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Abstract—In this paper, we propose a classification scheme that
differentiates Ethernet and WLAN TCP flows based on measure-
ments collected passively at the edge of a network. This scheme
computes two quantities, the fraction of wireless TCP flows and the
degree of belief that a TCP flow traverses a WLAN inside the net-
work, using an iterative Bayesian inference algorithm that we de-
veloped. We prove that this iterative Bayesian inference algorithm
converges to the unique maximum likelihood estimate (MLE) of
these two quantities. Furthermore, it has the advantage that it can
handle any general -classification problem given the marginal
distributions of these classes. Numerical and experimental evalua-
tions demonstrate that our classification scheme obtains accurate
results. We apply this scheme to two sets of traces collected from
two campus networks: one set collected from UMass in mid 2005
and the other collected from UConn in late 2010. Our technique in-
fers that 4%–7% and 52%–55% of incoming TCP flows traverse
an IEEE 802.11 wireless link in these two networks, respectively.

Index Terms—IEEE 802.11 wireless LAN, iterative Bayesian
inference, TCP ACK-pairs, wireless traffic detection.

I. INTRODUCTION

T HE DEPLOYMENT and use of IEEE 802.11 wireless
LANs (WLANs) has grown dramatically over the past

several years. The presence of a wireless infrastructure within
a network, however, raises issues such as the placement and
management of wireless access points, maintaining network se-
curity, and monitoring the end-to-end performance of wireless
users. Identifying wireless traffic has several practical applica-
tions for network administrators. It is useful to know the extent
of wireless usage in order to allocate resources (such as access
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points) within the network. Detecting wireless usage at previ-
ously unknown locations in the network can detect unauthorized
wireless networks that are potential security holes (since they
may allow unauthorized access within the network). Finally,
by monitoring the identified wireless traffic, one can infer the
end-to-end performance of flows, thus keeping tabs on the per-
formance of the wireless network.

Identifying wireless traffic within a network is, however, not
an easy task. Wireless access points are invisible to topology
discovery tools such as traceroute (since they do not reduce the
TTL of a packet). Moreover, the IP address of a host may not
provide any useful information about the type of its access net-
work. This is because a network administrator may not allocate
separate IP address pools for wired and wireless hosts. Even if
there were separate pools, a host with an address from the wired
address pool may act as a NAT box for a set of wireless hosts or
install a wireless router and become a wireless host.

One approach toward monitoring WLAN traffic and esti-
mating the extent of WLAN traffic is to monitor and compute
statistics from all access points in the network. This approach,
however, requires access to perhaps hundreds of such access
points within a large network, many of them unknown, thus
making this technique infeasible and impractical. In this paper,
we present a novel methodology to detect TCP flows that have
traversed an 802.11 WLAN using measurements collected
passively at the edge of a network. This methodology only
requires a single monitor, and hence incurs little deployment
cost, and is easy to manage and maintain.

The contributions of our work are as follows. We propose a
classification scheme to differentiate Ethernet and WLAN TCP
flows based on measurements collected passively at the edge
of a network. This scheme takes the interarrival times of TCP
ACK-pairs1 as input and computes the fraction of wireless TCP
flows. Furthermore, for each TCP flow, it determines the belief
that this flow traverses a WLAN inside the network. The core
of this classification scheme is an iterative Bayesian inference
algorithm that we develop to obtain the maximum likelihood es-
timate (MLE) of these quantities. This inference algorithm can
handle any general -classification problem given the
marginal distributions of these classes. Numerical and experi-
mental evaluations demonstrate that our classification scheme
obtains accurate results.

We apply the classification scheme to various traces collected
between April and May 2005 by a monitoring device placed at

1Informally, an ACK-pair refers to two ACKs generated in response to data
packets that arrive close in time at the measurement point. A more precise defi-
nition will be given in Section III.

1063-6692/$26.00 © 2011 IEEE



326 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 2, APRIL 2012

the gateway router of the University of Massachusetts, Amherst
(UMass) campus network. Our scheme infers that between
4%–7% of all TCP flows entering the UMass campus traverse
an 802.11 wireless link within the campus. It also detects wire-
less usage (through the use of private routers and access points)
in areas that are not covered by the official wireless infrastruc-
ture. We further apply this scheme to various traces collected
in December 2010 from the University of Connecticut, Storrs
(UConn) campus network and infer a prevalent amount of
incoming TCP flows (between 52%–55%) traverses a WLAN
inside the UConn campus.

The rest of the paper is organized as follows. Section II
describes related work. Section III presents the problem set-
ting and a high-level description of our approach. Section IV
presents the analytical foundation of our classification scheme.
Sections V and VI present our iterative Bayesian inference
algorithm and classification scheme, respectively. Numerical
and experimental evaluations of our classification scheme are
presented in Section VII. Section VIII describes the inference
results using data gathered from the two campus networks.
Finally, Section IX briefly discusses using our scheme in future
networks, and Section X concludes the paper.

II. RELATED WORK

The study [35] is most closely related to our work. Both
studies utilize measurements collected passively at the edge of
a network to differentiate Ethernet and WLAN traffic. They,
however, differ in important aspects: The study [35] makes a
deterministic decision on whether a flow traverses a WLAN or
not (after obtaining a sufficient number of observations), while
our current study makes a probabilistic decision on the belief
that a flow traverses a WLAN and infers the fraction of flows
that traverse a WLAN (more generally, it infers the belief that
a flow belongs to a certain class and the fraction of each class
of traffic). The iterative Bayesian inference algorithm that we
develop in this study obtains the unique MLE of the above two
quantities, and hence is asymptotically optimal. Although one
may use the approach in the study [35] to obtain the fraction of
WLAN traffic, it is not MLE and hence does not have the prov-
ably optimal properties of MLE.

Detecting wireless traffic has also been studied in several
other efforts. Cheng and Marsic classify hosts to be behind
either wired or wireless networks based on the round-trip
times (RTTs) of TCP connections [12]. Their study relies on
certain assumptions about wireless links, such as very low
bandwidth and high loss rates, which may not hold in current
WLANs. Wei et al. propose a simple and efficient end–end
scheme to classify an access network into three types: Ethernet,
WLAN, or low-bandwidth connections [36]. Different access
networks were classified based on cutoff values (derived based
on intrinsic properties of these networks) of median and entropy
of the interarrival times of the injected UDP packet pairs. Ba-
iamonte et al. [5] use entropies to detect wireless traffic based
on traffic collected at an aggregation point. Beyah et al. [8]
use visual inspection to detect wireless hosts. Mano et al. [24]
propose a technique that segments large packets into smaller
ones to detect wireless traffic. All of the above studies detect

wireless traffic on a per-host basis. None of them provides the
MLE of the extent of wireless traffic, which is one focus of our
study.

This study extends our preliminary version [34]. Although
packet interarrival times, ACK interarrival times, or TCP probes
have been used to detect a shared bottleneck [21], [27], estimate
link capacity [10], [15], [16], [18], [22], or estimate bottleneck
bandwidth [26], our preliminary version [34] is the first one that
defines ACK-pairs and uses the interarrival time of ACK-pairs
to differentiate WLAN and Ethernet traffic. The current version
considers -classification that can classify TCP flows into
classes , and hence significantly generalizes the scheme
in the preliminary version (which only considers two classes).
Furthermore, our current version includes a new set of mea-
surements collected in December 2010, which contains a much
richer variety of WLAN traffic (including 802.11a/b/g/n) than
that in the preliminary version.

Broadly, our work is related to WLAN measurement and
management. Previous work on wireless measurement has
used direct measurement techniques and focused on the per-
formance and user behavior in wireless networks (e.g., [6],
[7], [17], [29], and [32]). We use an indirect approach to infer
the percentage of the WLAN traffic and the belief that a flow
traverses a WLAN. Most studies on WLAN management rely
on distributed monitors that monitor RF airwaves [3], [4],
[13], [23], [30], [37], [38]. The rationale is that RF airwave
monitoring provides detailed low-level (i.e., PHY and MAC)
information that is critical for analyzing the behavior of a net-
work and troubleshooting faults in a network. Our study takes
the approach of centralized monitoring at a single aggregation
point. The captured information is at higher layers (i.e., IP
and transport layers), and hence may not provide sufficient
insights for troubleshooting. However, our approach incurs
little deployment and maintenance cost, and our study on
estimating the extent of wireless traffic and the belief that a
flow traverses a WLAN has a number of applications in WLAN
management: It is helpful for resource allocation, detecting
wireless usage at previously unknown places, and keeping tabs
on the performance of wireless network.

Lastly, passive measurement at a single aggregation point
falls broadly into “measurement-in-the-middle,” i.e., mea-
surements are taken at a single point in the “middle” of the
end-to-end connections. The studies of [19] and [20] infer
end-to-end properties of a TCP connection through measure-
ment-in-the-middle. Our study differs in that we focus on
detecting wireless traffic.

III. PROBLEM DEFINITION AND APPROACH

We now state our inference problem and describe, at a high
level, our approach toward solving this problem. Consider a
local network, e.g., a university campus or an enterprise net-
work, as illustrated in Fig. 1. End-hosts within this network use
either wired Ethernet or 802.11 WLAN to access the Internet.
A monitoring point is located at the edge of this local network
(e.g., at the gateway router), capturing traffic coming in and
going out of the network. Our goal is to determine: 1) what
fraction of TCP flows, observed by the passive monitor, pass
through a WLAN within the network; and 2) for each TCP flow,
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Fig. 1. Problem setting: A monitoring point is located at the gateway router of
a local network, capturing traffic coming in and going out of the network. The
end-hosts within this network are behind wired Ethernet or 802.11 WLAN.

what is the belief (probability) that this TCP flow traverses a
WLAN within the network.2

This problem is challenging since the monitoring point is at
the edge of the network, in the middle of the path between a
sender and a receiver, and hence the measurements collected
at the monitoring point may not provide accurate information
on the two end-hosts. Furthermore, the monitoring point only
passively collects traffic, which limits the types of techniques
that can be utilized to solve the above problem.

Our approach utilizes the intrinsic characteristics of WLAN
and Ethernet connections and operates roughly as follows. For
each TCP flow, we identify pairs of TCP data packets destined
to a receiver (end-host) within the local network and arriving
at the monitoring point close in time. A pair of ACKs in re-
sponse to these data packets (termed as ACK-pairs) are gen-
erated by the receiver and returned to the sender. As will be
shown in Section IV, the interarrival times of the ACK-pairs at
the monitoring point (termed as inter-ACK times) differ signifi-
cantly when the data packets and ACK-pairs traverse a wireless
hop as compared to a wired Ethernet link. Our scheme exploits
this difference to classify WLAN and Ethernet TCP flows. More
specifically, it takes inter-ACK times as input and uses an iter-
ative Bayesian inference algorithm (Section V) to infer the ex-
tent of WLAN traffic and the belief that a TCP flow traverses a
WLAN.

IV. ANALYTICAL BASIS

In this section, we carry out an analytical study that forms the
foundation of our inference algorithm in Section V. The goal of
our analytical study is to answer two key questions: 1) What
are appropriate statistics to differentiate WLAN and Ethernet
traffic? 2) Can WLAN and Ethernet traffic be differentiated de-
terministically using threshold based schemes?

To answer these two questions, we consider an arbitrary TCP
flow from an outside server to a receiver residing in the local
network, as shown in Fig. 2. The access link of the receiver is
either Ethernet [Fig. 2(a)] or WLAN [Fig. 2(b)]. We refer to

2Since the monitoring point is located at the edge of the network, it does not
observe internal flows in the network. Therefore, our approach is not applicable
to internal flows.

Fig. 2. Settings for the analysis: (a) Ethernet and (b) WLAN (802.11b or
802.11g). The dashed rectangle between the sender and the router represents
the monitoring point. The pair of ACKs, � and � , form an ACK-pair.

these two settings as Ethernet setting and WLAN setting, respec-
tively. In both settings, a router resides between the sender and
the receiver; we model the router as two queues, for
data packets and ACKs, denoted as and , respectively.
The utilization of is , and the utilization of is .
The router is connected to the sender by link of 100 Mb/s.
The monitoring point is between the sender and the router, tap-
ping into link . In the Ethernet setting, the router and the re-
ceiver are connected by link of 100 Mb/s. In the WLAN
setting, an access point resides between the router and the re-
ceiver; the access point and the router are connected by link
of 100 Mb/s; the receiver is connected to the access point using
11-Mb/s 802.11b or 54-Mb/s 802.11g.

We assume that the receiver implements delayed ACK policy3

since this policy is commonly used in practice [2], [28]. To ac-
commodate the effects of delayed ACK, we consider four data
packets , , , and , each of 1500 B, sent back to back
from the sender. Without loss of generality, we assume that
packet is acknowledged. Since we assume delayed ACK,
packet is also acknowledged. Let and denote the
ACKs corresponding to and , respectively. Then, and

form an ACK-pair. Let represent the inter-ACK time
of and at the monitoring point. Let denote the inter-
arrival time of the data packets and at the monitoring
point. Then, is approximately s since each

is 1500 B and the bandwidth of link is
100 Mb/s.

We conjecture that inter-ACK times in a WLAN setting
are larger than those in an Ethernet setting. Intuitively, this is
due to two reasons. First, in a WLAN, even in the absence of
contention, the receiver must wait for a random backoff interval
after a previous successful transmission to avoid channel cap-
ture (see [36] and the references within). This random backoff
delay may be inserted between the ACK-pair, leading to a
larger inter-ACK time. Second, in a WLAN, the ACKs also
contend with the data packets (coming from the opposite direc-
tion) for the wireless channel. Therefore, a data packet may be

3That is, a receiver releases an ACK after receiving two packets or if the de-
layed-ACK timer is triggered after the arrival of a single packet.
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transmitted between the ACK-pair, and this again increases the
inter-ACK time. Our analytical results confirm this conjecture.

Suppose samples of inter-ACK time are observed in a TCP
flow. Let denote the median inter-ACK time given
these samples (we use median instead of mean since it is
less sensitive to outliers in the measurements [25]). We have
the following results on median inter-ACK times; the proofs are
found in Appendix I.

Theorem 1 (Median Inter-ACK Time for Ethernet): In
the Ethernet setting, when , we have

s .
Theorem 2 (Median Inter-ACK Time for 802.11b): In the

802.11b WLAN setting, when , we have
s .

Theorem 3 (Median Inter-ACK Time for 802.11g): In the
802.11g WLAN setting, when , we have

s .
Empirical results in the UConn campus network support

the above theorems. In particular, our empirical results show
that, for 100-Mb/s Ethernet, s ;
for 802.11b and 802.11g WLAN, s
is 0.92 and 0.75, respectively. These empirical results
are consistent with Theorems 1–3, respectively. Fur-
thermore, for 802.11n WLAN, we obtain empirically

s .4 This value is larger than
that of 100-Mb/s Ethernet, which is not surprising due to the
following two reasons. First, while the raw data rate of an
802.11n connection in the UConn network is up to 144 Mp/s,
much lower throughput is achieved in practice (even in ideal-
ized settings, the maximum throughput of 802.11n measured
in [31] is below 100 Mp/s). Second, despite its higher bit rate,
802.11n still provides half-duplex channels, and hence ACKs
still contend with data packets that come from the opposite
direction to access a wireless channel, which can lead to large
inter-ACK times.

In summary, the above results demonstrate that median
inter-ACK times can be used to differentiate Ethernet and
WLAN traffics. However, since their distributions have overlap,
deterministic classification using a cutoff value will not provide
accurate results.

V. ITERATIVE BAYESIAN INFERENCE ALGORITHM

In this section, we propose an iterative Bayesian inference al-
gorithm that probabilistically classifies a set of observations into

4The empirical result for each connection type is obtained from its corre-
sponding training set (i.e., a set of flows that is known to use the connection
type). The training set for 100-Mb/s Ethernet is constructed based on IP
addresses (see Section VII). The training set for a specific type of WLAN traffic
(802.11b, 802.11g, or 802.11n) is constructed from controlled experiments
using three laptops (we cannot obtain these training sets through purely passive
measurements since all WLAN flows share the same set of IP addresses).
Specifically, we connect these three laptops to 802.11b/g/n-capable access
points, first using 802.11b, then using 802.11g, and then using 802.11n. In
each setting, the experiment lasts for 20 min (the laptops are used to surf the
Web, download files, and stream videos during the experiment). The traces of
these laptops collected at the monitoring point during these three controlled
experiments form the training sets for 802.11b, 802.11g, and 802.11n WLAN,
respectively.

classes, . This algorithm is applicable to any general
-classification problem. We next describe the algorithm in a

generic setting; how to apply it to detect WLAN traffic is de-
ferred to Section VI.

Consider classes, . Let denote the set of observa-
tions, , where is the th observation. Let de-
note the random variable corresponding to the th observation,

. Let denote the probability that an observation belongs to
the th class. Then, , and . Let de-
note the event that an observation belongs to the th class. Let

denote the probability that the th observation is given that
it belongs to the th class. That is, . We
assume that is known a priori (e.g., obtained from training
sets). Let denote the belief that the th observation belongs
to the th class given that its value is . That is,

. Then, , and . Using Bayes
rule, we have

(1)

Let denote the likelihood function of ob-
serving the set of observations, . Assuming independent ob-
servations, we have

(2)

Taking logarithm on both sides of (2), we have

(3)

Let denote the MLE of . Let denote
the MLE of . These MLEs are
obtained by solving the following optimization problem:

(4)

s.t. (5)

Substituting into (4), the objective function
transforms to

(6)
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The MLE of can then be obtained by solving a system of
equations

(7)

where .
We assume that for since other-

wise we cannot differentiate classes and from the observa-
tions. Then, we have the following theorem on the uniqueness
of the MLE; the proof is found in Appendix II.

Theorem 4: The MLE of is unique, and hence the MLE
of is unique, , .

We can solve the system of equations (7) to obtain . How-
ever, directly solving this system of equations is difficult since
each equation contains an th order polynomial term, and
hence the equation cannot be solved using only rational opera-
tions and finite root extractions when [9]. We next
design an iterative algorithm to solve for and . This algo-
rithm is summarized in Algorithm 1 .

Algorithm 1: Iterative Bayesian Inference Algorithm

Set initial values for

repeat
for to do

for to do

end for
end for
for to do

end for

until

In the algorithm, and denote respectively the
values of and in the th iteration, and
denotes the initial value of .
This algorithm is an Expectation and Maximization (EM)
algorithm [14]. Each iteration contains two steps: In the E-step,
we update from [following (1)] in order to obtain
the expected number of observations in each class; in the
M-step, we update from based on the definition
of . The iteration continues until the difference of be-
tween two iterations is below a convergence threshold, , for

. The convergence of this algorithm follows from
the convergence property of an EM algorithm [14]. We prove
that this algorithm converges to the unique MLE of and

, as stated in the following theorem; the proof is found in
Appendix III.

Theorem 5: Let and
. The iterative Bayesian inference algorithm

converges to the unique and . Furthermore, is the MLE
of , and is the MLE of .

VI. CLASSIFICATION SCHEME

We design a classification scheme that determines, for a given
collection of TCP flows, the fraction of WLAN TCP flows and
the belief that a TCP flow traverses a WLAN. The core of this
classification scheme is the iterative Bayesian inference algo-
rithm presented in Section V. In our context, the classes are
the various Ethernet connection types (10-Mb/s, 100-Mb/s, and
1-Gb/s Ethernet) and 802.11 WLAN.5 The input to the clas-
sifier contains a set of observations and the marginal distri-
bution of each class. An observation is the median inter-ACK
time of a qualified TCP flow, i.e., a TCP flow with no less than

ACK-pairs, where is a predefined parameter (we set
to 2 or 5 in our experiments). The reason for using median
inter-ACK time is based on our analysis that it is useful for dif-
ferentiating Ethernet and WLAN connections (Theorems 1–3
in Section IV). Next, we first describe how to obtain ACK-pairs
and the marginal distribution of each class, and then describe
how the classifier operates.

A. Identifying ACK-Pairs

We refer to two successive ACKs as an ACK-pair if the in-
terarrival time of their corresponding data packets at the moni-
toring point is less than a threshold . In our experiments, we
set to 250 or 400 s based on our analysis in Section IV. In
addition to the above condition, we also take account of several
practical issues when identifying ACK-pairs. First, we exclude
all ACKs whose corresponding data packets have been retrans-
mitted or reordered. We also exclude ACKs due to expiration
of delayed-ACK timers (if delayed ACK is implemented) since
such an ACK is not released immediately after its corresponding
data packet, and hence the interarrival time of this ACK and its
previous ACK does not reflect the characteristics of the access
link. We use the technique in [33] to infer whether delayed ACK
is implemented, which further requires that the inter-ACK time
of an ACK-pair to be below 200 ms.

B. Obtaining Marginal Distributions

The marginal distribution of a connection type can be ob-
tained from a training set, which contains TCP flows known to
use this connection type. Given a training set, we obtain the mar-
ginal distribution as follows. We first identify a set of qualified
TCP flows (i.e., TCP flows with no less than ACK-pairs).
For each qualified TCP flow, we obtain the median inter-ACK
time over all ACK-pairs. Suppose that a set of qualified TCP
flows are identified in the training set. Let denote the median
inter-ACK time of the th qualified TCP flow. The value of is
discretized as follows: If is smaller than 1 ms, it is discretized
to be a multiple of 50 s; otherwise, it is discretized to be a mul-
tiple of 1 ms. Then, the marginal distribution is obtained from
the discretized value of .

5We do not differentiate 802.11a/b/g/n since which protocol a host uses de-
pends on many factors. On the other hand, we verify that our scheme can suc-
cessfully differentiate a specific type of WLAN traffic (802.11b, 802.11g, or
802.11n) and Ethernet traffic (10-Mb/s, 100-Mb/s, or 1-Gb/s Ethernet) given
the marginal distributions of these traffic types. The detailed results are omitted;
some results are briefly discussed in Section IX.
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Constructing training sets for a local network requires knowl-
edge of the network. We detail how we construct training sets
for our experiments in Section VII; training sets for other net-
works can be constructed in a similar manner.

C. Applying the Classification Scheme

Given a collection of TCP flows, our classifier operates as
follows. It first identifies a set of ACK-pairs (using threshold )
and obtains the corresponding inter-ACK times for each TCP
flow. It then determines whether a TCP flow is qualified (based
on whether the number of ACK-pairs is more than the threshold,

) and identifies a set of qualified TCP flows. For each qualified
TCP flow, it obtains the median inter-ACK time of this flow.
Finally, the set of median inter-ACK times over all qualified
TCP flows and the marginal distribution of each class (obtained
from its corresponding training set) are fed into the iterative
Bayesian inference algorithm to obtain inference results, i.e.,

, the probability that a TCP flow is in the th class (for a give
set of TCP flows, it represents the fraction of TCP flows in the

th class), and , the belief (probability) that the th qualified
TCP flow belongs to the th class.

In the above, is the fraction of the th class considering
only qualified TCP flows. In practice, we are also interested in
the fraction of a class over all the TCP flows (including both
qualified and disqualified flows). We next describe how to ob-
tain this quantity. Let denote the fraction of the th class
over all the TCP flows, . Suppose the number of
qualified flows is , the total number of flows (both qualified
and disqualified) is , and the number of flows that belong to
the th class is . Let denote the fraction of qualified flows
for the th class, i.e., it is the ratio of the number of qualified
flows that belong to the th class over the total number of flows
that belong to the th class. We do not know beforehand,
and hence obtain an estimate of from the training set for the

th class (i.e., the estimate is the ratio of the number of qualified
flows over the total number of flows in the training set for the

th class). Summarizing the above, we have

Therefore

Hence

(8)

Observe from (8) that , and we only need and
, to obtain . Furthermore, when

all the classes have the same fraction of qualified flows, i.e.,
. In reality, however, different classes often have

different fractions of qualified flows, as we shall see in Tables I
and II. Therefore, typically differs from and represents
an adjusted value of . Henceforth, we refer to and as
inferred fraction and adjusted fraction of class , respectively.

Lastly, we can obtain the fraction of each class measured
in the number of packets [34] and obtain the adjusted fraction
when considering all the packets (in both qualified and disqual-
ified flows) following a similar approach as above. In this paper,
we only report the results measured in terms of flows (i.e.,
and ) in the interest of space.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our classifica-
tion scheme. The traffic traces we use are collected from UMass
and UConn campus networks. In both networks, we place a
measurement system at the gateway router. The measurement
system uses a packet capture card (DAG card [1]) to copy
all packet headers to a disk along with accurate timestamps.
The UMass campus network supports three connection types:
10-Mb/s half-duplex Ethernet (henceforth simply referred to
as 10-Mb/s Ethernet), 100-Mb/s Ethernet, and 802.11 WLAN.
The UConn campus network supports four connection types:
10-Mb/s, 100-Mb/s, and 1-Gb/s Ethernet and 802.11 WLAN.
We use the classification scheme with 3 and 4 for these
two networks, respectively.

Next, we first detail how we construct training sets for these
two campus networks, and then evaluate the performance of
the classification scheme by constructing testing sets and ap-
plying the scheme to these testing sets. At the end, we obtain
the adjusted fraction for each connection type and evaluate its
accuracy.

A. Constructing Training Sets

Training sets are required to obtain the marginal distribution
of each connection type. For both campus networks, we con-
struct training sets by extracting TCP flows from a group of
traces. The traces for the UMass network are collected between
February and April 2005, and the traces for the UConn network
are collected more recently, on December 1, 2010. In the UMass
network, the training sets for 10-Mb/s and 100-Mb/s Ethernet
and WLAN contain TCP flows extracted using IP addresses that
belong to two academic departments (they use 10-Mb/s LANs
and have no access to any wireless network), the Computer Sci-
ence Department (100-Mb/s Ethernet addresses that are known
to us), and a public 802.11 network (it provides wireless access
to campus users within certain public places, e.g., the libraries
and the campus eateries), respectively. For the UConn network,
the training sets for the various connection types are constructed
in a similar manner.

The marginal distribution of a connection type is obtained
from its corresponding training set using the approach outlined
in Section VI-B. More specifically, in each training set, we set
the threshold to identify ACK-pairs, , to be 250 or 400 s and
set the threshold to identify qualified TCP flows, , to be 2
or 5. Table I lists the number and percentage (in parentheses)
of qualified TCP flows for each connection type in the UMass
training sets; Table II lists the results for the UConn training sets.
In both tables, as expected, more qualified TCP flows are identi-
fied for larger values of and smaller values of . We observe
that WLAN tends to have a lower percentage of qualified flows
than the various Ethernet connections. This is because, as we
shall see in Section VIII, the ratio of the number of ACK-pairs
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TABLE I
NUMBERS AND PERCENTAGES (IN PARENTHESES) OF QUALIFIED TCP FLOWS IN THE TRAINING SETS FOR UMASS CAMPUS NETWORK

TABLE II
NUMBERS AND PERCENTAGES (IN PARENTHESES) OF QUALIFIED TCP FLOWS IN THE TRAINING SETS FOR UCONN CAMPUS NETWORK

Fig. 3. Marginal distributions of different connection types obtained from the training sets for the UMass network, � � ����s,� � �. (a) 10-Mb/s half-duplex
Ethernet and WLAN. (b) 100-Mb/s Ethernet and WLAN.

Fig. 4. Marginal distributions of different connection types obtained from the training sets for the UConn network, � � ��� �s, � � �. (a) 10-Mb/s Ethernet
and WLAN. (b) 100-Mb/s Ethernet and WLAN. (c) 1-Gb/s Ethernet and WLAN.

over the number of packets in a WLAN flow tends to be smaller
than that in an Ethernet flow, and hence a short WLAN flow
may not have sufficient number of ACK-pairs to be a qualified
flow. For each combination of and values, we obtain the
marginal distribution of each connection type from the qualified
TCP flows in its corresponding training set. Figs. 3 and 4 plot the
distributions of various Ethernet and WLAN connection types
for the UMass and UConn network, respectively, s,

. In the UMass network, the distribution of 10-Mb/s
Ethernet is bimodal [Fig. 3(a)], while the corresponding distri-
bution in the UConn network is not [Fig. 4(a)]. This might be

because the 10-Mb/s Ethernet in the UMass network is half-du-
plex, which can cause ACKs to be queued, leading to small
inter-ACK times (the left mode in the distribution). The wire-
less traffic in the UMass network is predominantly 802.11b (col-
lected in 2005), while the UConn wireless traffic has a richer va-
riety (802.11a/b/g/n) and has smaller inter-ACK times [can be
easily observed from their corresponding cumulative distribu-
tion functions (cdfs), which are omitted]. In general, consistent
with our analytical results in Section IV, the marginal distri-
butions of WLAN and Ethernet differ dramatically while also
having significant overlap.
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B. Evaluation Results

We conduct both numerical and experimental evaluations.
The former uses testing sets that contain observations generated
following the marginal distributions of the different classes; the
latter uses real network traces. These two types of evaluation
are complementary to each other: Numerical evaluation is in a
generic setting, while experimental evaluation is in a specific
setting that is of interests to us (i.e., classifying TCP flows). We
only present the results of experimental evaluation; the results
of numerical evaluation are similar. The results are in four sce-
narios, where the number of classes in a testing set is varied from
one to four. The first three scenarios use traces collected from
the UMass network; the last one uses traces collected from the
UConn network. In each scenario, a testing set contains 100 000
observations. The initial values for when running our itera-
tive inference algorithm are chosen randomly from (0, 1).

1) Single-Class Observations: In this scenario, we construct
three testing sets, each containing a single class of TCP flows,
i.e., they contain solely 10-Mb/s Ethernet, 100-Mb/s Ethernet,
or WLAN flows. For all three testing sets, the inference errors
from our classification scheme (i.e., the difference between the
inferred fraction and the actual fraction) are zero. Furthermore,
for a testing set containing the th class flows, the belief that
a flow belongs to the th class is 1, and the beliefs that a flow
belongs to the other two classes are 0, indicating that our classi-
fication scheme leads to a high degree of belief. The high-degree
belief results are expected: For the testing set containing solely
the th class flows, since our inferred fraction of this class is 1
and inferred fractions of the other two classes are 0, by (1) in
Section V, the beliefs that all the flows belong to the th class
are 1, and the beliefs of being in the other two classes are 0.

2) Two-Class Observations: In this scenario, we construct
two types of testing sets: one containing 10-Mb/s Ethernet and
WLAN observations, the other containing 100-Mb/s Ethernet
and WLAN observations. For both types of testing sets, we vary
the fraction of WLAN observations from 0 to 1.

Fig. 5 plots the inference errors versus the fraction of WLAN
observations when mixing 10-Mb/s Ethernet and WLAN
observations, s, . We observe that the
inference errors are very small: They are mostly bounded by
0.003 (the maximum absolute error is 0.007), despite the sig-
nificant overlap of the 10-Mb/s Ethernet and WLAN marginal
distributions [see Fig. 3 (a)]. When mixing 100-Mb/s Ethernet
and WLAN observations, the inference errors are even smaller
(mostly bounded by 0.002, and the maximum absolute error is
0.003, figure omitted).

We next present results on beliefs. Fig. 6(a)–(c) plots the cdf
of the beliefs for each class over all the TCP flows when mixing
10-Mb/s Ethernet and WLAN observations, where the fraction
of WLAN flows is 0.05, 0.50, and 0.95, respectively (corre-
sponding to low, equal, and high fraction of WLAN flows).
Since our inferred fraction of 100-Mb/s Ethernet observations
is (close to) zero, as explained in Section VII-B-1, in all three
figures, the belief that a flow uses 100-Mb/s Ethernet is (close
to) zero. This indicates that our scheme has a high degree of be-
lief that the flows do not use 100-Mb/s Ethernet, which is con-
sistent with the absence of 100-Mb/s Ethernet observations in

Fig. 5. Inference errors in testing sets containing 10-Mb/s Ethernet and WLAN
observations, � � ��� �s�� � �.

the testing sets. We also observe from Fig. 6(a)–(c) that as the
fraction of WLAN flows increases, more flows have high beliefs
of using WLAN. This is because the partial derivative of (1) (in
Section V) with respect to is positive, and hence the belief
for a flow to be in a class is an increasing function of the frac-
tion of flows in that class. In the extreme case, i.e., the fraction
of WLAN flows is zero or one, as shown in Section VII-B-I,
for all the flows, the beliefs of using WLAN are zero or one.
In Fig. 6(a) and (c), our scheme has a high degree of belief [it
concludes that the beliefs for most flows to use WLAN are low
in Fig. 6(a), and high in Fig. 6(c)]. In Fig. 6(b), where mixing
WLAN and 10-Mb/s Ethernet flows with equal portion, we ob-
serve that a significant number of flows have intermediate belief
values, indicating that our scheme does not lead to a high degree
of belief. This is expected since it is difficult to determine which
class a flow belongs to with high confidence in this case (note
that our inference results are MLEs, which are already asymp-
totically optimal). Lastly, we observe similar belief results when
mixing WLAN and 100-Mb/s Ethernet flows (figures omitted).

3) Three-Class Observations: In this scenario, we construct
testing sets containing 10-Mb/s, 100-Mb/s Ethernet, and WLAN
observations. We again vary the fraction of WLAN flows from
0 to 1, and the fractions of 10-Mb/s and 100-Mb/s Ethernet ob-
servations are the same.

We again observe that our inference results are highly accu-
rate: Most of the inference errors are bounded by 0.003 (the
maximum absolute error is 0.005). Fig. 7(a)–(c) plots the cdfs
of the beliefs when the fractions of WLAN flows are 0.05, 0.34,
and 0.95, respectively. We observe similar results as those when
mixing two types of flows. More specifically, most flows have
low (high) beliefs of using WLAN when the fraction of WLAN
flows is low (high). When the fraction of WLAN flows is 0.34,
that is, the testing set has (almost) equal fractions of 10-Mb/s,
100-Mb/s Ethernet, and WLAN flows, for each connection
type, a significant number of the flows have intermediate belief
values.

4) Four-Class Observations: In this scenario, we construct
testing sets containing 10-Mb/s, 100-Mb/s, and 1-Gb/s Ethernet,
and WLAN observations. We again vary the fraction of WLAN
flows from 0 to 1, and the fractions of the various types of Eth-
ernet observations are the same. We again observe very small
inference errors (maximum inference error 0.005). The cdfs of
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Fig. 6. CDFs of the beliefs in testing sets containing 10-Mb/s Ethernet and WLAN observations, � � ��� �s�� � �. Fraction of WLAN flows: (a) 0.05,
(b) 0.50, and (c) 0.95.

Fig. 7. CDFs of the beliefs in testing sets containing 10-Mb/s Ethernet, 100-Mb/s Ethernet, and WLAN observations, � � ��� �s�� � �. Fraction of WLAN
flows: (a) 0.05, (b) 0.34, and (c) 0.95.

the beliefs show similar trends as those in two-class and three-
class scenarios (figures omitted).

C. Adjusted Fractions

The testing sets above only contain qualified TCP flows. We
next construct testing sets with both qualified and disqualified
TCP flows and obtain the adjusted fraction of each class over
all the flows. In particular, we construct two testing sets: One is
the union of the three training sets for the UMass network, and
the other is the union of the four training sets for the UConn
network. For both testing sets, we first obtain a set of qualified
flows and apply our classification algorithm to infer the fraction
of each class among the qualified flows. We then use (8) to ob-
tain the adjusted fraction for each class (we use the percentages
of qualified flows listed in Tables I and II as
for the two testing sets, respectively). The errors of the adjusted
fraction are very small: Most errors are within 0.001, and the
maximum error is within 0.003. For these two testing sets, the
percentages of qualified flows (i.e., ) are ac-
curate. In practice, since the estimate of may not be perfect,
the errors in the adjusted fractions can be larger.

VIII. INFERENCE RESULTS IN CAMPUS NETWORKS

In this section, we apply our classification scheme to traces
collected from two campus networks. In particular, we use
two traces collected from the UMass network: one collected
between 11 AM and 12 PM on April 4, 2005, containing

3 309 480 TCP flows, and the other collected between 10 AM
and 12 PM on May 10, 2005, containing 6 250 306 TCP flows.
We also use two traces from the UConn network: one collected
on December 13, 2010 between 1:30–2:30 PM, containing
3 444 009 TCP flows, and the other collected on December 16,
2010 from 2:30–3:30 PM, containing 2 711 419 TCP flows.
For the two traces from the UMass network, we use the clas-
sification scheme with to classify the TCP flows into
three classes: 10-Mb/s and 100-Mb/s Ethernet, and WLAN
flows. For the two traces from the UConn network, we use the
classification scheme with to classify the TCP flows
into four classes: 10-Mb/s, 100-Mb/s, and 1-Gb/s Ethernet, and
WLAN flows. The training sets for these two networks are as
described in Section VII-A. In each trace, we set s
or s and 2 or 5 when identifying qualified TCP
flows. Lastly, we use the percentages of qualified TCP flows
listed in Tables I and II to obtain the adjusted fraction of each
connection type in these two networks, respectively.

A. UMass Network

In the UMass network, we know the IP address block that is
reserved for the residential network (i.e., student dorms), which
allows us to identify all TCP flows to that network. We next
obtain the inference results for both the residential network and
the entire campus network. The reason for the former is twofold:
1) a large fraction of the campus traffic is from the residential
network (in the two traces, 64% and 60% of the flows are from
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TABLE III
INFERENCE RESULTS OF THE RESIDENTIAL AND THE ENTIRE CAMPUS NETWORK, UMASS (MAY 10, 2005, 10 AM–12 PM)

the residential network, respectively); and 2) we are interested
in finding out whether WLAN traffic is present in the residential
network—since it has no official provision of WLAN, the pres-
ence of WLAN traffic implies provision through private routers
or access points.

Table III presents the inferred fraction and the adjusted frac-
tion of each connection type for the trace collected on May 10,
2005 (results for the other trace are consistent). In the table, the
results for different combinations of and values are sim-
ilar, indicating that our scheme is not sensitive to the choice of
the parameters. Furthermore, in both the residential network and
the entire network, for WLAN, the adjusted fraction tends to
be larger than the inferred fraction since WLAN tends to have
a lower percentage of qualified flows compared to the various
Ethernet connections (see Tables I and II).

In the residential network, the inferred fractions of WLAN,
10-Mb/s Ethernet, and 100-Mb/s Ethernet flows are 0.02,
0.93–0.95, and 0.03–0.05, respectively; the adjusted fractions
are 0.02–0.03, 0.94–0.95, and 0.02–0.04, respectively. The
fraction of 10-Mb/s Ethernet flows is close to one, which is
consistent with our knowledge that the official connection type
of the residential network is 10-Mb/s Ethernet. However, the
inferred fraction of WLAN flows is nonzero, and furthermore,
our inference shows that some flows have very high beliefs of
using WLAN (exceeding 0.99). We therefore infer that wireless
traffic is present in the residential network (through private
wireless routers and access points since there is no official
wireless coverage). The inferred fraction of 100-Mb/s Ethernet
flows is nonzero either. This estimation error might be due to
traffic limiters in the residential network, which queue packets
once the traffic rate is above 10 Mb/s (and hence can queue
ACKs together and lead to small inter-ACK times as in the
100-Mb/s Ethernet case). Traffic limiters are not used in the two
academic departments whose TCP flows are used to obtain the
training set as described in Section VII-A. Indeed, the median
inter-ACK time distribution of the residential network has a
higher density for small inter-ACK times (due to ACK queuing
by the traffic limiters) compared to the marginal distribution
from the training set.6

6While the queuing by the traffic limiters may also separate some ACKs apart,
leading to large inter-ACK times, we do not believe the nonzero percentage
of WLAN traffic is an estimation error caused by the traffic limiters. This is
because the queuing should only separate a small fraction of the ACK-pairs
apart (i.e., when there is an excessive delay from draining one ACK to draining
the other ACK of an ACK-pair from the buffer), and hence should not affect our
observations (an observation is the median inter-ACK time of a qualified TCP
flow; see Section VI). Furthermore, it is unlikely that traffic limiters can cause
random delays as those caused by WLAN protocols.

In the entire campus, the inferred fraction of WLAN flows is
0.04, and the adjusted fraction is 0.04–0.07; the inferred fraction
of 10-Mb/s Ethernet flows is still large, 0.77–0.80, with the ad-
justed fraction of 0.79–0.81, which is consistent with our knowl-
edge that a large fraction of UMass traffic is from the residen-
tial network (which uses 10-Mb/s Ethernet). Most flows have
low beliefs of using WLAN (97% of the flows have beliefs of
using WLAN below 0.2) and a significant number of flows have
high beliefs of using 10-Mb/s Ethernet (64% of the flows have
beliefs of using 10-Mb/s Ethernet above 0.8). As explained in
Section VII, this is because the inferred fraction of WLAN flows
is small and the inferred fraction of 10-Mb/s Ethernet flows is
large.

Let us refer to a flow that has the belief of using WLAN larger
than 0.8 as a WLAN-likely flow, and a flow that has the belief
of using Ethernet (10 or 100 Mb/s) larger than 0.8 as an Eth-
ernet-likely flow. We next investigate the differences between
WLAN-likely and Ethernet-likely flows to shed more insights
into our inference results. In particular, the property we investi-
gate is ACK-pair ratio, the number of ACK-pairs in a flow di-
vided by the total number of packets in the flow. Intuitively, a
WLAN flow has a smaller ACK-pair ratio than an Ethernet flow.
This is because, as shown in Section IV, the inter-ACK times
in a WLAN flow tend to be larger than those in an Ethernet
flow, which leads to dispersion of data packets (due to TCP’s
self-clocking), and hence less ACK-pairs. We confirm the above
intuition using results from our training sets. More specifically,
we sort the flows in the training set in decreasing order of flow
length (in packets) and obtain the average ACK-pair ratios for
the top th percentile of the Ethernet (10 or 100 Mb/s) and
WLAN flows, respectively. Fig. 8(a) plots the results for from
10 to 100. The 95th confidence intervals are very tight and hence
omitted. We observe that WLAN flows indeed have smaller
ACK-pair ratios than Ethernet flows. Fig. 8(b) plots the average
ACK-pair ratios for the top th percentile of the WLAN-likely
and Ethernet-likely flows (confidence intervals are again tight
and omitted). We observe that WLAN-likely flows have smaller
ACK-pair ratios than Ethernet-likely flows for all values of .
This is consistent with the results from the training data, indi-
cating that our classification results accurately reflect the rela-
tionship between WLAN and Ethernet ACK-pair ratios.

B. UConn Network

Table IV lists the inference results for the trace collected
on December 13, 2010 from the UConn network (the results
for the other trace are consistent). The inferred fractions of
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Fig. 8. ACK-pair ratios (a) from the training sets for the UMass network and
(b) from Ethernet-likely and WLAN-likely flows for the trace collected on
May 10, 2005 from the UMass network, � � ��� �s�� � �.

TABLE IV
INFERENCE RESULTS OF THE UCONN NETWORK (DECEMBER 13, 2010,

1:30–2:30 PM)

WLAN, 10-Mb/s, 100-Mb/s, and 1-Gb/s Ethernet flows are
0.46–0.51, 0.16–0.18, 0.19–0.21, and 0.13–0.17, respectively;
the adjusted fractions are 0.52–0.55, 0.20–0.22, 0.12–0.14, and
0.12–0.13, respectively. Observe that WLAN is the dominant
connection type: Around half of the traffic traverses a wireless
link. The fraction of WLAN traffic is much more than that
in the UMass network. In addition, compared to the belief
results for the UMass network, the belief of using WLAN has
increased dramatically: Around 40% of the flows have beliefs
of using WLAN above 0.8, which is consistent with the much
larger fraction of traffic that traverses a WLAN in the UConn
network.

IX. DISCUSSION

A natural question is whether our classification scheme is
applicable to future networks where the bit rates of Ethernet
and WLAN increase, and WLAN might provide similar or even
higher bit rate than Ethernet. Since our scheme relies on the mar-
ginal distributions of the various connection types, it is appli-
cable as long as these marginal distributions are different. Our
experimental results support the above statement. Specifically,
we construct training sets for 802.11b, 802.11g, and 802.11n
traffic using controlled experiments in the UConn campus net-
work (as described in Section IV) to obtain the marginal dis-
tribution for each type of WLAN connection. We then con-
struct testing sets by mixing one type of WLAN traffic (802.11b,
802.11g, or 802.11n) and one type of Ethernet traffic (10-Mb/s,
100-Mb/s, or 1-Gb/s Ethernet), where the fraction of WLAN
traffic is varied from 0 to 1 (as in Section VII-B-II). Applying

our scheme to these testing sets obtains accurate inference re-
sults: The inference error of the fraction of WLAN traffic is
below 0.01 for all the cases except when mixing 802.11n and
1-Gb/s Ethernet traffic where the error is within 0.02. These
results demonstrate that our scheme is applicable to scenarios
where WLAN can provide comparable or even higher bit rate
than Ethernet (e.g., 802.11g or 802.11n versus 10-Mb/s Eth-
ernet) as long as their marginal distributions are different.

Another question is whether our scheme is applicable to net-
works that use traffic shapers. In the two campus networks that
we study, the traffic shapers in the UMass network are simply
traffic limiters, which do not affect the classification of WLAN
traffic (although they led to an overestimate of 100-Mb/s Eth-
ernet traffic) as explained in Section VIII-A; the traffic shapers
in the UConn network are at the edge of the network, mainly
blocking undesirable traffic, and hence do not affect our classi-
fication results. In other networks, the traffic shapers can work
in different ways. Our scheme is applicable as long as the traffic
shapers do not affect the observations (i.e., median inter-ACK
times of the qualified TCP flows).

X. CONCLUSION

In this paper, we have proposed a classification scheme to
differentiate Ethernet and WLAN TCP flows based on measure-
ments collected passively at the edge of a network. This scheme
computes the fraction of wireless TCP flows and the belief that
a TCP flow traverses a WLAN inside the network. The core
of the scheme is an iterative Bayesian inference algorithm that
we developed to obtain the MLE of these quantities. Numerical
and experimental evaluations demonstrated that our classifica-
tion scheme obtains accurate results. We applied the scheme to
various traces collected from two campus networks: One set of
traces was collected from the UMass network in 2005, and the
other set was collected from the UConn network in 2010. In-
ference in the UMass network indicates that 4%–7% of all in-
coming TCP flows traverse an 802.11 wireless link within the
campus. It also detects wireless usage (through the use of private
routers and access points) in areas not covered by the official
wireless infrastructure. Inference in the UConn network shows
a much more prevalent amount (52%–55%) of wireless traffic.

APPENDIX I
PROOF OF THEOREMS 1–3

Theorem 1 is for 100-Mb/s Ethernet [see Fig. 2(a)].
Theorems 2 and 3 are for 11-Mb/s 802.11b and 54-Mb/s
802.11g WLAN, respectively [see Fig. 2(b)]. The proof of
Theorem 1 utilizes the following two lemmas.

Lemma 1: Let s . Then,
s is an increasing function of .

Proof: By the definition of median, we have

s

We show that s is an increasing function
of by showing that its derivative is positive (details omitted).
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Lemma 2: In the Ethernet setting, when ,
s .

Proof: The proof is found in [35, Appendix A].
We now prove Theorem 1 using Lemmas 1 and 2.

Proof: Let s . Then

s

When , by direct calculation, we have
s . Since s is an increasing

function of (Lemma 1) and (Lemma 2), we have the
desired results.

The proof of Theorem 2 is similar to that of Theorem 1.
It utilizes Lemma 1 and the following lemma (proof found in
[35, Appendix C]).

Lemma 3: In the 802.11b WLAN setting, under idealized
conditions (i.e., the channel between the access point and the
receiver is perfect and is only used by the access point and the
receiver), s .

The proof of Theorem 3 is similar to that of Theorem 1.
It utilizes Lemma 1 and the following lemma (proof found in
[35, Appendix D]).

Lemma 4: In the 802.11g WLAN setting, under idealized
conditions (i.e., the channel between the access point and the
receiver is perfect and is only used by the access point and the
receiver), s .

APPENDIX II
PROOF OF THEOREM 4

Proof: As shown in Section V, the MLE of is obtained
by solving (7). We prove that the MLE of is unique by
looking at the second-order conditions and considering two
cases: and .

When , the MLE of is obtained from

(9)

The second derivative of is

(10)

We assume that (otherwise, the two
classes are not differentiable from the observations). Under this
assumption, . That is, is a strictly decreasing
function of . If and , then has a
unique solution in (0, 1). This unique solution is the MLE of .
Otherwise, we have or for .
This implies that the likelihood function, , is an increasing
or decreasing function of . Hence, the MLE is achieved at
either 1 or 0. Combining all the above cases, the MLE of
is unique, and hence the MLE of is unique. Since is a
function of , the MLE of is also unique.

When , the second-order conditions are expressed in
the form of Hessian matrix

...
...

...
...

where

(11)

We next show that the Hessian matrix is negative semidefi-
nite. Consider a vector . By direct calcula-
tion, we have

(12)

Therefore, the likelihood function has a maximum. Further-
more, is zero iff for each , ’s are the
same for all . We assume this is not the case
since it renders the multiple classes not differentiable from the
observations. Therefore, , and hence the likelihood
function has a unique maximum.

We next consider the scenario where (7) does not have a so-
lution for any . That is, the derivative
is larger or smaller than zero for all . When
the derivative is larger than zero, the likelihood function

is an increasing function of and achieves
the maximum at . When the derivative is smaller than
zero, , is a decreasing function of and
achieves the maximum at . In either case, the likelihood
function has a unique maximum.

Summarizing the cases of and , we have proven
the theorem.

APPENDIX III
PROOF OF THEOREM 5

Proof: Let and
. Then

for (13)

for (14)

Combining (13) and (14), we have

(15)
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Consider . Dividing on both sides of (15), we
have

(16)

Substituting into (16), we have

for (17)

where . By direct
calculation, (17) is equivalent to

for (18)

This is equivalent to (7), i.e., the condition satisfied by the MLE
. This implies that, if the inference algorithm converges to a

solution of in (0, 1), then the solution is the unique MLE.
In the above, we consider . We next consider the

cases where or 0. From Algorithm 1, we have

(19)

When , we have and for ,
. In this case, our algorithm converges to obtain

after the first iteration when . When ,
we have and there exists such that for

, . In this case, our algorithm converges to obtain
after the first iteration when .

In the above, we have proven that converges to the unique
MLE of . By the invariance property of maximum likeli-
hood estimators [11], converges to the MLE of

.
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