2Þ ¼ fm2g; uðv3Þ ¼ fm1g, and hence
Cuðm1Þ ¼ fc2g; Cuðm2Þ ¼ fc1g, and Cuðm3Þ ¼ ;. When using LP-
min-sum, we have ym1 ;c1

¼ 0:5; ym2 ;c1
¼ 0:5; ym3 ;c1

¼ 0:5; ym3 ;c2
¼

0:5; ym1 ;c2
¼ 0:5; ym2 ;c2

¼ 0. Therefore, when selecting sniffer to
monitor channel 1, ym1 ;c1

; ym2 ;c1
, and ym3 ;c1

are all 0.5.5 Suppose
we choose m1, the solution is uðv1Þ ¼ fm1g; uðv2Þ ¼ fm3g;
uðv3Þ ¼ fm1g, and hence Cuðm1Þ ¼ fc1; c2g; Cuðm3Þ ¼ fc1g, and
Cuðm2Þ ¼ ;, leading to a suboptimal solution of 3. The solution ob-
tained by Greedy-min-sum is the same as that by IP-min-sum. We
again apply the algorithms in Section 4.4 to remove redundant snif-
fers, and find no sniffer can be removed for the solutions provided by
the three algorithms.
6. Performance evaluation

Our performance evaluation uses two empirical datasets. One
corresponds to the campus WLAN network in Dartmouth College.
The other is obtained using Placelab6 from Seattle downtown area.
r monitoring wireless LANs, Comput. Commun. (2012), http://dx.doi.org/
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Both datasets are obtained by wardriving. The APs are deployed in
buildings, and can be densely deployed at certain locations. The
Dartmouth dataset represents a well-managed wireless network,
while the Seattle dataset is a unmanaged network. The Dartmouth
dataset contains both AP location (2D coordinates) and channel
information. More specifically, the APs in the dataset use both
802.11b/g and 802.11a, and operate on 12 orthogonal 2.4 GHz/
5 GHz channels. In the following, we treat each AP as two duplicate
APs, each working on one channel. The Seattle dataset only contains
AP location information. We randomly assign each AP one channel
from the 24 available channels for 802.11b/g and 802.11a. The trans-
mission range of an AP in both datasets is set to 100 m.

We first evaluate the two algorithms that remove redundant
sniffers (see Section 4.4). Since the IP-based algorithm cannot solve
large-scale problems in a reasonable amount of time, we use a small
network to compare these two algorithms. Specifically, we choose
an area that contains 25 APs in the Dartmouth dataset. For system-
atic evaluation, we generate 1000 topologies by virtually placing
candidate sniffers uniformly randomly into the area. The number
of candidate sniffers is randomly chosen from 1 to the number of
APs. For each topology, we obtain a pair ðna; nsÞ, where na is the
number of APs that can be monitored by at least one sniffer, and
ns is the number of sniffers that can monitor at least one AP (i.e.,
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sniffers that are within the transmission range of at least one AP).
Therefore na and ns can be smaller than the number of APs and
sniffers in the area, respectively. We refer to the ratio, ns=na, as can-
didate sniffer density. For each topology, we run the IP-min–max
algorithm to select channels for the sniffers, and then apply the
two algorithms to remove redundant sniffers. Fig. 2 plots the frac-
tion of sniffers that are removed versus candidate sniffer density,
ns=na. The results are aggregated over a bin size of 0.1, i.e., the result
under ns=na ¼ x is the average of all the topologies with
ns=na 2 ðx� 0:1; x� (the confidence intervals are tight and hence
omitted). The results from both the IP-based optimal algorithm
and the greedy heuristic are plotted in the figure. We observe that
the performance of the greedy heuristic is close to that of the IP-
based optimal algorithm. Considering the running time, the rest
of the results in this section uses the greedy heuristic to remove
redundant sniffers.

We now present the results when solving the min–max and
min-sum problems in large-scale networks. For both the Dart-
mouth and Seattle datasets, we consider two 500 m � 500 m areas:
one has approximately 400 APs, representing an area with densely
deployed APs; the other has a much lower AP density (approxi-
mately 200 APs). To systematically evaluate the performance of
our algorithms, for each area we consider, we again generate
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Fig. 5. Sniffer workload distribution when solving the min–max and min-sum sniffer channel selection problems for the 400-AP area in the Dartmouth dataset.
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1000 topologies by virtually placing candidate sniffers uniformly
randomly into the area.

Our simulation runs on a Intel Xeon PC with four 3.0 GHz pro-
cessors. For each algorithm, the running time for the Dartmouth
dataset is shorter than that for the Seattle dataset. This might be
because the former uses 12 channels while the latter uses 24 chan-
nels. For both the min–max and min-sum problems, the LP-based
algorithms are the fastest: it only takes a few minutes to finish
solving all the 1000 topologies. The IP-based algorithms are the
slowest: it can take up to 7 h to solve the 1000 topologies. The run-
ning time of the greedy heuristics is in between (it takes tens of
minutes to finish the 1000 topologies). In the following, we mainly
present the results for the 400-AP area in the Dartmouth dataset;
results under other settings (the other area in the Dartmouth data-
set and the two areas in the Seattle dataset) are similar.

Fig. 3 plots the results when solving the min–max sniffer
channel selection problem for the 400-AP area in the Dartmouth
dataset. The results under all the three algorithms, IP-min–max,
LP-min–max, and Greedy-min–max, are plotted in the figure.
Fig. 3(a) plots the maximum number of channels that a sniffer
monitors versus candidate sniffer density, ns=na. The results are
again aggregated over a bin size of 0.1 (the confidence intervals
are tight and hence omitted). We observe that for all three algo-
rithms, as expected, the maximum number of channels used by
the sniffers reduces as the candidate sniffer density increases. IP-
min–max provides the optimal solution (in terms of the objective
function). LP-min–max performs slightly worse than IP-min–
max: the performances of these two algorithms are similar under
both low and high sniffer densities; the difference is most notice-
able for medium range of sniffer density (between 0.4 and 0.6).
Both IP-min–max and LP-min–max outperform Greedy-min–max,
particularly for large values of sniffer density. We also observe a
diminishing gain from increasing the density of sniffers: the max-
imum number of channels decreases dramatically first and then
less dramatically afterwards. Fig. 3(b) plots the ratio of the number
of sniffers that are being used over the number of APs. We observe
that LP-min–max outperforms the other two algorithms: the frac-
tion of the sniffers that are being used under LP-min–max is 10% to
20% lower than that under IP-min–max, and is 5% to 25% lower
than that under Greedy-min–max. Taking account of both the
objective function and the number of sniffers needed, LP-min–
max is a preferred algorithm than the other two: the maximum
number of channels under LP-min–max is only slightly larger un-
der the optimal solution, while the number of sniffers needed by
LP-min–max is significantly lower than the other two algorithms.
Please cite this article in press as: X. Chen et al., Sniffer channel selection fo
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Last, from Fig. 3(a) and (b), we observe that for the min–max snif-
fer channel selection problem, a preferred candidate sniffer density
is between 0.2 to 0.3, which leads to significant reduction in the
maximum number of channels used by the sniffers compared to
lower densities, while leads to moderate cost in deploying the air
sniffing infrastructure: the number of sniffers that are being used
is below 14% of the number of APs under LP-min–max, the pre-
ferred algorithm.

Fig. 4 plots the results for the min-sum sniffer channel selection
problem when using the three algorithms, IP-min-sum, LP-min-
sum, and Greedy-min-sum. Fig. 4(a) plots the average number of
channels that a sniffer monitors versus candidate sniffer density,
ns=na. Each data point is the average calculated over all sniffers,
excluding those that are not being used. We observe that all three
algorithms lead to similar performance, both LP-min-sum and
Greedy-min-sum provide solutions close to the optimal solution
from IP-min-sum. Again, we observe a diminishing gain from
increasing the density of sniffers. Fig. 4(b) plots the ratio of the
number of sniffers that are being used over the number of APs.
We observe Greedy-min-sum slightly outperforms LP-min-sum,
and significantly outperforms IP-min-sum (it requires 13% to 40%
less sniffers than IP-min-sum). For all the setttings, the number
of sniffers that are being used is much smaller than the number
of APs (the former is 5% to 9% of the latter), indicating a moderate
cost of deploying the air sniffing infrastructure.

Summarizing the above observations, we conclude that, consid-
ering running time, the objective function, and the fraction of
sniffers that are used, the LP-based algorithm outperforms the IP-
based and the greedy-heuristic based algorithms for both the min–
max and min-sum problems, considering both the running time
and performance, LP-based algorithms and hence is a preferable
choice for large network in practice.

Comparing Fig. 3(b) and Fig. 4(b), we see that, for the same can-
didate sniffer density, the min-sum problem requires much less
sniffers than the min–max problem. For instance, when the sniffer
density is 0.2, the ratio of the number of sniffers over the number
of APs for the min–max problem is between 0.1 to 0.16, (see
Fig. 3(b)), while the ratio for the min-sum problem is between
0.05 to 0.085 (see Fig. 4(b)). This is not very surprising: the min–
max problem needs a larger number of sniffers since it requires
the workloads of the sniffers to be balanced (to achieve the min–
max goal). We next further compare the sniffer workload distribu-
tion for the min–max and min-sum problems. Fig. 5 plots the CDF
(cumulative distribution function) of the sniffer workloads (i.e.,
workload of a sniffer is the number of channels that is used by
r monitoring wireless LANs, Comput. Commun. (2012), http://dx.doi.org/
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Fig. A.1. Illustration of the reduction from 3-SAT to the min–max sniffer channel
assignment problem.
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the sniffer), excluding those sniffers that are not used. Again, it is
for the 400-AP area in the Dartmouth dataset. We only plot the re-
sults under the LP-based algorithms (i.e., LP-min–max and LP-min-
sum) when the sniffer density is 0.1 and 0.2 (shown in Fig. 5(a) and
(b), respectively). From Fig. 5(a), we observe respectively 90% and
74% of the sniffers scan at most 6 channels in the min–max and
min-sum problems. The difference is more dramatic in Fig. 5(b)
where nearly 100% of the sniffers scan at most 4 channels in the
min–max problem while the corresponding value is only around
70% in the min-sum problem.

7. Conclusions and future work

In this paper, we studied sniffer channel selection for monitor-
ing WLANs. In particular, we formulated min–max and min-sum
sniffer channel selection problems, and proposed three algorithms,
one based on IP, one based on LP-relaxation, and the third based on
a greedy heuristic, to solve each problem. Through simulation, we
demonstrated that for each problem, all the algorithms are effec-
tive in achieving their optimization goals, and overall, the LP-based
algorithm outperform the other two algorithms.

As future work, we plan to investigate dynamic sniffer channel
assignment [26] that adjusts the channel assignment in the face of
faults or attacks. Furthermore, our min–max and min-sum prob-
lems consider the number of channels that a sniffer monitors as
the workload of the sniffer. Another direction of future work is
using the amount of traffic that a sniffer monitors as the workload.
Last, our current study assumes that the sniffer locations are
known beforehand. An interesting direction is how to place the
sniffers optimally given the network topology.
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Appendix A. Proof that min–max sniffer channel assignment is
NP-hard

We prove that the min–max sniffer channel assignment prob-
lem is NP-hard by reducing 3-SAT to it.

Proof. Let / be an instance of 3-SAT problem. Suppose / contains
n variables, x1; . . . ; xn;2n literals, x1; �x1; . . . ; xn; �xn, and m clauses,
C1; . . . ;Cm. The corresponding sniffer channel assignment problem
contains 2n sniffers, x1; �x1; . . . ; xn; �xn, and ð2mþ 2nÞ APs,
C1; �C1; . . . ;Cm; �Cm, and D1; �D1; . . . ;Dn; �Dn. Each sniffer can operate
on two channels, 1 and 2. Each AP operates on one channel. In
particular, AP Ci operates on channel 1, and AP �Ci operates on
channel 2, i ¼ 1; . . . ;m; AP Di operates on channel 1, and AP �Di

operates on channel 2, i ¼ 1; . . . ;n. If xi is used in clause Cj in /,
then in the corresponding sniffer channel assignment problem,
sniffer xi can monitor AP Cj using channel 1, and sniffer �xi can
monitor AP �Cj using channel 2. Similarly, if �xi is used in clause Cj in
/, then in the corresponding sniffer channel assignment problem,
sniffer �xi can monitor AP Cj using channel 1, and sniffer xi can
monitor AP �Cj using channel 2. Last, we allow and only allow
sniffers xi and �xi to monitor APs Di and �Di.

Fig. A.1 shows an example illustrating the relationship between
/ and the corresponding sniffer channel assignment problem. In
the example, / ¼ ðx1 _ �x2 _ x3Þ ^ ð �x1 _ �x2 _ �x3Þ. We represent the
relationship between the literals and the clauses in Fig. A.1(a),
Please cite this article in press as: X. Chen et al., Sniffer channel selection fo
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where a clause is connected to a literal if it contains that literal.
Fig. A.1(b) shows the corresponding sniffer channel assignment
problem. For instance, Fig. A.1(a) shows that x1 is used in clause C1

in /. Correspondingly, Fig. A.1(b) shows that sniffer x1 uses channel
1 to monitor AP C1, and sniffer �x1 uses channel 2 to monitor AP �C1.
For ease of illustration, in Fig. A.1(b), the upper circle contains
C1; . . . ;Cm that use channel 1; and the lower circle contains
�C1; . . . ; �Cm that use channel 2. We further have xi connects to Di

and �Di, and �xi connects to Di and �Di.
We next show that there is a satisfying assignment to / iff the

solution to the min–max sniffer channel assignment problem is 1,
i.e., each sniffer needs to scan at most one channel. We first prove
that when / is satisfiable, then each sniffer needs to scan at most
one channel. Suppose that there exists an assignment to xi,
i ¼ 1; . . . ;n, so that all the clauses in / are true, and hence / is
true. Consider an arbitrary clause Cj. Since Cj is true, at least one
literal used in Cj must be true. We consider the following two
cases:

� Case 1. Suppose a literal in Cj; xi, is true. Then in the sniffer chan-
nel assignment problem, we let sniffer xi monitor channel 1
(and hence it can monitor AP Cj), and sniffer �xi monitor channel
2 (and hence it can monitor AP �Cj). Under this channel assign-
ment, both APs Cj and �Cj are monitored.
� Case 2. Suppose a literal �xk in Cj is true (i.e., xk is false). Then in

the sniffer channel assignment problem, we let sniffer xk mon-
itor channel 2, and sniffer �xk monitor channel 1. Then again both
APs Cj and �Cj are monitored.

Summarizing the above two cases, we can find sniffer channel
assignment for xi; i ¼ 1; . . . ;n, so that all Cj’s and �Cj’s are monitored,
and each sniffer needs to monitor at most one channel. For APs Di

and �Di, since only xi and �xi are allowed to monitor them, and xi

and �xi monitor two different channels, it is easy to see that both
of them can be monitored based on the current sniffer channel
assignments. More specifically, if xi monitors channel 1 (i.e., �xi mon-
itors channel 2), we let xi monitor Di and �xi monitor �Di (since Di and
�Di operate on channels 1 and 2, respectively); if xi monitors channel
2, we let xi monitor �Di and �xi monitor Di; i ¼ 1; . . . ;n. In summary,
when / is satisfiable, we can find channel assignments to all the
sniffers so that each sniffer needs to monitor at most one channel
and all the APs are monitored. Therefore, the solution to the min–
max problem is 1.

We now prove that if each sniffer needs to scan at most one
channel in the min–max sniffer channel assignment problem, then
/ is satisfiable. Suppose there exists a channel assignment to all the
sniffers, so that all the APs are monitored and each sniffer monitors
r monitoring wireless LANs, Comput. Commun. (2012), http://dx.doi.org/
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at most one channel. Consider all the sniffer pairs ðxk; �xkÞ;
k ¼ 1; . . . ;n. Let Si;j denote the set of sniffer pairs in which sniffer
xk scans channel i and �xk scans channel j; i; j ¼ 1;2. We then have
S1;1 ¼ S2;2 ¼ ;. This is because, since Di and �Di operate on two
different channels and both of them are monitored, and in addition
only xi and �xi are allowed to monitor them, we must have xi and �xi

monitor two different channels, i ¼ 1; . . . ;n. Hence we have
S1;1 ¼ S2;2 ¼ ;. In this case, for the APs to be monitored, we need
S1;2 – ; and/or S2;1 – ;. Consider an arbitrary sniffer pair ðxi; �xiÞ.
Then we have the following two scenarios:

� Sniffers xi and �xi monitor channels 1 and 2, respectively. Then
in /, we set xi to be true and set �xi to be false. Since xi monitors
channel 1, it can only monitor APs that use channel 1 (i.e., APs
in the upper circle in Fig. A.1(b)). Suppose xi monitors AP Cj.
Then by the mapping between the 3-SAT and the min–max
problem, xi is used in clause Cj in /, and therefore Cj is
satisfied.
� Sniffers xi and �xi monitor channels 2 and 1, respectively. Then in

/, we set the xi to be false and set �xi to be true. Following a sim-
ilar argument as before, suppose �xi monitors AP Cj, then by the
mapping between the 3-SAT and the min–max problem, �xi is
used in clause Cj in /, then Cj is satisfied.

Summarizing the above two scenarios, since the sniffers in S1;2 [ S2;1

monitor all the APs, all the clauses in / are satisfied. Hence we con-
clude that / is satisfiable. Therefore, we have proved that if each
sniffer needs to monitor at most one channel in the sniffer channel
assignment problem, then there exists a satisfying assignment for /,
and hence complete the proof. h
Appendix B. Proof of approximation ratio for LP-based
algorithms

We now prove Theorems 1 and 2 that state the approximate
ratio of LP-min–max and LP-min-sum, respectively.

Proof. Consider an arbitrary AP, v, and a sniffer m 2 Mv . Our LP
rounding guarantees that xm;cv 6 rym;cv

, where r ¼maxv2V jMv j.
This can be shown by considering the following two cases. When
ym;cv

¼maxm2Mv ym;cv
, by our LP rounding, xm;cv ¼ 1, and we have

xm;cv 6 rym;cv
(since ym;cv

P 1=r). When ym;cv
– maxm2Mv ym;cv

, by
our LP rounding, xm;cv ¼ 0 6 rym;cv

. Since the above AP, v, is chosen
arbitrarily, we haveX
c2C

xm;c 6 r
X
c2C

ym;c; 8m 2 M:

Let n�m represent the optimal solution to the min–max sniffer chan-
nel selection problem. We have

max
m2M

X
c2C

xm;c 6 r max
m2M

X
c2C

ym;c

 !
6 rn�m: ðB:1Þ

The second inequality above is because the LP provides a lower
bound to the original problem. From (B.1), LP-min–max is an
OðrÞ-approximation algorithm for the min–max sniffer channel
selection problem. Similarly, let n�s represent the optimal solution
to the min-sum problem. We have

X
m2M

X
c2C

xm;c 6 r
X
m2M

X
c2C

ym;c

 !
6 rn�s : ðB:2Þ
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Hence LP-min-sum is an OðrÞ-approximation algorithm for the min-
sum problem. h
References

[1] <http://csrc.nist.gov/publications/nistpubs/800-153/sp800-153.pdf>.
[2] AirDefense, Wireless LAN Security. <http://airdefense.net>
[3] AirMagnet. <http://www.airmagnet.com>.
[4] AirWave, AirWave Management Platform. <http://airwave.com>.
[5] Cisco Wireless LAN Solution Engine (WLSE). <http://www.cisco.com/en/US/

products/sw/cscowork/ps3915/>.
[6] Cplex. <http://www.ilog.com/products/cplex/>.
[7] NetStumbler. <http://www.netstumbler.com>
[8] A. Adya, V. Bahl, R. Chandra, L. Qiu, Architecture and techniques for diagnosing

faults, in: IEEE 802.11 infrastructure networks, in: Proc. of ACM MobiCom,
September 2004.

[9] P. Arora, C. Szepesvari, R. Zheng, Sequential learning for optimal monitoring of
multi-channel wireless networks, in: Proc. of IEEE INFOCOM, 2011.

[10] C. Arun, N. Huy, S. Gabriel, Z. Rong, On quality of monitoring for multi-channel
wireless infrastructure networks, in: Proc. of ACM MobiHoc, 2010.

[11] P. Bahl, R. Chandra, J. Padhye, L. Ravindranath, M. Singh, A. Wolman, B. Zill,
Enhancing the security of corporate Wi-Fi networks using DAIR, in: Proc. of
ACM MobiSys, June 2006.

[12] R. Chandra, J. Padhye, A. Wolman, B. Zill, A location-based management system
for enterprise wireless LANs, in: NSDI, April 2007.

[13] Y.-C. Cheng, M. Afanasyev, P. Verkaik, P. Benko, J. Chiang, A.C. Snoeren, S.
Savage, G.M. Voelker, Automating cross-layer diagnosis of enterprise wireless
networks, in: Proc. of ACM SIGCOMM, Kyoto, Japan, August 2007.

[14] Y.-C. Cheng, J. Bellardo, P. Benko, A.C. Snoeren, G.M. Voelker, S. Savage, Jigsaw:
solving the puzzle of enterprise 802.11 analysis, in: Proc. of ACM SIGCOMM,
Pisa, Italy, September 2006.

[15] A. Chhetri, R. Zheng, WiserAnalyzer: A passive monitoring framework for
WLANs, in: Proc. of Mobile Ad-hoc and Sensor, Networks, 2009.

[16] U. Deshpande, T. Henderson, D. Kotz, Channel sampling strategies for
monitoring wireless networks, in: Proc. of the Second Workshop on Wireless
Network Measurements, Boston, MA, April 2006.

[17] U. Deshpande, C. McDonald, D. Kotz, Coordinated sampling to improve the
efficiency of wireless network monitoring, in: Proc. of the Fifteenth IEEE
International Conference on Networks (ICON), November 2007.

[18] D.S. Hochbaum, Approximating covering and packing problems: set cover,
vertex cover, independent set, and related problems, in: D.S. Hochbaum (Ed.),
Approximation Algorithms for NP-hard Problems, PWS Publishing Co., Boston,
MA, USA, 1996, pp. 94–143.

[19] A.P. Jardosh, K.N. Ramachandran, K.C. Almeroth, Understanding link-layer
behavior in highly congested IEEE 802.11b wireless networks, in: Proc. of ACM
SIGCOMM Workshop on Experimental Approaches to Wireless Network
Design and Analysis (E-WIND), August 2005.

[20] R. Mahajan, M. Rodrig, D. Wetherall, J. Zahorjan, Analyzing the MAC-level
behavior of wireless networks in the wild, in: Proc. of ACM SIGCOMM,
September 2006.

[21] Y. Sheng, G. Chen, H. Yin, K. Tan, U. Deshpande, B. Vance, D. Kotz, A. Campbell,
C. Mcdonald, T. Henderson, J. Wright, MAP: a scalable monitoring system for
dependable 802.11 wireless networks, IEEE Wireless Commun. 15 (5) (2008).

[22] Y. Sheng, K. Tan, G. Chen, D. Kotz, A. Campbell, Detecting 802.11 MAC layer
spoofing using received signal strength, in: Proc. of IEEE INFOCOM, April 2008.

[23] A. Sheth, C. Doerr, D. Grunwald, R. Han, D.C. Sicker, MOJO: A distributed
physical layer anomaly detection system for 802.11 WLANs, in: Proc. of ACM
MobiSys, June 2006.

[24] D.-H. Shin, S. Bagchi, Optimal monitoring in multi-channel multi-radio
wireless mesh networks, in: Proc. of ACM MobiHoc, 2011.

[25] D.-H. Shin, S. Bagchi, C.-C. Wang, Distributed online channel assignment
toward optimal monitoring in multi-channel wireless networks, in: Proc. of
IEEE INFOCOM, Mini Conference, 2012.

[26] R. Shravan, S. Vivek, B. Suman, and C. Ranveer. Fluid: improving throughputs in
enterprise wireless lans through flexible channelization, in: Proc. of ACM
MobiCom, 2011.

[27] Y. Song, X. Chen, Y.-A. Kim, B. Wang, G. Chen, Sniffer channel selection for
monitoring wireless LANs, in: Proc. of Wireless Algorithms, Systems, and
Applications (WASA), August 2009.

[28] W. Wei, K. Suh, B. Wang, Y. Gu, J. Kurose, D. Towsley, Passive online rogue
access point detection using sequential hypothesis testing with TCP ACK-pairs,
in: Proc. of ACM SIGCOMM Internet Measurement Conference (IMC), October
2007.

[29] B. Yan, G. Chen, Model-based fault diagnosis for ieee 802.11 wireless LANs, in:
Proc. of the International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services (MobiQuitous), March 2009.

[30] B. Yan, G. Chen, H. Wang, H. Yin, Robust detection of unauthorized wireless
access points, Mobile Netw. Appl. (MONET) 14 (4) (2009).

[31] J. Yeo, M. Youssef, A. Agrawala, A framework for wireless LAN monitoring and
its applications, in: Proc. of ACM Workshop on Wireless Security (WiSe),
October 2004.

[32] J. Yeo, M. Youssef, T. Henderson, A. Agrawala, An accurate technique for
measuring the wireless side of wireless networks, in: Proc. of USENIX/ACM
r monitoring wireless LANs, Comput. Commun. (2012), http://dx.doi.org/

http://csrc.nist.gov/publications/nistpubs/800-153/sp800-153.pdf
http://airdefense.net
http://www.airmagnet.com
http://airwave.com
http://www.cisco.com/en/US/products/sw/cscowork/ps3915/
http://www.cisco.com/en/US/products/sw/cscowork/ps3915/
http://www.ilog.com/products/cplex/
http://www.netstumbler.com
http://dx.doi.org/10.1016/j.comcom.2012.06.005
http://dx.doi.org/10.1016/j.comcom.2012.06.005

	Sniffer channel selection for monitoring wireless LANs
	1 Introduction
	2 Related work
	3 Problem setting
	4 Algorithms for min–max sniffer channel selection
	4.1 IP-min–max
	4.2 LP-min–max
	4.3 Greedy-min–max
	4.4 Remove redundant Sniffers

	5 Algorithms for min-sum sniffer channel selection
	6 Performance evaluation
	7 Conclusions and future work
	Acknowledgments
	Appendix A Proof that min–max sniffer channel assignment is NP-hard
	Appendix B Proof of approximation ratio for LP-based algorithms
	References


