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Abstract—Accurate cellular link bandwidth prediction can benefit upper-layer protocols significantly. In this paper, we investigate how

to predict cellular link bandwidth in LTE networks. We first conduct an extensive measurement study in two major commercial LTE

networks in the US, and identify five types of lower-layer information that are correlated with cellular link bandwidth. We then develop a

machine learning based prediction framework, LinkForecast, that identifies the most important features (from both upper and lower

layers) and uses these features to predict link bandwidth in real time. Our evaluation shows that LinkForecast is lightweight and the

prediction is highly accurate: At the time granularity of one second, the average prediction error is in the range of 3.9 to 17.0 percent for

all the scenarios we explore. We further investigate the prediction performance when using lower-layer features obtained through

standard APIs provided by the operating system, instead of specialized tools. Our results show that, while the features thus obtained

have lower fidelity compared to those from specialized tools, they lead to similar prediction accuracy, indicating that our approach can

be easily used over commercial off-the-shelf mobile devices.

Index Terms—Cellular networks, cellular link bandwidth prediction, network measurement, machine learning
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1 INTRODUCTION

CELLULAR infrastructures have been evolving at a fast
speed. The current 4G Long Term Evolution (LTE) cel-

lular networks provide significantly higher data rate and
lower network latency than earlier generation systems. The
advances provided by LTE, however, may not be fully uti-
lized by upper-layer protocols due to the rapidly varying
cellular link conditions. As an example, a recent large-scale
study of LTE networks [8] shows that, for 71.3 percent of
the large TCP flows, the bandwidth utilization rate is below
50 percent. The low link bandwidth utilization is partly
because many existing transport protocols are designed for
traditional networks and cannot readily adapt to the rapidly
changing link conditions in cellular networks.

The performance of upper-layer protocols can be
improved significantly when accurate link bandwidth pre-
diction is available (see details in Section 2.1). Existing studies
either use upper-layer information (e.g., historical through-
put, delay, loss rate, inter-packet arrival times) or lower-layer
(PHY/MAC) information to predict cellular link bandwidth.
The approaches using upper-layer information [26], [30]
may lead to inaccurate prediction under highly dynamic

conditions. Complementary to upper-layer information, a
rich set of lower-layer information is monitored by the user
device and the base station, and is exchanged between these
two entities in real time (used routinely for scheduling pur-
poses). Lower-layer information provides important insights
on the cellular link bandwidth. Existing studies that use
lower-layer information [4], [15], [17], however, are con-
ducted in limited settings and only consider one or two types
of information (e.g., signal strength, signal noise ratio).

In this paper, we start with the observation that base sta-
tions in LTE networks typically use (variants of) propor-
tional fair scheduling, which allocates bandwidth to user
devices based on past throughput and link conditions [1],
[7], [18]. This resource allocation mechanism indicates that
upper-layer information (past throughput) and lower-layer
information are both useful for cellular link bandwidth pre-
diction. We therefore ask the following questions: what set
of lower-layer information is most useful for cellular link
bandwidth prediction? How to combine upper- and lower-
layer information for prediction purposes? How much
more accurate the prediction can be compared to using
upper-layer information alone?

To answer the above questions, we first conduct an
extensive measurement study to identify a set of lower-
layer information that is correlated with cellular link band-
width. We then develop a lightweight machine learning
framework that determines the most important features,
and uses these features to predict cellular link bandwidth in
real time. The above measurement study uses Qualcomm
eXtensible Diagnostic Monitor (QxDM) [19], which allows
us to collect a wide variety of lower-layer information at
fine granularity. For practical cellular link bandwidth pre-
diction, we however cannot rely on QxDM since it is a
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specialized tool, not readily available to end systems. There-
fore, we further investigate the prediction accuracy when
lower-layer information is collected directly at mobile
phones, through APIs provided by the operating system.

Our main contributions are as follows.

� We have conducted an extensive measurement
study over two commercial LTE networks and inves-
tigated a large set of lower-layer information
obtained using QxDM. Through the measurement,
we identify five types of lower-layer information
that are correlated with cellular link bandwidth. The
degree of correlation varies in different scenarios;
none of them has direct functional relationship with
link bandwidth. Our study significantly expands the
scope of existing studies [4], [15], [17] that only focus
on one or two parameters.

� We develop a machine learning based prediction
framework, LinkForecast, to predict link bandwidth
in real time. Using this framework, we quantify the
importance of various upper- and lower-layer fea-
tures and make the following findings. First, while
historical throughput is the most important feature,
using it alone can lead to much inferior performance
compared to that using all the features, indicating
the importance of combining upper- and lower-layer
information for link bandwidth prediction. Second,
using the four most important features achieves
almost the same performance as when using all the
features, and the prediction is highly accurate: at the
time granularity of one second, the average predic-
tion error is in the range of 3.9 to 17.0 percent for all
the scenarios we explore. In addition, the prediction
technique is lightweight and is insensitive to training
data, making it easy to apply in practice.

� We further investigate link bandwidth prediction
when the lower-layer features are obtained through
the standard APIs provided by Android operating
system (instead of QxDM). While the features thus
obtained have lower fidelity than those from QxDM,
they lead to similar prediction accuracy, indicating
that our approach can be easily used over commer-
cial off-the-shelf mobile devices.

The rest of the paper is organized as follows. Section 2
covers the background and presents our high-level
approach. Section 3 investigates the correlation between var-
ious lower-layer information and cellular link bandwidth.

Section 4 presents the design and performance of LinkFore-
cast. Section 5 explores the performance of LinkForecast
when the lower-layer features are obtained through the stan-
dard APIs provided by the operating system. Section 6 sum-
marizes related work. Finally, Section 7 concludes the paper
and presents future directions.

2 BACKGROUND AND HIGH-LEVEL APPROACH

In this section, we first describe the challenges and benefits
of link bandwidth prediction in cellular networks. After
that, we present our high-level approach.

2.1 Motivation

Link bandwidth in cellular networks is highly dynamic.
Fig. 1 shows two examples using measurements collected
from commercial LTE networks (see details in Section 3.2).
Specifically, it plots per-second link bandwidth in two sce-
narios: one is a stationary scenario, and the other is a high-
way driving scenario. We observe that even in the stationary
scenario, the link bandwidth changes rapidly over time. In
the highway driving scenario, the dynamics are even more
dramatic. The rapidly changing link bandwidth has been
widely observed. It is due to the nature of wireless communi-
cation as well as the radio resource scheduling at the base
stations in cellular networks (as illustrated in [32]).

The performance of upper-layer protocols and applica-
tions can be severely affected by the highly dynamic link
bandwidth in cellular networks. Accurate cellular link
bandwidth prediction can help these protocols and applica-
tions to proactively react to changing network conditions,
leading to better performance. For instance, it can be used
in realtime applications (e.g., VoIP, video conferencing and
online gaming) to avoid large latencies [30]. It can also be
used to design transport protocols that determine the send-
ing rate in real time to achieve both high throughput and
low latencies simultaneously [15], [26]. In addition, it can be
used to schedule background data transfers [4] and opti-
mize the performance of adaptive video streaming [33].

Accurate link bandwidth prediction in cellular networks
is a challenging task [31], [32]. Several studies have devel-
oped techniques for link bandwidth prediction, using either
upper- or lower-layer information (see details in Section 6).
Our study uses a different approach: we leverage both past
throughput and lower-layer information based on the radio
resource scheduling algorithms used in cellular networks.
This approach leads to a lightweight technique that pro-
vides accurate prediction and is readily usable on commer-
cial off-the-shelf mobile devices.

2.2 High-Level Approach

In LTE networks, a user equipment (UE) is served by a base
station, called evolved NodeB (eNodeB). Each eNodeB is
responsible for managing scheduling for both downlink
and uplink channels for a UE. In this paper, we focus on
downlink channels as most data traffic in cellular networks
is in the downlink direction [11]. Investigation for the
uplink channels is also important as user-generated content
uploading is in this direction and the amount of such data is
increasing over time; we leave further investigation as
future work. Henceforth, link bandwidth in this paper
refers to downlink bandwidth.

Fig. 1. Illustration of rapidly changing link bandwidth in LTE networks.
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An eNodeB allocates the resources to a UE based on its
resource scheduling algorithm, the channel condition, and
the UE’s capability. A UE estimates channel quality based
on various information collected from the radio channels,
and reports both the channel quality and its radio capabili-
ties (e.g., power headroom) to the associated eNodeB. Cor-
respondingly, the eNodeB allocates proper resource (e.g.,
the resource blocks, modulation schemes, transmission
power) to the UE, based on its available resource and chan-
nel conditions. The actual algorithm used by an eNodeB for
radio resource allocation is implementation dependent and
not available to the public. On the other hand, typically base
stations enforce some forms of proportional fairness that
take into account past throughput of a UE and channel qual-
ity to maximize the aggregate throughput of the UEs, while
ensuring fairness among UEs and observing the priorities
of the UEs [1], [7], [18].

Since the scheduling of eNodeB considers both past
throughput and wireless link conditions, it is natural to con-
jecture that both types of information are useful in predicting
link bandwidth. The study in [30] has investigated using his-
torical throughput to predict link bandwidth. We investigate
the correlations between various lower-layer information
and the link bandwidth, and then utilize a machine learning
based prediction framework to identify important features
and predict link bandwidth in cellular networks.

3 ANALYSIS OF LOWER-LAYER INFORMATION

We analyze the correlation of link bandwidth and a large set
of LTE related lower-layer information. In the following, we
first describe the data that we collected for this study, and
then present the results of correlation analysis.

3.1 Data Collection Methodology

We collect two types of data, cellular link bandwidth and
lower-layer information. Link bandwidth of a cellular link
represents the bandwidth that is available to a UE over the
link. It is not directly perceivable, and has to be obtained

through active measurement. We use the methodology
in [26] to obtain link bandwidth as the average throughput
when a well-provisioned server sends data to a phone using
UDP; the server adjusts the size of the sending window so
that the observed RTT is in a range (set to between 750 and
3,000 ms [26]), indicating that the link is saturated but not too
overloaded. While the link is saturated, we use a packet
sniffer to record the network traffic. Lower-layer information
is available at a UE, and is recorded using QxDM. The reason
for using QxDM is two-fold. First, it allows us to collect a
large variety of lower-layer information. Second, QxDM
records the various types of information at fine-grained sam-
pling intervals (tens to hundreds of milliseconds), which
allows us to study the correlation at awide range of time lags.

To record QxDM traces, we connect a phone using a USB
cable to a laptop that runs QxDM.QxDM communicateswith
the phone through a diagnostic port and records the various
lower-layer information periodically. We have measured the
CPU usage on a phonewhen it collects radio information and
communicates with QxDM, and confirmed that the increase
in CPU usage is not noticeable. In other words, collecting
radio information in real time does not affect the normal
operation of a UE. In Section 5, we investigate using lower-
layer information that is collected directly at the phones
through standard APIs provided by the operating system.

3.2 Collected Data

We have performed extensive measurements during a
period of 15 months (from July 2014 to October 2015) on
two major commercial LTE networks in the US, AT&T and
Verizon networks. Tables 1 and 2 list the data from these
two networks, respectively. We used seven different
phones, including Samsung S3, S4, S5, Note 3 and HTC
M8 on AT&T network, and Samsung S4 and S5 on Verizon
network to collect data. The four phones listed in Tables 1
and 2 were used to collect majority of the data; the other
three phones were used to confirm the results. We only
report the results from the four phones in Tables 1 and 2;
the results from the other three phones are consistent.

TABLE 1
Data Collected from AT&T Network

Phone Scenario Time Location Duration Traffic Avg. rate Unique Handovers

(hour) (GB) (Mbps) cell IDs

Samsung Note 3

stationary day campus 0.9 1.5 3.7 2 2
stationary night campus 0.8 2.1 5.8 2 9
stationary day residence 1.2 5.3 9.8 2 9
stationary day office (NJ) 1.5 14.1 20.9 1 0
walking day campus 0.6 1.8 6.8 3 8
walking night campus 0.7 2.5 7.9 1 0

local driving day campus to residence 1.2 4.7 8.7 14 58
highway driving day CT 0.9 6.5 16.0 35 87
highway driving day CT to NY 0.4 2.9 16.1 24 28

HTCM8

stationary day campus 9.2 31.6 7.6 2 8
stationary night campus 2.7 15.5 12.8 1 0
stationary day campus arena (crowded) 2.3 9.4 9.1 4 8
stationary day Hartford, CT 0.7 2.8 8.9 1 0
walking day campus 1.7 3.7 4.8 4 7

local driving day campus to residence 0.6 2.1 7.8 15 46
highway driving day CT 0.9 6.4 15.8 43 98
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The data were collected in three states, CT, NY and NJ, in
the US, covering four movement scenarios: stationary, walk-
ing, local driving, and highway driving. For the stationary
scenario, the data were collected in five locations: (1) a office
on a university campus in CT (specifically, the University of
Connecticut), (2) an arena on campus (when there was a
major event inside the arena), (3) a residence that is 7.5 miles
away from the campus, (4) a major city (Hartford, CT) that
is 30 miles away from the campus, and (5) an office building
in NJ. The time of data collection was during day (morning,
noon, afternoon) when there were more cellular users and
night when there were less users. For the walking scenario,
the data ware collected on the university campus, again
during day and night. The local driving was between the
residence and the campus, riding in a car with a speed of
35 to 40 mph. In the highway driving scenarios, data were
collected while driving at 65 to 70 mph, inside CT (between
the campus and Hartford, CT) and from CT to NY (between
the campus and New York City).

For the cases listed in Tables 1 and 2, the average data
downloading rate is from 3.1 to 20.9 Mbps;1 the number of
unique cell IDs varies from 1 to 49, and the number of hand-
over events varies from 0 to 110. Not surprisingly, we
observe more handover events in local and highway driving
scenarios than stationary and walking scenarios. The spec-
trum band of a cell is 5, 10 or 20 MHz (observed from
QxDM).

In summary, the collected datasets cover a wide range of
scenarios, including different phones, carrier networks,
times of the day, locations and movement speed. The total
duration of the data collection is over 45 hours. The total
amount of data that was downloaded is over 197 GB. The
total number of unique cell IDs is 161. The data will be used
for correlation analysis in Section 3.3, and for training and
testing the prediction models in Section 4.

3.3 Correlation Analysis

We analyze the correlation of link bandwidth and a set of
lower-layer information. The link bandwidth is the average
throughput in a time unit of D, set to 0.5, 1, 2, 4, or 10 sec-
onds. The lower-layer information is obtained by QxDM.
For the lower-layer information that is captured at a much

finer granularity, we aggregate multiple measurements
over the interval of D, and use the average as the measure-
ment value. In the following, we only present the results
when D ¼ 1 second; the results for other time granularity
are similar. For ease of exposition, we first present the
results using the data collected from Samsung Note 3 on
AT&T network (see Table 1), and then briefly describe the
results in other settings.

3.3.1 RSRP and RSRQ

Reference Signal Received Power (RSRP) is the linear aver-
age (in watts) of the downlink reference signals across the
channel bandwidth. It measures the absolute power of the
reference signal. Reference Signal Received Quality (RSRQ)
is defined as ðN � RSRPÞ=RSSI, where N is the number of
resource blocks across the downlink spectrum band, and
Received Signal Strength Indicator (RSSI) is the total power
that a UE observes across the entire download frequency
band, including the main signal, co-channel non-serving
cell signal, adjacent channel interference and the noise
within the specified band.

We observe that both RSRP and RSRQ are correlated with
link bandwidth. Fig. 2a is a scatter plot of RSRP and link
bandwidth under the highway driving scenario (obtained
using the two highway driving datasets in Table 1), where
each point represents the average bandwidth over one sec-
ond and the corresponding average RSRP over that second.
We observe that when RSRP is very low, link bandwidth
tends to be low as well (see lower left corner); similarly,
when RSRP is very high, link bandwidth tends to be high as
well (see upper right corner). Similar correlation is observed
between RSRQ and link bandwidth (see Fig. 2b).

TABLE 2
Data Collected from Verizon Network

Phone Scenario Time Location Duration Traffic Avg. rate Unique Handovers

(hour) (GB) (Mbps) cell IDs

Samsung S4

stationary day campus 5.7 25.7 10.0 2 27
stationary night campus 2.9 14.7 11.3 2 10

local driving day campus to residence 1.5 2.1 3.1 20 110
highway driving day CT 0.8 2.2 6.1 45 66

Samsung S5

stationary day campus 3.0 14.0 10.4 2 8
stationary night campus 3.0 18.6 13.8 2 6

local driving day campus to residence 1.2 3.1 5.7 20 98
highway driving day CT 0.9 4.5 11.1 49 88

Fig. 2. Scatter plot of RSRP, RSRQ, and link bandwidth for the highway
driving scenario.

1. Since the traces were collected at different times and locations, the
data rate cannot be used to compare the services of the two commercial
providers.
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Fig. 3a plots the cross correlation between RSRP and link
bandwidth under various scenarios. Specifically, for each
scenario, we obtain two time series, fbig and frig, where bi
and ri are the link bandwidth and RSRP during the ith sec-
ond, respectively. Fig. 3a plots the cross correlationwith lag ‘,
i.e., between biþ‘ and ri, where ‘ ¼ 0; 1; . . . ; 30 seconds. Simi-
larly, Fig. 3b plots the cross correlation between RSRQ and
link bandwidth. In general, the correlation between RSRP
and link bandwidth is comparable to that between RSRQ and
link bandwidth. The correlation is significant even at a lag of
tens of seconds except for the walking scenario (where the
correlation is only significant at lags within a few seconds).
We also observe that the correlation is larger for higher
mobility scenarios (local and highway driving) compared to
lowermobility scenarios (stationary andwalking).

We also observe that, for both RSRP and RSRQ, its corre-
lation with link bandwidth varies with day and night. Fig. 4
plots the correlation coefficients of RSRP and RSRQ with
link bandwidth in a stationary setting at the university cam-
pus. Fig. 4a uses data collected during daytime, while
Fig. 4b uses data collected during night time. Interestingly,
we observe that the correlation between RSRQ and link
bandwidth during night time is close to zero. This is the
only scenario where RSRQ is not correlated with link band-
width. Inspecting the trace, we think this might be because
during night time, RSRQ is fairly stable while link band-
width fluctuates over time.

3.3.2 Channel Quality Indicator (CQI)

CQI is an indicator carrying the information on the quality
of the communication channel. It is a 4-bit integer (i.e., the
value is between 0 and 15), and is determined by a UE [2].
The LTE specification does not state how a UE calculates
CQI. In general, a UE takes into account multiple factors

(e.g., the number of antennas, signal-to-interference-noise-
ratio (SINR), the capability of its radio) when calculating
CQI. The calculated CQI is reported to the eNodeB, which
performs downlink scheduling accordingly. As such, it is not
surprising that CQI is correlatedwith link bandwidth. Fig. 5a
plots the correlation coefficient of CQI and link bandwidth
under various scenarios. We observe significant correlation
even when the lag is up to a few or tens of seconds in most
cases. However, in one scenario (stationary on campus dur-
ing daytime), the correlation is very low for all the time lags.

Fig. 5b presents an example scatter plot using data col-
lected from a highway driving scenario. We observe that
when CQI is low, the observed link bandwidth is low as
well (lower left corner). However, the scatter plot does not
indicate a direct functional relationship between CQI and
link bandwidth as that observed in [15].

3.3.3 Block Error Rate (BLER)

Hybrid-ARQ is used in LTE networks to achieve higher effi-
ciency in transmission and error correction. It uses 8 stop-
and-wait processes to transmit data. Once a packet is sent
from a particular process, the process will be in active state
andwill not process other packets until it receives an ACK or
NACK. If a NACK is received, then a retransmission will be
initiated. In the face of toomany retransmissions, the eNodeB
has to adjust themodulation and coding scheme. Specifically,
Hybrid-ARQ Block Error Rate is defined as the number of
erroneous blocks divided by the total number of blocks that
are sent. The target BLER is typically 10 percent [2]. If the
actual BLER is larger than 10 percent (e.g., due to weak signal
strength or interference), the linkmust be switched to a lower
speed (leading to a lower bandwidth), and vice versa.

Fig. 6a is a scatter plot between link bandwidth and
BLER under the highway driving scenario. We observe that
most of the BLER values are between 5 and 10 percent.
When BLER is above 10 percent, the link bandwidth tends
to be low. On the other hand, when BLER is below
10 percent, the link bandwidth is in a wide range. As a
result, the cross correlation between BLER and link band-
width is not significant (figure omitted).

3.3.4 Handover Events

A handover is performed when a UE moves from the cover-
age of one cell to the coverage of another cell in the con-
nected state. Unlike the case in UMTS, there are only hard

Fig. 3. Correlation coefficient between RSRP, RSRQ, and link bandwidth
for various scenarios.

Fig. 4. Correlation coefficient between RSRP, RSRQ, and link bandwidth
for the stationary scenario (data collected on campus).

Fig. 5. (a) Correlation coefficient between CQI and link bandwidth
for various scenarios. (b) Scatter plot of link bandwidth and CQI in the
highway driving scenario.
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handovers in LTE networks, i.e., a UE cannot communicate
with multiple eNodeBs simultaneously. Therefore there
will be a short interruption in service when a handover hap-
pens. To capture handover events, we keep monitoring the
serving cell ID. A change in serving cell ID indicates a hand-
over event.

Fig. 6b plots a sample trace of link bandwidth where
handover events are marked as red dots. It shows an instant
decrease in bandwidth when handover happens. We repre-
sent handover events as a binary time series fhig, where
hi ¼ 1 if there exists a handover event in the ith second and
hi ¼ 0 otherwise. Let fbig represent the time series of link
bandwidth, where bi is the average link bandwidth in the
ith second. Calculating the cross correlation between fhig
and fbig does not reveal significant correlation in any of the
scenarios (the most significant correlation is under highway
driving where the correlation under lag 1 is around �0.1).
The low correlation might be because of the infrequency of
handover events.

3.4 Other Phones and Networks

The analysis above is based on the traces collected using a
Samsung Note 3 on AT&T network. To verify whether the
correlation results are consistent across different phones
and/or different carriers, we also evaluate the correlation
results for other phones on both AT&T and Verizon net-
works. Overall, the results exhibit similar trends. For
instance, for the datasets collected using Samsung S5 on
Verizon network, at time lag of one second, the correlation
coefficients of RSRP and link bandwidth range from 0.42 to
0.60 for various scenarios; for RSRQ and CQI, the correla-
tion coefficients range from 0.31 to 0.52, and 0.32 to 0.61,
respectively, all similar to what we have reported earlier for
the Samsung Note 3 on AT&T network.

4 LINK BANDWIDTH PREDICTION

In Section 3, we have identified five types of lower-layer
information, RSRP, RSRQ, CQI, BLER and handover events,
that are correlated with cellular link bandwidth. None of
them has direct functional relationship with link bandwidth
(unlike what is observed in [15], which shows that link
bandwidth is a direct function of CQI). In this section, we
develop a machine learning based framework called Link-
Forecast that predicts cellular link bandwidth in an online
manner, using a prediction model that is learned offline. In

the following, we first describe the prediction framework,
and then describe how to select features. After that, we eval-
uate the performance of LinkForecast.

4.1 Prediction Framework

LinkForecast uses random forest [3] as the underlying
machine learning technique for link bandwidth prediction.
Random forest is an ensemble learning approach that uses
multiple decision trees. The reason for using random forest
is three-fold. First, since it uses the average of multiple trees
(we use 20 trees), it is less sensitive to outliers in the training
set and does not suffer from overfitting compared to using a
single decision tree. Second, it requires low memory and
computation overhead, and is suitable for prediction in an
online manner on mobile phones. Third, it can determine
the importance of the features (or predictors) that are used
for the prediction, and hence can be used to identify the
most important features.

Algorithm 1 summarizes the LinkForecast prediction
framework. For convenience, we adopt a discrete time sys-
tem t ¼ 1; 2; . . ., where each time unit is of length D. The pre-
diction is therefore at the granularity of D. To predict the
link bandwidth at time t, LinkForecast uses both the upper-
and lower-layer information of the past k time units, where
k is referred to as prediction window size, k � 1 . Specifically,
let b̂t denote the predicted link bandwidth for time t. Sup-
pose n types of information are used for prediction (n ¼ 6
when throughput and the five types of lower-layer informa-
tion are being used). Let xi

t denote the measurement of
information i in time t. Then the measurements of informa-
tion i in the past k time units of t are xit�k; . . . ; x

i
t�1. LinkFore-

cast uses the past measurements x ¼ ðx1
t�k; x

2
t�k; . . . ; x

n
t�k; . . . ;

x1t�1; x
2
t�1; . . . ; x

n
t�1Þ as inputs and a prediction model learned

offline from training data to predict b̂t. To obtain xi
t, we may

need to aggregate multiple samples of this information
based on the sampling interval. Specifically, if the sampling
interval is d, then approximately D=d samples will be used
to obtain xi

t.

Algorithm 1. LinkForecast: Link Bandwidth Prediction

Input: Historical upper- and lower-layer information (through-
put, RSRP, RSRQ, CQI, BLER and handover events), k:
prediction window size, M: prediction model learned
offline

Output: b̂t: predicted link bandwidth for time t
1: for each type of information do
2: obtain its values for each of the past k time units
3: end for
4: x ¼ ðx1

t�k; . . . ; x
n
t�k; . . . ; x

1
t�1; . . . ; x

n
t�1Þ; xi

t is the value of infor-
mation i in time t

5: b̂t ¼ MðxÞ
6: return b̂t

4.2 Feature Selection

LinkForecast uses both historical throughput and lower-
layer information as features for link bandwidth prediction.
In the following, we first identify the most important fea-
tures and determine how to set prediction window size k.
The time unit D is set to 1 second. That is, we predict the
link bandwidth for the next second.

Fig. 6. (a) Scatter plot between link bandwidth and BLER (highway driv-
ing scenario). (b) Link bandwidth and handover events.
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4.2.1 Feature Importance

Since LinkForecast uses a random forest based prediction
model, we use an approach [6] that is developed for random
forest to determine the importance of the various features.
In random forest, for each decision tree (recall that random
forest uses multiple decision trees), a certain fraction of the
samples are used to construct the tree; the remaining sam-
ples, called out-of-bag samples, are used to evaluate the pre-
diction error and obtain Variable Importance (VI), an index
that is used to quantify the importance of a feature. Specifi-
cally, for tree ‘, consider the associated out-of-bag samples.
Let err‘ denote the prediction error on the out-of-bag sam-
ples. Then the VI of feature j is

P
‘ðerrj‘ � err‘Þ=Ntree, where

errj‘ is the prediction error when randomly permuting the
values of feature j in the out-of-bag samples, and Ntree is the
number of trees used in the random forest. The intuition is
that a feature is more important if perturbing it leads to a
larger error. As an extreme case, if the VI of a feature is close
to 0, then this feature will not affect the prediction result,
and hence its importance is low.

We apply the above approach to obtain feature impor-
tance using the datasets that we collected. The prediction
window size k is set to 1; we will come back to the choice of k
in Section 4.2.2. Fig. 7 plots the VI of various features in four
mobility scenarios: stationary, walking, local driving and
highway driving. The average values as well as the maxi-
mum andminimumvalues from 20 runs (using different ran-
dom seeds) are plotted in the figure. For each scenario, the
results are obtained from a dataset that aggregates all the
traces for that scenario (including those collected at different
times, and using different phones and carriers). We observe
that throughput has the highest importance, followed by
RSRP, RSRQ and CQI (the importance of these three features
varies in different scenarios; overall they have comparable
importance), and then BLER and handover events. The rela-
tive low importance of BLER is consistentwith the correlation
results in Section 3, where we observe that it is correlated
with link bandwidth only in certain cases. The importance of
handover events is higher in the highway driving scenario
than that in other three scenarios. This is not surprising since
handover happens more frequently in the highway driving
scenario than that in other scenarios. In scenarios with even
higher moving speed (e.g., on high-speed rails) and hence
even more frequent handovers [12], the importance of hand-
over eventsmight be even higher.

We make the following two conjectures based on the
above observations: (i) while throughput has the highest
importance, the importance of RSRP, RSRQ, and CQI is also
significant, and hence they may also play important roles in
predicting link bandwidth; and (ii) using the four most
important features, i.e., throughput, RSRP, RSRQ, and CQI,
might be sufficient to provide accurate predictions.

To verify the above two conjectures, we investigate the
performance of five prediction models with increasing
number of features. The first one uses only throughput, the
second one uses both throughput and RSRP, the third one
uses throughput, RSRP, and RSRQ, the fourth one uses all
the four most important features (throughput, RSRP, RSRQ,
and CQI), and the last one adds BLER and handover events
as features (i.e., it uses all the features). Fig. 8a plots the
Cumulative Distribution Function (CDF) of relative predic-
tion errors of the first four models; the result of the last
model overlaps with that of the fourth one, and is not plot-
ted for clarity. Here the relative prediction error of a predic-
tion is the predicted value minus the actual value, and then
divided by the actual value. Hence positive relative errors
indicate overestimation and negative relative errors indicate
underestimation. Fig. 8a is obtained using the dataset col-
lected using Samsung S5 on Verizon network (stationary,
day time, duration of 3 hours). Specifically, we divide the
trace into 1,440-second long segments; for each segment, we
use the first 1,200 seconds of data as training set and the
remaining 240 seconds of data as testing set. From Fig. 8a,
we observe that in general using more features indeed leads
to a better prediction accuracy; using the four most impor-
tant features achieves almost the same performance as that
when using all the features. On the other hand, using the
most important feature, throughput, alone can lead to much
inferior performance: in Fig. 8a, when using the four most
important features, around 81.8 percent relative prediction
errors are within �10 percent (i.e., between ½�10; 10� per-
cent); when using throughput alone, only 41.7 percent of
the relative prediction errors are within �10 percent. The
results in other scenarios are similar. As a further illustra-
tion, Fig. 8b plots a snippet of the prediction results when
only using throughput and when using the four most
important features. The shaded region represents the
ground-truth link bandwidth. We see that, compared to
using the four most important features, using throughput
alone can lead to less accurate prediction. In the rest of the
paper, unless otherwise specified, the prediction is based on
using the four most important features.

The four most important features that we have identified
are perhaps not surprising: they represent historical
throughput and link quality (RSRP, RSRQ, and CQI are

Fig. 7. Feature importance in various mobility scenarios.

Fig. 8. Prediction accuracy when using different combination of features.
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measures of link quality from different perspectives), the
two important types of information that base stations use to
enforce proportional fairness scheduling policy. On the
other hand, the exact form of proportional fairness enforced
by the base stations and their implementations vary across
the vendors and networks. Therefore, it might be surprising
that these four features can be used to provide accurate pre-
diction for many base stations (we observe a total of 161
unique cell IDs in our datasets) in two large commercial cel-
lular networks. In any case, our study is the first that quanti-
fies the importance of these features in predicting link
bandwidth and develops a real-time prediction framework
using these features.

4.2.2 Prediction Windows Size

We now investigate the impact of prediction window size, k.
Specifically, we set k to 1, 5, or 10, i.e., using historical infor-
mation in the past one, five or ten seconds. We find that add-
ing more historical data does not necessarily improve the
performance of our prediction model. In fact, the perfor-
mance may be degraded. The reasonmight be that in rapidly
changing cellular environment, historical data can become
obsolete quickly, and hence using data further away in the
past may degrade performance. Fig. 9 shows an example. It
is obtained using the samemethodology and dataset as what
are used for Fig. 8a. We observe similar trend when using
other datasets. Considering that using a larger k may not
improve prediction accuracy while leads to a higher compu-
tation overhead, we use k ¼ 1 in the rest of the paper.

4.3 Prediction Accuracy

We evaluate the prediction accuracy of LinkForecast for
each scenario listed in Tables 1 and 2. Specifically, the data
for a scenario concatenates all the traces collected using the
same phone, in the same carrier network, and with the
same type of mobility. For the data in each scenario, we
divide it into 1,440-second long segments; in each segment,
the first 1,200 seconds and the remaining 240 seconds of the
data are used as training and testing sets, respectively. For
each instance of prediction, we obtain the relative prediction
error (predicted bandwidth minus the actual bandwidth,
and then divided by the actual bandwidth). Since relative
prediction error can be positive or negative, we use the
absolute value and then obtain the average prediction error
for all the predictions in one scenario. The evaluation shows

that LinkForecast provides accurate prediction in all the sce-
narios: when D ¼ 1 second, the average prediction errors
are 3.9-9.0, 5.0-12.1, 6.0-8.4, 5.9-17.0 percent under station-
ary, walking, local and highway driving scenarios, respec-
tively (the range of the prediction error in each mobility
scenario is obtained from the multiple settings differenti-
ated by the phone and carrier network). The prediction
under lower mobility scenarios (stationary, walking and
local driving) are more accurate than that under highway
driving scenario. This is perhaps not surprising since the
link bandwidth changes more rapidly in high mobility sce-
narios and hence is more challenging to predict accurately.

In the interest of space, we only describe the prediction
results for the datasets collected using Samsung Note 3 on
AT&T network in detail. Fig. 10 plots the CDF of the relative
prediction error under stationary (CT), stationary (NJ),
walking, local and highway driving scenarios, respectively
(we differentiate the two stationary scenarios since the data
are collected in CT and NJ, respectively). For these five sce-
narios, 91, 69, 63, 78 and 70 percent of the relative prediction
errors are within �10 percent, respectively.

4.4 Sensitivity to Training Data

The prediction accuracy of LinkForecast depends on the
training set: the training data needs to contain sufficient
amount of variation and range. A natural question is how
sensitive the performance is to training data. In the follow-
ing, we first consider a fixed scenario (for a fixed phone,
mobility and carrier), and investigate the length of training
data that is needed for accurate prediction. We then present
cross-scenario evaluation, which applies data collected in
one scenario as the training data for another scenario.

4.4.1 Length of Training Data Needed

For a dataset corresponding to a certain scenario, we gradu-
ally increase the length of training data, starting from a
length of 500 seconds. For each length, we find a continuous
segment of data that has the largest variation (in terms of the
difference between the maximum and minimum through-
put), and use it as the training set; the remaining data is used
as the testing set. We find that in general a training set of
1,000 seconds already yields accurate prediction. Fig. 11
shows two examples, one from a stationary scenario

Fig. 9. Impact of prediction window size.
Fig. 10. Relative prediction error in various mobility scenarios (using
Samsung Note 3 on AT&T network).
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(corresponding to Samsung S5 on Verizon network, day
time) and the other from a highway driving scenario (corre-
sponding to Samsung Note 3 on AT&T network). In both
cases, we observe significant improvement in prediction
accuracy when increasing the length of the training data
from 500 to 1,000 seconds; the improvement afterwards is
less significant. Results for other datasets show similar trend.

In practice, when there is no knowledge about when
throughput will exhibit the largest variation, we need to col-
lect more data as training set. On the other hand, random
forest incurs very low memory and computation overhead:
even when using thousands of seconds long training data,
the computation time on a modern processor is negligible.
In addition, in our approach, since the training is done off-
line, the length of the training data does not affect the com-
putation time of the online prediction.

4.4.2 Cross-Scenario Evaluation

We evaluate the sensitivity of the prediction accuracy to
training data in four settings, on the sensitivity to mobility,
phone, time, and cellular carrier, respectively.

Sensitivity to Mobility. In this setting, to predict the link
bandwidth in one mobility scenario, we use the data col-
lected in other mobility scenarios as training data. Specifi-
cally, the data collected using Samsung Note 3 from AT&T
network (Table 1) contains four mobility scenarios: station-
ary, walking, local driving, and highway driving. For each
testing scenario, we use the data collected from all the other
scenarios as the training data, thus creating four pairs of
training and testing sets given the four mobility scenarios.
Fig. 12 (marked as “cross-mobility”) presents the CDF of the
relative errors of all the cross-mobility evaluation scenarios.
It shows that the prediction is very accurate: 90 percent of
the relative errors are within �8.8 percent.

Cross-Phone Prediction. In this setting, we use the data col-
lected from one phone as training data and the data collected
from another phone as testing data. Specifically, we consider
two phones, HTCM8 and SamsungNote 3.When using data
collected from Samsung Note 3 as training set and the data
from HTC M8 as testing set, 80 percent of the relative errors
are within �9.4 percent, and the average prediction error is
6.1 percent. The results for the other case are similar. Fig. 12
(“cross-phone” curve) presents the CDF of the relative errors
of these two cross-phone testing scenarios.

Sensitivity to Time. We choose two datasets that were col-
lected far apart in time: one in July 2014 and the other in
October 2015. When using the first dataset as training data,
80 percent of the relative errors are within �9.8 percent, and
the average prediction error is 7.3 percent. When using the

second dataset as the training data, 80 percent of the rela-
tive errors are within �10.4 percent, and the average pre-
diction error is 8.1 percent. Fig. 12 (“cross-time” curve)
presents the CDF of the relative errors of these two cross-
time testing scenarios.

Sensitivity to Carrier. To investigate whether a prediction
model obtained from one carrier network can be used for
another carrier network, we perform a “cross-carrier” test.
Specifically, we compile two datasets: one containing all the
data collected from the Verizon network, and the other con-
taining all the data collected from the AT&T network.
When we use the Verizon data as the training set and the
AT&T data as testing set, 80 percent of the relative errors
are within �10.8 percent (the average prediction error is
8.5 percent). When we switch the training and testing sets,
80 percent of the relative errors are within �11.2 percent
(the average prediction error is 9.1 percent). In both cases,
our approach achieves good prediction accuracy. Fig. 12
(“cross-carrier” curve) presents the CDF of the relative
errors of these two cross-carrier testing scenarios.

4.5 Summary

In this section, we have designed and implemented a
machine learning framework, LinkForecast, that predicts
link bandwidth in real time using past throughput and
lower-layer information. Our evaluation shows that it
achieves good prediction accuracy in all the scenarios we
investigated. In addition, we observe good prediction accu-
racies in all the cross-scenario evaluation settings, indicating
that the prediction results are not sensitive to the training
data. The insensitivity to training data indicates that Link-
Forecast can be easily applied in practice: it is easy to collect
training data and build prediction models; the training data
do not need to be collected from very specific situations and
be only useful to those settings.

5 LOWER-LAYER INFORMATION IN REAL SYSTEMS

So far, we have been using lower-layer information obtained
using QxDM, a specialized diagnostic tool. Since QxDM is
not widely available to end users, in this section, we explore
cellular link bandwidth prediction when using lower-layer
information obtained through standard APIs provided by
the operating system. In the following, we first describe
data collection methodology and the collected datasets, and
then compare the lower-layer information collected from the

Fig. 11. Impact of the length of the training data.

Fig. 12. Sensitivity to training data: Cross-scenario evaluation.
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standard APIs with that collected from QxDM. In the end,
we compare the link bandwidth predicted using these two
methodologies.

5.1 Data Collection

Currently, not all lower-layer information that is accessible
through QxDM is directly accessible at end devices. On the
other hand, the top three lower-layer information, RSRP,
RSRQ, and CQI, have been made available by Android OS.
We use an HTC M8 phone (running Android 4.4, API level
19 on AT&T network) for data collection in this section. On
this phone, both RSRP and RSRQ are available, while CQI is
still a developing function that is not yet available (it is
likely to be available in the future). Therefore, in the follow-
ing, link bandwidth prediction at the end system uses past
throughput as well as RSRP and RSRQ information directly
from the operating system.

We collect two types of data, one directly through stan-
dard Android APIs and the other using QxDM. These two
types of data are collected simultaneously so that they are
comparable. Specifically, we use the same methodology as
described earlier (see Section 3.1) to collect QxDM data. To
collect data through Android APIs, we write an app that
registers an event receiver to the operating system. When a
signal change event happens (specifically, a change in RSRP
or RSRP), the Android core module will send out an event
to the event receiver in the app, which will catch the event
and write the current values of the signal to the SD card of
the phone. The timestamps of all the data (from QxDM and
the standard APIs) are based on the clock of the phone.

Table 3 lists the data collected. It contains 8.6 hours and
26.2 GB downloaded data, covering four mobility scenarios:
stationary, walking, local driving, and highway driving.

5.2 Lower-Layer Information from Android APIs

Weobserve lower-layer information collected usingAndroid
APIs has lower fidelity compared to that collected using
QxDM. This is expected since QxDM collects data periodi-
cally at fine-grain intervals (in tens to hundreds of millisec-
onds) from the chip-set, while when using Android APIs, a
signal value is collected only after a signal change event is
triggered, i.e., when the extent of change exceeds a threshold
(which is set in the core module). Fig. 13 shows a snippet of
RSRP values collected using QxDM and Android APIs. We
see that the values collected using QxDM change more fre-
quently than those collected using Android APIs. In addi-
tion, the values from QxDM are floating-point numbers,
while those collected using Android APIs are integers (and
thus have a lower granularity).

We next quantify the differences using all the datawe have
collected (see Table 3). Specifically, we calculate the relative
difference between a value obtained using the Android APIs
and the corresponding value obtained using QxDM as the
difference of these two values divided by the latter. Fig. 14
plots the CDF of the relative differences. Both the results of
RSRP and RSRQ are plotted in the figure. For RSRQ, the rela-
tive differences are close to zero; for RSRP, around 80 percent
of the relative differences are within�10 percent.

5.3 Prediction Accuracy

We now compare the prediction accuracy when using the
data collected through Android APIs with those collected
through QxDM. Fig. 15 plots CDFs of the relative prediction
errors under four mobility scenarios using the data in
Table 3. For the data in each mobility scenario, we again
divide the data into segments of 1,440 seconds, using the
first 1,200 seconds of data as training set and the remaining
240 seconds of data as testing set. Both the results when

TABLE 3
Data Collected Using an HTC M8 Phone on the AT&T Network

Phone Scenario Time Location Duration
(hour)

Traffic
(GB)

Avg. rate
(Mbps)

Unique
cell IDs

Handovers

HTCM8

stationary day campus 4.2 10.8 5.7 3 4
walking day campus 1.7 3.7 4.8 4 7

local driving day campus to residence 1.8 5.3 6.5 16 72
highway driving day CT 0.9 6.4 15.8 43 98

Lower-layer information are collected using both QxDM and Android APIs for comparison purposes.

Fig. 13. Comparison of RSRP values collected using QxDM and Android
APIs.

Fig. 14. Relative differences of the values collected using Android APIs
and those collected using QxDM.
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using data from Android APIs (obtained using historical
throughput, and lower-fidelity RSRP and RSRQ) and
QxDM (obtained using historical throughput, and higher-
fidelity RSRP, RSRQ and CQI) are plotted in the figure. We
observe that, while RSRP and RSRQ collected using
Android APIs are of lower fidelity and CQI is not yet avail-
able from the APIs, the prediction accuracy when using
Android APIs is only slightly worse than that when using
QxDM. Compared to the ground truth, the average predic-
tion error when using Android APIs is 5.6, 6.8, 12.3, and
18.4 percent under stationary, walking, local and highway
driving scenarios, respectively; the corresponding values
are 4.1, 5.0, 11.1, and 13.5 percent when using QxDM.

In summary, we have demonstrated that lower-layer
information collected directly from Android APIs can be
used to provide accurate link bandwidth prediction. Such
information is readily available at end systems, without any
change to the operating system or the need of rooting the
phone. Therefore, our link bandwidth prediction approach
can be easily deployed in practice.

6 RELATED WORK

Bandwidth estimation has been studied extensively in
wired networks and wireless LANs. The study in [10] dem-
onstrates that existing bandwidth estimation techniques for
wired networks and wireless LANs are not effective in cel-
lular networks. The studies in [14], [16], [30] indicate that
data rate is predictable in cellular networks. Xu et al. [30]
develop a system interface called PROTEUS that forecasts
future network performance (throughput, loss, and one-
way delay) based on current measurements, and integrate
it into real-time communication applications. Winstein
et al. [26] use packet interarrival time to infer link band-
width and further determine the number of packets that can
be transmitted. The prediction techniques in these two stud-
ies do not use lower-layer information.

Lower-layer information is used in several studies
to predict link bandwidth. Chakraborty et al. develop a

Support Vector Machine (SVM) based technique that cate-
gorizes bandwidth into two classes (high and low band-
width, respectively), and propose a technique for UEs to
coordinate cellular background transfer in an efficient man-
ner [4]. Margolies [17] et al. generate throughput prediction
for a mobile device based on the observation that the signal
quality of a device is reproducible for multiple drives on
the same path. The study in [15] uses CQI and DRX (discon-
tinuous transmission) ratio to predict link bandwidth in
HSPA+ networks. The prediction is by looking up a map-
ping table at a base station. Since the mapping table is ven-
dor implementation dependent, the authors propose to use
crowdsourcing to obtain the mapping table at each base
station. Our work differs from the above studies in that we
investigate an extensive set of lower-layer information, and
construct a prediction model that uses both upper-layer
(past throughput) and lower-layer information to predict
link bandwidth in real time. We do not find a simple func-
tional relationship between CQI and link bandwidth.
Instead, we develop a machine learning technique that
uses various features to predict link bandwidth, and dem-
onstrate that our approach leads to accurate prediction and
is not sensitive to training data.

The study in [20] investigates instantaneous throughput
prediction in cellular networks. The focus is on predicting
the available bandwidth before a phone establishes a con-
nection to the content provider. The authors show that
physical-layer information (RSRP and RSRQ) and radio
access network (RAN) measurements collected at the oper-
ator’s networks are most helpful in achieving accurate pre-
diction. Our study differs from it in that we study link
bandwidth prediction when a connection has been estab-
lished, and show that past throughput and lower-layer
information are both important for accurate link bandwidth
prediction. Our approach does not require any information
from the operator’s network.

Several studies [11], [13], [27], [28], [29] develop tools to
extract detailed cellular network information, which can be
used to infer the network bandwidth that is potentially
available to a phone. These tools, however, require software
defined radio or access to certain diagnostic information
that demands rooting a phone. Our prediction approach
uses standard APIs provided by the operating system and
can be used directly on commercial off-the-shelf phones
without the need of rooting the phones.

Last, the relationship between lower-layer information
and link bandwidth has also been investigated and lever-
aged in [21], [23]. Schulman et al. find that signal strength is
correlated with link bitrate and power consumption, and
propose an energy-aware scheduling algorithm for different
workloads [21]. Sorous et al. find that signal strength and
throughput are correlated to some extent [23], and demon-
strate that measurement of throughput at a server can be
used to reveal user location. Several studies investigate the
relationship between radio status and performance at an
end device. Liu et al. study the interplay between wireless
channels and applications in CDMA networks [14]. To cap-
ture the radio information, Vallina-Rodriguez et al. imple-
ment a tool named RilAnalyzer [24], which can record the
radio connection status and application behaviors. Our
work differs in scope from the above studies.

Fig. 15. Prediction errors when using data collected through Android
APIs in comparison with the results when using data collected through
QxDM.
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7 CONCLUSION AND FUTURE WORK

In this paper, we first conducted an extensive measurement
study in two major commercial LTE networks in the US and
identified a comprehensive set of lower-layer information
that is correlated with cellular link bandwidth. We then
developed LinkForecast, a machine learning framework
that utilizes both past throughput and lower-layer informa-
tion to predict link bandwidth in real time. Evaluation
results in a wide range of scenarios demonstrated that our
approach leads to accurate prediction, incurs low computa-
tion overhead, and is insensitive to the training set. Last, we
investigated using lower-layer information obtained
through standard Android APIs for link bandwidth predic-
tion, and compared the prediction performance with that
using QxDM. We showed that the prediction is accurate,
and hence our approach can be easily deployed on commer-
cial off-the-shelf mobile devices.

As future work, we plan to explore using LinkForecast in
developing congestion control protocols and video stream-
ing techniques. While recent studies [5], [9], [22], [25], [26],
[32] have proposed congestion control protocols to tackle
the challenges in cellular networks, leveraging realtime
bandwidth prediction from LinkForecast can lead to alter-
native designs that achieve both high throughput and low
latency. For video streaming, while the study [33] has dem-
onstrated theoretically that accurate link bandwidth predic-
tion can significantly benefit adaptive bitrate streaming,
how to use realtime bandwidth prediction for video stream-
ing for cellular network needs further investigation. We will
design rate adaptation strategies using the bandwidth pre-
diction from LinkForecast.
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