
Fault Localization Using Passive End-to-End
Measurements and Sequential Testing

for Wireless Sensor Networks
Bing Wang, Member, IEEE, Wei Wei, Member, IEEE, Hieu Dinh,

Wei Zeng, Student Member, IEEE, and Krishna R. Pattipati, Fellow, IEEE

Abstract—Faulty components in a network need to be localized and repaired to sustain the health of the network. In this paper, we

propose a novel approach that carefully combines active and passive measurements to localize faults in wireless sensor networks.

More specifically, we formulate a problem of optimal sequential testing guided by end-to-end data. This problem determines an optimal

testing sequence of network components based on end-to-end data in sensor networks to minimize expected testing cost. We prove

that this problem is NP-hard, and propose a recursive approach to solve it. This approach leads to a polynomial-time optimal algorithm

for line topologies while requiring exponential running time for general topologies. We further develop two polynomial-time heuristic

schemes that are applicable to general topologies. Extensive simulation shows that our heuristic schemes only require testing a very

small set of network components to localize and repair all faults in the network. Our approach is superior to using active and passive

measurements in isolation. It also outperforms the state-of-the-art approaches that localize and repair all faults in a network.

Index Terms—Wireless sensor networks, fault localization, sequential testing.

Ç

1 INTRODUCTION

WIRELESS sensor networks have been deployed in a
wide range of applications. A deployed sensor

network may suffer from many network-related faults,
e.g., malfunctioning or lossy nodes or links [23], [19]. These
faults affect the normal operation of the network, and
hence should be detected, localized, and corrected/
repaired. Existing studies on sensor network fault localiza-
tion use active or passive measurements (see Section 2).
Active measurement incurs additional monitoring traffic (a
node needs to monitor itself or its neighbors, and transmit
the monitoring results locally or to a centralized server),
which consumes precious resources of sensor nodes, and
may reduce the lifetime of the network. On the other hand,
it has the advantage that it can exactly pinpoint the faults.
Passive measurement uses existing end-to-end data inside
the network: if end-to-end data indicate faulty end-to-end
behaviors, then some components in the network must be
faulty. It introduces no additional traffic into the network,
and hence is an attractive approach for energy-stringent
sensor networks. On the other hand, it poses the challenge

of fault inference—accurate inference from end-to-end data
(i.e., locating all faults with low false positives) is not
always possible because end-to-end measurements can
have inherent ambiguity (see Section 3).

Motivated by the complementary strengths of active
and passive measurements, we propose a novel approach
that uses active measurements to resolve ambiguity in
passive measurements, and uses passive measurements to
guide active measurements to reduce expected testing
cost (i.e., cost incurred from active measurements, see
Section 3). More specifically, we formulate a problem of
optimal sequential testing guided by end-to-end data. This
problem determines an optimal testing sequence of
network components that minimizes the total testing cost:
it picks the first component to be tested, based on the test
result (i.e., it is faulty or not faulty) and the end-to-end
data (passive measurements, which indicate potential
faults); it determines the next component to be tested.
This sequential testing continues until the identified faulty
components have explained all end-to-end faulty beha-
viors. Since these identified faults may not have included
all faults in the network, we identify all faults by solving
the optimal sequential testing problem in iterations. In an
iteration, based on end-to-end data in this iteration, we
solve the optimal sequential testing problem to identify a
set of faulty components. We then repair all the identified
faulty components and start the next iteration. The
iteration repeats until all end-to-end behaviors are normal.
At this time, all faulty components have been identified
and repaired.

We prove that the problem of optimal sequential testing
is NP-hard, and propose a recursive approach to solve it.
This recursive approach leads to a polynomial-time optimal
algorithm for line topologies, while requiring exponential
running time for general topologies. Therefore, we further

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 3, MARCH 2012 439

. B. Wang, H. Dinh, and W. Zeng are with the Computer Science and
Engineering Department, University of Connecticut, 371 Fairfield Way,
Unit 2155, Storrs, CT 06269-2155.
E-mail: {bing, hdinh, wei.zeng}@engr.uconn.edu.

. W. Wei is with the Computer Science Department, University of
Massachusetts Amherst, 140 Governors Drive, Amherst, MA 01003-
9264. E-mail: weiwei@cs.umass.edu.

. K.R. Pattipati is with the Electrical and Computer Engineering Depart-
ment, University of Connecticut, 371 Fairfield Way, Unit 2157, Storrs, CT
06269-2157. E-mail: krishna@engr.uconn.edu.

Manuscript received 20 Apr. 2010; revised 25 Oct. 2010; accepted 9 Feb. 2011;
published online 29 Apr. 2011.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2010-04-0182.
Digital Object Identifier no. 10.1109/TMC.2011.98.

1536-1233/12/$31.00 � 2012 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

develop two polynomial-time heuristic schemes for general
topologies. We evaluate the performance of these two
heuristic schemes through extensive simulation in sensor
networks of static and dynamic topologies. Our simulation
results show that both schemes only need a few iterations
and testing a very small subset of components to localize all
faults in a network. These results demonstrate the benefits
of our approach: it is superior to using active measurements
alone since it selectively tests a very small subset of
components; it is superior to fault inference using passive
measurements alone since it localizes all faulty components
while fault inference may suffer from a large number of
false positives and false negatives [9], [14], [15].

Our approach also outperforms two state-of-the-art
approaches [5], [13] that identify and repair all faults in a
network. These two approaches also run in iterations. The
exhaustive inspection approach [5] differs from our
approach in that at each iteration, it infers in parallel (rather
than in sequence) a set of potential faulty components from
end-to-end measurements, tests each identified component,
and repairs the faulty ones at the end of the iteration. It has
to test all identified components because some of them may
be false positives. Hence, the number of tests is at least
equal to the total number of faulty components, while our
approach requires much less number of tests. The approach
in [13] infers the best component to be tested in each
iteration, and repairs the component, if necessary. Since it
only tests a single component in an iteration, it may lead to
a large number of iterations to localize and correct all faults.
To reduce the number of iterations, the authors also
consider identifying multiple faults in parallel in an
iteration, which is similar in spirit to exhaustive inspection
[5] and suffers from the same drawbacks.

The rest of the paper is organized as follows: Section 2
reviews related work. Section 3 presents the problem setting.
Section 4 describes a recursive approach to solve the optimal
sequential testing problem, and an optimal solution for line
topologies. Section 5 describes the two heuristic schemes.
Section 6 presents evaluation results. Finally, Section 7
concludes the paper and presents future work.

2 RELATED WORK

We consider the problem of localizing and correcting
network-related faults in a deployed sensor network. Most
existing studies use either active or passive measurements
for this purpose.

Active measurements provide accurate view of the
network at the price of introducing additional monitoring
traffic into the network. Zhao et al. design a residual energy
scan for a sensor network that depicts the remaining energy
inside the network [29]. From the scan, a network operator
can discover areas with low residual energy and take
corrective actions. The same authors also propose an
architecture that computes aggregates for sensor network
monitoring [30]. This approach continuously collects ag-
gregates (sum, average, count) of network properties
(e.g., loss rates, energy level), triggers scan of the network
when observing sudden changes in the aggregates, and
further debugs the problem through detailed dumps of
node states. To limit the scope of the monitoring traffic to a
local area, Hsin and Liu propose a distributed monitoring

architecture where each node monitors its neighbors by
periodically sending them probes [10]. More recently, Tolle
and Culler design a sensor network management system
(SNMS) that allows a network operator to query the
network for health information [23]. Whitehouse et al.
propose Marionette, which extends SNMS by providing
users the ability to call functions, and read or write variables
in embedded applications [27]. Ramanathan et al. propose
Sympathy, a tool for detecting and debugging failures in
sensor networks [19]. Sympathy carefully selects metrics
that enable efficient failure detection and includes an
algorithm that analyzes root causes. Rost and Balakrishnan
design a health monitoring system, Memento, that delivers
state summaries and detects node failures [21]. Last,
Gruenwald et al. propose a remote management system
for a wide area sensor network that contains multiple and
heterogenous networks [8].

Active measurements consume precious resources of the
sensor network. Furthermore, malicious behaviors can
mislead fault localization that solely relies on active
measurement, e.g., a node may not report its status or its
neighbors’ status honestly, or an intermediate node may
manipulate the forwarded messages or aggregates. Passive
measurement using existing end-to-end data in sensor
networks does not suffer from the above drawbacks. Hartl
and Li use traditional network tomography techniques to
infer node loss rates [9], and Mao et al. use a factor graph
decoding method to infer link loss rates [14]. Both
techniques, however, heavily rely on a data aggregation
procedure (that is used to guarantee correlation among
packets). Furthermore, their assumption of a fixed tree
limits their applicability. Nguyen and Thiran propose lossy
link inference schemes that use uncorrelated packets and
take account of dynamic network topologies [15]. Their
schemes, however, may lead to a large number of false
positives and false negatives in certain circumstances.
Broadly speaking, fault inference from end-to-end data
falls into network tomography, i.e., inferring internal
properties through end-to-end measurement. A rich collec-
tion of network tomography techniques has been developed
in the past (see [1] for a review). Most of these techniques
are developed for wired networks and cannot be applied
directly to wireless sensor networks. This is because most of
them rely on correlated packets (through multicast or
striped unicast packets) and require static topology. In
wireless sensor networks, however, end-to-end data are not
correlated and topology may change over time.

Our approach differs from existing studies on sensor
network fault localization in that it carefully combines
active measurements and end-to-end data. The study in [19]
also uses end-to-end data together with active measure-
ments: it uses end-to-end data to detect faults, which in turn
trigger active measurements and root-cause analysis. It,
however, does not utilize end-to-end data to guide selective
active measurement (to reduce expected testing cost) as in
our study. Two existing studies [5], [13] combine end-to-
end measurements and active testing to identify and correct
all faults in a network. Our approach outperforms these two
approaches (see Sections 1 and 6).

Finally, sequential testing (or online decision) has been
studied in the fields of machine troubleshooting, medical
diagnosis, and computer decision making (e.g., [3], [2], [7],
[17], [18]). Our sequential testing problem differs from that

440 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 3, MARCH 2012

in other fields in two important aspects: 1) our sequential
tests are on individual components (instead of multiple
components) with the guidance of end-to-end data that
provide insights into the status of multiple components;
and 2) we diagnose multiple faults instead of a single fault
that is often assumed in other fields.

3 PROBLEM SETTING

3.1 Assumptions

Consider a sensor network where sensed data are sent
(periodically) from sources to a sink. As in [19], we assume
the amount of end-to-end data can be used to detect faults
in the network: insufficient amount of data indicates faults,
while sufficient amount of data indicates that the network is
operating normally. The status of a component (i.e., whether
faulty or not) can be tested through active measurements,
e.g., by monitoring the component locally, or looking into
the internal states of relevant components (e.g., using [27]).
This test incurs a testing cost, which accounts for personnel
wages when human is involved, or the resources used at a
sensor node to monitor itself and neighboring nodes/links,
or the energy and network bandwidths used to transfer the
monitoring results to the sink.

A fault in a sensor network can be of various forms. For
ease of exposition, we only consider faults in the form of
lossy links (we briefly discuss lossy nodes in Section 5.5 and
present results when nodes can be lossy in Section 6.2). In
particular, our goal is to locate persistently lossy links that
are used in routing. These persistent faults can be due to
physical obstacles and/or faults at the sensor nodes (e.g.,
low battery, hardware faults, or program bugs). They can be
corrected by removing the root causes. We do not consider
transient lossy links (e.g., due to interference or background
noise) since they are not caused by persistent faults that
need to be localized and corrected.

We determine whether a link is lossy or not based on its
average loss rate or reception rate (defined as one minus the
average loss rate). Since existing studies (e.g., [4], [11], [24],
[12]) show that packets of different sizes may experience
different loss rates at a link, we assume the data packets that
are transmitted from the sources to the sink are of the same
size, and use the loss rate (or reception rate) experienced by
these data packets at a link as the loss rate of that link. We
say link l is lossy or bad if its average reception rate lies
below a threshold, tl. Otherwise, we say l is not lossy or good.
We assume the threshold, tl, can clearly separate good and
bad links, i.e., good links have reception rates much larger
than tl while bad links have reception rates much lower
than tl. This is reasonable since measurement studies have
shown that link loss rates in sensor networks are either
large or small, but rarely in between [20], [15].1 We assume
that the losses at different links are independent of each
other (as shown in [15]). Furthermore, if a link is good (or
bad) on one path, then it is good (or bad) on all paths that
use the link.

The routing path from a source to the sink can be static or
dynamic (e.g., due to a dynamic routing technique [28]).
Fig. 1 shows an example topology, where sources s1, s2, and
s4 use a single path; source s3 uses two paths dynamically.
We consider two settings of the problem: 1) we know
complete path information, i.e., we know the path used by a
source at any point of time; and 2) we only know
probabilistic path information, i.e., we only know the set of
paths that are used by a source and the probability using
each path. The first setting applies to static topologies, and
dynamic topologies where up-to-date path information is
available, e.g., obtained through a path reporting service
which reports the parent of a node periodically as in [22], or
from information embedded in data packets [28]. The
second setting applies to dynamic topologies where it is too
costly to obtain complete path information (e.g., it might
consume too much energy), and hence a path reporting
service only runs at coarse time scales, and the probability
to use a path is estimated from the frequency that this path
is reported to be used.

When knowing complete path information, we define
path reception rate as the probability that a packet traverses a
path successfully. We assume that data are not aggregated
while being transmitted inside the network, and path
reception rate can be estimated from end-to-end data: when
n data packets are transmitted along a path and m packets
are received successfully, the path reception rate is
estimated as m=n. As mentioned earlier, we assume that
the amount of end-to-end data indicates whether a fault
exists along a path. In particular, we assume, for path P ,
there exists a threshold, tP , so that it contains at least one
bad link if and only if its reception rate is below tP . We next
illustrate when this assumption holds. Consider a path of h
links. Assume good links have reception rate at least �,
while bad links have reception rate no more than �,
0 � � < � � 1. When the path contains no bad links, the
path reception rate is at least �h (since each good link has
reception rate at least � and the losses at the various links
are independent, a path of h good links has reception rate at
least �h); otherwise, it is no more than �. Therefore, when
�h > �, there exists a threshold (any number in ð�; �hÞ, e.g.,
ð� þ �hÞ=2) so that the path contains at least one bad link if
and only if its reception rate is below this threshold. The
condition �h > � holds when good and bad links have

WANG ET AL.: FAULT LOCALIZATION USING PASSIVE END-TO-END MEASUREMENTS AND SEQUENTIAL TESTING FOR WIRELESS... 441

Fig. 1. (a) An example network topology, where four sources send data
to a sink. (b) The constructed topology by contracting links l7 and l8 in
(a). (we assume end-to-end data indicate that the path from source s4 to
the sink is good, and hence links l7 and l8 are good.)

1. Several other studies reveal links that have intermediate loss rates [28],
[6], [32]. Since these types of links can have significant negative impact on
the performance of upper layer protocols [6], [31], we assume the routing
protocol used in the sensor network avoids using such links, and hence
most links used in the routes have either large or small loss rates.

significantly different reception rates, which is true in
wireless sensor networks as mentioned earlier. For conve-
nience, we say path P is lossy or bad if its reception rate is
below the threshold, tP (in other words, it contains at least
one lossy link); otherwise, it is not lossy or good.

When only knowing probabilistic path information, we
define source-sink reception rate as the probability that a
packet is sent from a source to the sink successfully. It can
be estimated from end-to-end data: when n packets are sent
from a source to the sink, and m packets arrive successfully,
it is estimated as m=n. We again assume that there exists a
threshold so that at least one link used by a source-sink pair
is lossy if and only if the source-sink reception rate is below
this threshold. Again, we say a source-sink pair (or simply a
pair) is lossy or bad if its reception rate is below the
threshold; otherwise, it is not lossy or good.

The above assumptions imply that all the links on a good
path/pair are good, and a bad path/pair contains at least
one bad link. Therefore, the potential bad links are the ones
that are used by bad paths/pairs, excluding those used by
good paths/pairs.

3.2 Sequential Testing Guided by End-to-End Data

Using end-to-end data (i.e., passive measurements), we
have narrowed down the potential lossy links to the set of
links that are used by bad paths/pairs, excluding those
used by good paths/pairs (since all the links on a good
path/pair are good). Testing individual links (i.e., active
measurements) can pinpoint which potential lossy links are
indeed lossy. We now motivate the benefits of sequential
testing using an example in Fig. 2a. This example shows
two paths, P1 ¼ ðl3; l2; l1Þ and P2 ¼ ðl4; l2; l1Þ. Suppose end-
to-end data indicate that both paths are bad. When
determining which links are lossy, we face the following
ambiguities. First, since links l1 and l2 are used by both
paths, they cannot be differentiated solely from end-to-end
data. Second, since both paths are lossy, the lossy links can
be the common links (i.e., l1 and/or l2), both leaf links (i.e.,
l3 and l4), or a combination of the above two scenarios. The
above ambiguity can be resolved by testing individual links.
An advantage of sequential testing is that as we reveal the
status of one link, this knowledge may provide information
on other links, and hence inform later decisions.

We next formulate the problem of sequential testing
guided by end-to-end data. For simplicity, the formulation

below assumes complete path information (the scenario
where we know probabilistic path information only differs
in that we use source-sink pairs instead of paths). A
sequential testing problem takes as input a topology
constructed from the original one through edge contraction
[26].2 More specifically, the links (i.e., edges) that are
known to be good are contracted. Therefore, the resultant
topology only contains potential bad links that are used by
bad paths but not used by good paths. Let L ¼ fl1; . . . ; lMg
denote the set of potential bad links. Let P ¼ fP1; . . . ; PNg
denote the set of bad paths that are identified from end-to-
end data. Furthermore, let Pi � P represent the set of bad
paths that use link li. Fig. 1b shows a topology constructed
from Fig. 1a by contracting links l7 and l8 that are known to
be good. Henceforth, unless otherwise specified, topology
refers to the topology constructed from the original one
through edge contraction. Each potential lossy link, li, is
associated with a testing cost ci > 0, and a probability pi
that denotes the prior probability that link li is lossy.

A solution to the sequential testing problem is to
determine the next link to test depending on the previous
link that is tested, its corresponding test result (i.e., whether
it is lossy or not), and end-to-end data, so that all bad paths
are explained (i.e., each bad path contains at least one link
that has been found to be lossy). More conveniently, we can
describe a solution to the sequential testing problem using a
binary AND/OR decision tree. In the tree, an OR node
represents the set of potential lossy links, and an AND node
represents testing a link. A leaf node is reached when all
lossy paths have been explained, and the leaf node is
marked with the set of bad links that has been identified to
explain the lossy paths. Each AND node has two branches,
leading to two OR nodes based on whether the link tested is
lossy or not. If the link is good, the AND node branches left
and the arc is marked with “G;” otherwise, the AND node
branches right and the arc is marked with “B.”

The expected total testing cost of a solution to the
sequential testing problem is the sum of the expected
testing costs over all links (in the input of the problem),
where the expected testing cost of a link is the testing cost of
this link times the probability that this link is tested. More
conveniently, the expected total testing cost can be
calculated from the binary decision tree: it is the sum of
the expected testing costs over all AND nodes, where the
expected testing cost of an AND node is the testing cost for
the link tested at this AND node times the probability that
this AND node is reached in the tree. An optimal solution to
the sequential testing problem is one that leads to the
minimum expected total testing cost.

We next use an example to illustrate sequential testing.
Fig. 2b shows a binary decision tree (not necessarily the
optimal one) for the example in Fig. 2a. The root of the tree
contains all potential lossy links. The first link tested is l1. If
l1 is bad, sequential testing stops (since both lossy paths

442 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 3, MARCH 2012

Fig. 2. An example illustrating sequential testing.

2. In graph theory, an edge contraction is an operation that removes an
edge from a graph while simultaneously merging together the two vertices
that it previously connected. More formally, contraction of an edge e ¼
ðu; vÞ replaces the two end points u and v with a single vertex w such that
edges incident to w each correspond to an edge incident to u or v. The
resulting graph has one less edge and one less node than the original one,
and may contain loops and multiedges.

have been explained) and identifies one lossy link, l1.
Otherwise, the set of potential bad links is reduced to
l2; l3; l4, and the next link tested is l2. If l2 is bad, sequential
testing stops and identifies one lossy link, l2. Otherwise,
sequential testing stops and concludes that links l3 and l4
are lossy. The expected total testing cost of this decision tree
is c1 þ ð1� p1Þc2 since there are two AND nodes in the
decision tree; the expected testing cost of the AND node
that tests l1 is c1, while the expected testing cost of the AND
node that tests l2 is ð1� p1Þc2 since l2 is only tested when l1
is good, which happens with probability ð1� p1Þ.

Note that we may not have identified all lossy links
when the above sequential testing stops. For instance, in
Fig. 2a, when both l1 and l3 are lossy, the decision tree in
Fig. 2b stops after finding link l1 to be lossy. To identify all
lossy links, we run sequential testing in iterations; at the
end of an iteration, we repair all lossy links (by finding
out the root causes and removing the root causes) that
have been found in the iteration. The iteration continues
until all end-to-end behaviors are good. The reason why
we do not intend to find all lossy links in one iteration is
that end-to-end data in a later iteration may reveal link
status at no additional testing cost. For instance, in the
above example, if l1 is lossy and the next iteration shows
no lossy links, then we know that the rest of the links are
good without any additional test.

3.3 Discussion

Our sequential testing problem differs from existing
studies [5], [15], [16] in important ways. The goal of
existing studies is to find the most likely set of lossy links
that explains the faulty end-to-end behaviors, while our
goal is to minimize testing cost. Therefore, we may
purposely test a link that is likely to be good as long as it
can reduce testing cost. Our approach and the ones in
existing studies [5], [15], [16] can run in iterations until all
lossy links are located and repaired. As we shall see
(Section 6), our approach requires a similar or lower
number of iterations and a much lower testing cost.

The goal of our sequential testing problem is to minimize
expected testing cost. In practice, minimizing the total
number of iterations to locate and repair all faulty
components can also be an important goal. Our formulation
can be extended to incorporate this goal as follows: we can
use a cost to represent the number of iterations required to
locate and repair all faulty components, and minimize a
weighted sum of this cost and the testing cost, or we can
formulate a constrained optimization problem that mini-
mizes total testing cost under a constraint on the number of
iterations, or minimizes the required number of iterations
under a constraint on total testing cost. Further exploration
of these problems is left as future work.

4 OPTIMAL SEQUENTIAL TESTING

The sequential testing problem formulated in Section 3 is
NP-hard; the proof is found in the Appendix I, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TMC.2011.98. In the
following, we first present a recursive approach to solve it
under general topologies, and then consider two special
types of topologies, namely lines and trees.

4.1 General Topology

For a given instance of the optimal sequential testing
problem, I, let J�ðIÞ denote the minimum expected testing
cost from optimal sequential testing. It is clear that J�ðIÞ ¼
0 when no potential lossy link is in I. In general, we can
determine J�ðIÞ using the following recursive equation:

J�ðIÞ ¼ min
lk2L
fck þ pkJ�ðIkbÞ þ ð1� pkÞJ�ðIkgÞg; ð1Þ

where ck is the testing cost of link lk, Ikb is the resultant
instance when lk is found to be lossy, and Ikg is the resultant
instance when lk is found to be good. The expression,
ck þ pkJ�ðIkbÞ þ ð1� pkÞJ�ðIkgÞ, is the optimal expected
testing cost when link lk is chosen to be tested.

We next describe how to obtain instances Ikb and Ikg.
Before that, we first define two types of links. We say a link
is responsible if there exists at least one bad path that can
only be explained by this link being lossy; we say a link is
irrelevant if it is used by none of the bad paths to be
explained. Algorithm 1 describes, after determining that lk
is lossy, how to obtain Ikb from I. More specifically, it
contracts link lk (i.e., removes lk from L while merging the
two end nodes of lk) and removes Pk from P (since all the
bad paths in Pk have been explained). After that, it finds
irrelevant links, and contracts these links. Algorithm 2
describes, after determining that lk is good, how to obtain
Ikg from I. It first contracts link lk, which may lead to
responsible links. It then contracts these responsible links,
and remove all the bad paths that use these links from P,
which may further lead to irrelevant links to be contracted.
It is easy to see that the running time of Algorithm 1 is
OðmaxkjPkj þ jLjÞ, while the running time of Algorithm 2 is
OðjLkPj þ jLjÞ.

Algorithm 1. Obtain instance Ikb
1: contract link lk
2: remove all the paths in Pk from P
3: for all li 2 L do

4: if li is irrelevant then

5: contract link li
6: end if

7: end for

Algorithm 2. Obtain instance Ikg
1: contract link lk
2: for all li 2 L do

3: if li is responsible then

4: contract link li
5: remove all the paths in Pi from P
6: end if

7: end for

8: for all li 2 L do

9: if li is irrelevant then

10: contract link li
11: end if

12: end for

Following the recursive equation (1), a solution to the
optimal sequential testing problem can be obtained in a top-
down manner by constructing the full decision tree. Fig. 3
shows an example. This topology has three potential lossy

WANG ET AL.: FAULT LOCALIZATION USING PASSIVE END-TO-END MEASUREMENTS AND SEQUENTIAL TESTING FOR WIRELESS... 443

links, l1, l2, and l3, and two bad paths, P1 ¼ ðl1; l2Þ and
P2 ¼ ðl1; l3Þ. As shown in Fig. 3b, at the top level, we may
choose to test link l1, l2, or l3. Suppose we test l1. If it is good,
then following Algorithm 2, we contract l1, and discover
that l2 and l3 are responsible links since they are the only
potential lossy links on paths P1 and P2, respectively. After
that, we contract l2 and l3, and remove the paths that use l2
and l3, leading to a leaf state (i.e., an empty topology) that
concludes l2 and l3 as lossy. If l1 is bad, then following
Algorithm 1, we contract l1 and remove the two paths that
use l1, which leads to a leaf state that concludes l1 as lossy.
Since testing costs of leaf nodes in the decision tree are zero,
the expected testing cost when testing l1 at the top level is
c1. Similarly, we can construct the decision trees when
testing l2 or l3 at the top level, and obtain the corresponding
expected testing costs. The optimal testing cost is the
minimum of the three expected testing costs (starting with
l1, l2, or l3 at the top level, respectively).

The above procedure generally requires exponential
running time. We next discuss optimal sequential testing
in two special types of topologies: lines and trees.

4.2 Line Topology

We next derive an optimal solution for a line topology.
Consider a line topology with M links, L ¼ fl1; . . . ; lMg, as
shown in Fig. 4a. Since the topology contains a single path,
we can stop after finding one lossy link (since the single bad
path has been explained by this lossy link); otherwise, we
proceed to test the next link. We need to test at most ðM �
1Þ links, since we can stop when the ðM � 1Þth link is either
bad or good—when it is good, then the Mth link (i.e., the
link that has not been tested) must be bad. Suppose the
testing sequence is l½1�; . . . ; l½M�1�. Then, the decision tree is
as shown in Fig. 4b. Let c½i� and p½i� denote, respectively, the
testing cost and the prior probability of being lossy for link
l½i�. The expected test cost for this testing sequence is

J ¼ c½1� þ ð1� p½1�Þc½2� þ ð1� p½1�Þð1� p½2�Þc½3�
þ ð1� p½1�Þ � � � ð1� p½M�2�Þc½M�1�:

ð2Þ

From (2), it is easy to see that when the testing costs of all
the links are the same, i.e., ci ¼ c, 8i, the optimal testing
sequence is one of sorting the links in decreasing order
according to their prior probabilities of being lossy, testing
the first M � 2 links in order, and then testing one of the

two remaining links (we can choose either one since they
have the same cost and the cost J is independent of p½M�1�,
i.e., the prior probability of the ðM � 1Þth link that is tested).
Similarly, when the prior probabilities are the same, i.e.,
pi ¼ p, 8i, the optimal testing sequence is sorting the links in
increasing order according to their testing costs, and testing
the first M � 1 links in order. For general settings, the
following theorem describes a property that an optimal
solution should satisfy.

Theorem 1. For a line topology with potential lossy links

l1; . . . ; lM , the first M � 2 tests in an optimal testing sequence

l½1�; . . . ; l½M�1� must satisfy the following property:

p½1�
c½1�
�
p½2�
c½2�
� � � � �

p½M�2�
c½M�2�

: ð3Þ

Proof. We prove this theorem by contradiction. Suppose the
optimal testing sequence l½1�; . . . ; l½M�2�; l½M�1� does not
satisfy the stated property. That is, we can find two links,
l½i� and l½iþ1�, i < M � 2, such that

p½i�
c½i�

<
p½iþ1�
c½iþ1�

:

Let J denote the testing cost of this testing sequence. Let
J 0 denote the testing cost of a testing sequence that
switches the order of l½i� and l½iþ1�. Let q½i� ¼ 1� p½i�. Then,

J ¼ c½1� þ � � � þ q½1�q½2� � � � q½i�1�c½i�

þ q½1�q½2� � � � q½i�c½iþ1� þ � � � þ q½1� � � � q½M�2�c½M�1�

J 0 ¼ c½1� þ � � � þ q½1�q½2� � � � q½i�1�c½iþ1�

þ q½1�q½2� � � � q½i�1�q½iþ1�c½i� þ � � � þ q½1� � � � q½M�2�c½M�1�:

Hence,

J � J 0 ¼ c½i�ð1� q½iþ1�Þ þ c½iþ1�ðq½i� � 1Þ
¼ c½i�p½iþ1� � c½iþ1�p½i� > 0:

This contradicts the assumption that l½1�; . . . ; l½M�2� is the
optimal testing sequence. Therefore, the first M � 2 links
in an optimal testing sequence must satisfy

p½1�
c½1�
�
p½2�
c½2�
� � � � �

p½M�2�
c½M�2�

:

ut

444 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 3, MARCH 2012

Fig. 3. An example illustrating the recursive approach for the sequential
testing problem.

Fig. 4. Optimal sequential testing in a line topology.

Based on Theorem 1, we derive an optimal sequential
testing algorithm for line topologies as follows: by
randomly choosing M � 2 links out of l1; . . . ; lM , and testing
them following the optimal property (3), we construct
MðM � 1Þ testing sequences that satisfy the optimal
property (since there MðM � 1Þ ways of choosing M � 2
links out of M links). For each such sequence, according to
expression (2), the ðM � 1Þth link to be tested should be the
one with the lower cost of the two remaining links that have
not been tested. Therefore, by appending the ðM � 1Þth link
thus selected, we construct MðM � 1Þ testing sequences,
each with M � 1 links, and the optimal testing sequence is
the one with the lowest expected testing cost among all
these sequences.

The complexity of the above algorithm is OðM2Þ. When
M ¼ 2, it reduces to testing the link with the lower cost. For
M > 2, it tends to test a link with high prior probability of
being faulty and a low testing cost first.

We next use an example to illustrate the optimal
solution for line topology. Consider a line topology with
four links. The testing costs of these four links are 7, 6, 4,
and 4, respectively. Their prior probabilities of being faulty
are 0.23, 0.18, 0.10, and 0.09, respectively. Hence, p1=c1 ¼
0:033, p2=c2 ¼ 0:030, p3=c3 ¼ 0:025, and p4=c4 ¼ 0:023. Ac-
cording to Theorem 1, the first two links tested in an
optimal solution should satisfy condition (3). In this
example, since p1=c1 > p2=c2 > p3=c3 > p4=c4, the first two
links tested, li and lj, should satisfy i < j. Following the
optimal algorithm described above, we obtain the optimal
testing sequence: test l2 first; if l2 is good, then test l3; if l3 is
good, then test l4. The expected testing cost of this optimal
solution is 12.23. Note that, maybe counterintuitively, the
link with the highest ratio of pi=ci, l1, is not included in the
optimal solution.

4.3 Tree Topology

We have the following proposition for a tree topology:

Proposition 4.1. Consider a tree topology, T . The root of the tree
is r, which has k children, u1; . . . ; uk, as illustrated in Fig. 5.
Let T ðuiÞ denote the subtree rooted at ui, and T 0ðuiÞ denote the
tree consisting of tree T ðuiÞ and the link ðui; rÞ, i ¼ 1; . . . ; k.
Then, J�ðT Þ ¼

Pk
i¼1 J

�ðT 0ðuiÞÞ.
Proof. Since T is a tree, any decision made in T 0ðuiÞ does

not affect that in T 0ðujÞ, i 6¼ j (this is clear from
Algorithms 1 and 2). Therefore, testing T 0ðuiÞ and
T 0ðujÞ is independent of each other, and the optimal
testing cost for T is the sum of the optimal testing costs
of T 0ðuiÞ, i ¼ 1; . . . ; k. tu

Based on Proposition 4.1, it is sufficient to consider trees

in which the root has a single child. We next show that,

even for the simplest trees of such form, the optimal

solution depends on many factors. Consider a tree with

three links and two branches as shown in Fig. 3a. For link li,

its testing cost is ci and its prior probability of being lossy is

pi, i ¼ 1; 2; 3. Following the decision tree shown in Fig. 3b,

let Ji denote the optimal expected testing cost when starting

with link li. Then,

J1 ¼ c1

J2 ¼ c2 þ p2 minðc1; c3Þ
J3 ¼ c3 þ p3 minðc1; c2Þ:

We next derive the optimal solution by considering the

following cases:

. Case 1 (c1 � c2 and c1 � c3). In this case, J1 < J2 and
J1 < J3, and hence the optimal solution is to test l1,
following the decision tree rooted as l1 in Fig. 3b.

. Case 2 (c1 > c2 and c1 � c3). In this case, J1 < J3,
and J2 ¼ c2 þ p2c1. If c2 < c1 � c2=ð1� p2Þ, then
J1 � J2, and the optimal solution is to test l1.
Otherwise, the optimal solution is to test l2 first; if
l2 is good, then test l1.

. Case 3 (c1 � c2 and c1 > c3). Similar as above, if
c3 < c1 � c3=ð1� p3Þ, the optimal solution is to test
l1. Otherwise, the optimal solution is to test l3 first; if
l3 is good, then test l1.

. Case 4 (c1 > c2 and c1 > c3). In this case, J1 ¼ c1,
J2 ¼ c2 þ p2c3, and J3 ¼ c3 þ p3c2. The optimal test-
ing sequence depends on the relative ordering of
J1, J2, and J3, which can be any one of the six
possible orderings.

The above example shows that, even for the simplest tree

topology, determining the optimal solution is nontrivial.

Section 5 proposes two heuristic schemes for general

topologies.

5 HEURISTIC SEQUENTIAL TESTING SCHEMES

In this section, we develop two heuristic algorithms to
solve the sequential testing problem. Both algorithms
choose a sequence of links to test. After testing a link,
based on whether the link is good or bad, it obtains the
resultant topology following Algorithm 1 or 2, and then
chooses another link to test. We next describe these two
algorithms in detail.

5.1 Ordering Algorithm

In each step, this algorithm picks the link with the highest

nkpk=ck (breaking ties arbitrarily), where nk is the number of

paths that use link lk, i.e., nk ¼ jPkj. Intuitively, it favors

links with high values of pk=ck. Furthermore, it favors links

that are used by more paths. This is because, intuitively,

knowing the status of such links may provide more

information. For instance, for the tree in Fig. 5, after finding

link ðr; uiÞ to be lossy, all the paths using ðr; uiÞ are

removed, and hence none of the links in the subtree rooted

at ui needs to be tested. The complexity of this scheme is

WANG ET AL.: FAULT LOCALIZATION USING PASSIVE END-TO-END MEASUREMENTS AND SEQUENTIAL TESTING FOR WIRELESS... 445

Fig. 5. An illustration of tree topology in Proposition 4.1.

OðjLj2jPjÞ since each step has running time of OðjLjjPjÞ,
and there are at most OðjLjÞ steps.

We next use an example to illustrate this scheme. The
topology is shown in Fig. 6, where three sources send data
to a sink. It has five links, l1; . . . ; l5. The ground truth is that
links l1 and l5 are bad. The cost for testing a link is 1 unit.
The probability that a link is lossy is p ¼ 0:2. We first
assume that we know complete path information. In this
case, end-to-end data indicate that all paths are lossy. We
denote the bad paths as P1 ¼ ðl2; l1Þ, P2 ¼ ðl3; l1Þ, P3 ¼
ðl4; l1Þ, and P4 ¼ ðl5Þ. Without any testing, we identify l5 as a
responsible link since it is only used by P4, and P4 is lossy.
We, therefore, contract link l5 and remove P4. Afterward,
we obtain Pi, the set of paths that use link li as P1 ¼ fP1;
P2; P3g, P2 ¼ fP1g, P3 ¼ fP2g, P4 ¼ fP3g. Since all the links
have the same testing cost and prior probability of being
lossy, and l1 is used by more paths than other links, we test
link l1 first. Since l1 is lossy, all the lossy paths have been
explained, and the algorithm terminates. To summarize, for
this example, the ordering algorithm uses one iteration and
one test to identify all lossy links.

Let us look at the above example again assuming that we
only know probabilistic path information. In this case, we
consider three source-sink pairs, all identified as bad from
end-to-end data. Denote these bad pairs as P1 ¼ ðl2; l1Þ,
P2 ¼ ðl3; l1Þ, and P3 ¼ ðl4; l1; l5Þ. Since l1 is used by more
source-sink pairs than others, we will test link l1 first and
find it is lossy. After l1 is repaired, in the next iteration, we
find that only P3 is lossy. Since P3 uses three links, l1, l4, and
l5, and l1 is used by good pairs, we are left with two
potential lossy links, l4 and l5. Since both of them are used
by one path, we can choose to test either of them. In either
case, the algorithm locates the lossy link l5 and terminates.
To summarize, for this example, the ordering algorithm
uses two iterations and two tests to identify all lossy links.

5.2 Greedy Algorithm

In each step, this algorithm picks the link that provides the
highest gain (breaking tie arbitrarily). The gain from
knowing the status of a link is defined as the cost savings
(from the links that do not need to be tested due to this
knowledge) subtracted by the testing cost of this link. More
specifically, for link lk 2 L, let �k denote the expected gain
from knowing the status of link lk, let �kb denote the cost
savings when knowing lk is bad, and let �kg denote the cost
savings when knowing lk is good. From Algorithm 1, �kb is
the sum of the testing costs of all the irrelevant links
identified after knowing that lk is bad. Similarly, from
Algorithm 2, �kg is the sum of the testing costs of all the

responsible and irrelevant links identified after knowing
that lk is good. Then, �k ¼ pk�kb þ ð1� pkÞ�kg � ck, where pk
is the probability that lk is bad, and ck is the cost of testing lk.

The complexity of this algorithm is OðjLj3jPjÞ. This is
because in each step, it needs to run Algorithms 1 and 2 to
obtain the expected gain for each link that remains to be
tested, leading to a complexity of OðjLkPjÞ for each link (see
Section 4 on the complexities of Algorithms 1 and 2) and a
complexity of OðjLj2jPjÞ for all the links. Since there are at
most OðjLjÞ steps, the complexity of this scheme is
OðjLj3jPjÞ.

We now use the example in Fig. 6 to illustrate this
scheme. Let us first assume that we know complete path
information. We again first contract l5 and remove path
P4, and are left with three paths P1 ¼ ðl2; l1Þ, P2 ¼ ðl3; l1Þ,
and P3 ¼ ðl4; l1Þ. Then, we calculate the gains from testing
the various links as �1 ¼ 3pþ 3ð1� pÞ � 1 ¼ 2, �2 ¼ �3 ¼
�4 ¼ 2ð1� pÞ � 1 ¼ 0:8. The expected gain �1 is calculated
as above because if l1 is bad, then P1; P2, and P3 are
explained and hence we do not need to test links l2; l3,
and l4, leading to a saving of 3; if l1 is good, then l2; l3,
and l4 must be bad, leading to a saving of 3. The expected
gain �2 is 2ð1� pÞ � 1 since if l2 is bad, then it leads to no
savings; if l2 is good, then l1 must be bad, which makes
testing l3 and l4 unnecessary (since P2 and P3 have been
explained by l1), leading to a saving of 2. The gains �3 and
�4 are obtained in a similar manner as �2. Since testing l1
provides the maximum gain, we test l1 first. Since l1 is
lossy, all the lossy paths have been explained, and the
algorithm terminates. To summarize, for this example, the
greedy algorithm uses one iteration and one test to
identify all lossy links.

When we only know probabilistic path information, the
three lossy source-sink pairs are P1 ¼ ðl2; l1Þ, P2 ¼ ðl3; l1Þ,
and P3 ¼ ðl4; l1; l5Þ. We calculate the gains from testing the
various links as �1 ¼ 4pþ 2ð1� pÞ � 1 ¼ 2pþ 1 ¼ 1:4, �2 ¼
�3 ¼ 3ð1� pÞ � 1 ¼ 2� 3p ¼ 1:4, �4 ¼ �5 ¼ �1. The expected
gain �1 is calculated as above because if l1 is bad, then
P1; P2, and P3 are explained and hence we do not need to
test links l2; . . . ; l5, leading to a saving of 4; if l1 is good, then
l2 and l3 must be bad, leading to a saving of 2. The expected
gain �2 is 3ð1� pÞ � 1 since if l2 is bad, then it leads to no
savings; if l2 is good, then l1 must be bad, which makes
testing l3; l4, and l5 unnecessary, leading to a saving of 3.
The gain �3 is obtained in a similar manner. Knowing the
status of l4 or l5 does not lead to savings, and hence the gain
is �1. Since testing links l1, l2, and l3 provide the same
highest gain, we break the tie arbitrarily. Suppose we
choose to test l2. We find that l2 is good, and hence l1 must
be bad, which explains all source-sink pairs. After l1 is
repaired, the second iteration is similar to that under the
ordering algorithm. To summarize, for this example, the
greedy algorithm uses two iterations and two tests to
identify all lossy links.

5.3 Performance under Special Topologies

For a general topology, it is difficult to obtain the
approximation ratios of the two heuristic schemes com-
pared to the optimal solution. In the following, we briefly
discuss the performance of these two heuristic schemes
under line topologies and the simplest three-link tree

446 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 3, MARCH 2012

Fig. 6. An example to illustrate the heuristic sequential testing
schemes, ci ¼ 1, pi ¼ 0:2, i ¼ 1; . . . ; 5. The ground truth is that links
l1 and l5 are bad.

topology (optimal solutions for these two types of topolo-
gies are described in Sections 4.2 and 4.3, respectively) to
provide some insights; their performance under general
topologies is studied through simulation in Section 6.

For line topology, ni ¼ 1; 8i, and hence the ordering
scheme picks the link with the highest pi=ci to test first.
When ci ¼ c, 8i, it tests the links in decreasing order of their
prior probabilities of being lossy, which is an optimal
solution. When pi ¼ p, 8i, it tests the links in increasing
order of their costs, which is again an optimal solution.
Under the greedy scheme, for link lk, �kg ¼ 0 and �kb ¼P

lj2L cj � ck, and hence �k ¼ pk
P

li2L ci � pkck � ck. It is
clear that this scheme also leads to an optimal solution
when ci ¼ c, 8i or pi ¼ p, 8i. In general, however, these two
heuristic schemes may not provide optimal solutions. For
instance, for the four-link line example in Section 4.2,
neither scheme leads to optimal solution. In particular, the
ordering scheme tests link l1 first; if l1 is good, it tests l2; if l2
is good, it tests l3, leading to an expected testing cost of
14.15. The greedy scheme tests l3 first; if l3 is good, it tests l4;
if l4 is good, it tests l2, leading to an expected testing cost of
12.51. Therefore, the testing costs of both schemes are larger
than the optimal cost of 12.23.

For the three-link tree topology, we describe the
performance of the two heuristic schemes under the
following special cases:

. Case 1 (ci ¼ c and pi ¼ p, 8i). Both the ordering and
greedy schemes obtain the optimal solution (i.e.,
testing l1, the top link in the tree).

. Case 2 (ci ¼ c, 8i, pi 6¼ p). The optimal solution is
testing l1 (see Section 4.3). The ordering scheme may
not choose to test l1, since n1p1=c1 ¼ 2p1=c, n2p2=
c2 ¼ p2=c, and n3p3=c3 ¼ p3=c, which may not satisfy
n1p1=c1 < n2p2=c2 and n1p1=c1 < n3p3=c3. It is easy to
see that the approximate ratio of the ordering
scheme for this case is 2 since in the worst case it
leads to an expected test cost of maxðcþ p2c; c þ
p3cÞ � 2c. Under the greedy scheme, we have

�1 ¼ c2 þ c3 � c1 ¼ c; �2 ¼ ð1� p2Þðc1 þ c3Þ � c2

¼ c� 2p2c < �1; �3 ¼ ð1� p3Þðc1 þ c2Þ � c3

¼ c� 2p3c < �1:

Hence, testing l1 leads to the highest gain, and the
greedy scheme tests l1 first, which is the optimal
solution.

. Case 3 (pi ¼ p, 8i, ci 6¼ c). In this case, neither the
ordering scheme nor the greedy scheme is guaran-
teed to provide an optimal solution. An example is
c1 ¼ 0:09; c2 ¼ 0:84; c3 ¼ 0:07, and pi ¼ 0:2; 8i. The
optimal solution is testing link l3 first; if it is lossy,
testing link l1, leading to an optimal testing cost of
0.088. The ordering scheme and greedy schemes
both test link l1, leading to a test cost of 0.09.

. Case 4 (c1 ¼ c; c2 ¼ c3 ¼ 2c). When pi ¼ p, both the
ordering and greedy schemes obtain the optimal
solution. When pi 6¼ p, the ordering scheme may
not lead to an optimal solution. Its approximate
ratio is 4 since in the worst case, the expected
testing cost is maxðc2 þ p2c3; c3 þ p3c2Þ � 4c while

the optimal testing cost is c (i.e., testing l1). The
greedy scheme obtains the optimal solution since

�1 ¼ c2 þ c3 � c1 ¼ 3c; �2 ¼ ð1� p2Þðc1 þ c3Þ � c2

¼ 3ð1� p2Þc� 2c < �1; �3 ¼ 3ð1� p3Þc� 2c < �1;

and hence the greedy scheme tests l1 since it leads to
the highest gain, which is the optimal solution.

In general, neither scheme is guaranteed to provide an
optimal solution in the three-link tree topology. In fact,
we can construct scenarios where these two heuristic
schemes can lead to much larger testing costs than the
optimal solutions.

5.4 Trade-Offs between the Ordering and Greedy
Schemes

The greedy scheme has a higher complexity than the
ordering scheme. On the other hand, in some of the
special settings discussed above, the greedy scheme leads
to optimal solutions while the ordering scheme may not
lead to optimal solutions. In Section 6, we compare the
performance of these two schemes in more general
settings where we, however, do not know the prior
probability that a link is lossy, and assume that the prior
probabilities of all the links are the same. As we shall see,
their performances are similar, while the ordering scheme
can slightly outperform the greedy scheme.

5.5 Discussion

So far, for ease of exposition, we only consider lossy links.
The above two heuristic schemes are also applicable to the
more general scenarios where both nodes and links can be
lossy. A lossy node can cause its adjacent links to be lossy
(e.g., when a node’s battery level is low, its incoming and
outgoing links can lose packets). Taking account of this, in
both ordering and greedy heuristics, when we have a tie
between a node and link, we select to test the node first
since if it is indeed lossy, once it is repaired, the correlated
faulty links caused by it are also repaired.

6 PERFORMANCE EVALUATION

We evaluate the performance of our heuristic algorithms
through extensive simulation (using a simulator that we
developed) in a sensor network. This network is deployed
in a 10 unit	 10 unit square. A single sink is deployed at
the center, and 500 other nodes (sources and/or relays) are
uniformly randomly deployed in the square. The transmis-
sion range of each node is 3 units. At a given point of time,
the paths from the sources to the sink form a reversed tree.
In the tree, node u has a directed link to v if v is in the
transmission range of u, and forward data for u.

We consider both static and dynamic routings. Under
static routing, the paths from the sources to the sink are
fixed, and we know the complete path information. More
specifically, the paths from the sources to the sink form a
spanning tree rooted at the sink. The leaves of the tree are
the sources. The number of branches of an intermediate
node in the tree is uniformly distributed in ½1; b�, b ¼ 10 or
5. We refer to b as branch ratio. A tree generated using
b ¼ 5 is “taller” and “thinner” than one generated using
b ¼ 10. Under dynamic routing, the routing tree from the

WANG ET AL.: FAULT LOCALIZATION USING PASSIVE END-TO-END MEASUREMENTS AND SEQUENTIAL TESTING FOR WIRELESS... 447

sources to the sink is chosen randomly from multiple trees
at every time unit, and we assume a path report service (as
in [22]) that reports path information periodically to the
sink. When this service runs at every time unit, it provides
complete path information; when it runs at coarser time
scales (every 20 time units in our simulation), it provides
probabilistic path information and the probability to use a
route is estimated from the frequency that this route is
used. Note that when we only have probabilistic path
information, the topology is a general graph since for each
source we consider all the paths from the source to the
sink together during fault localization.

For testing costs, we consider two models, referred to as
homogeneous and heterogeneous cost models, respectively. In
the homogeneous cost model, all the nodes and links have
the same testing costs of 1 unit. This applies to the scenarios
where the monitoring overheads at the sensor nodes lead to
the most dominant testing cost, and the monitoring over-
heads at all the sensor nodes are very close. In the
heterogeneous cost model, the testing cost of a node or
link is proportional to its distance to the sink. More
specifically, a node that is k hops away from the sink has
a testing cost of k units; a link that is adjacent to the root has
a testing cost of 1 unit, and k hops away from the sink has a
testing cost of k units. This models the transmission costs of
sending monitoring data to the sink: data from a node k
hops away from the sink use k links to transmit data back to
the sink. Our simulation shows that the results under these
two cost models have similar trends. We, therefore, focus on
the homogeneous cost model, and only briefly describe the
results under the heterogeneous cost model in Section 6.1.3.

The prior probability that a node or link is lossy can be
estimated from historical data if a network has been
operating for a long time. It can also be estimated online
from end-to-end data using the technique in [16]. This
technique is, however, computational intensive, and we
were not able to obtain results in a reasonable amount of
time for our simulation scenarios. In the following, for
simplicity, we assume that the prior probabilities are
unknown, and all nodes and links have the same prob-
ability of being lossy (as in [5]). Under this assumption, the
ordering sequential testing scheme does not depend on the
exact value of p. For the greedy sequential testing scheme,
we set p to 0.2, 0.4, 0.6, or 0.8, and our simulation results
show that its performance is not sensitive to the choice of p.
The results below are for p ¼ 0:2.

The performance metrics we use are the number of
iterations required to identify all lossy components, and the
normalized testing cost, which is the total testing cost
normalized by the sum of the testing costs of the faulty
components. When the testing cost of each component is
1 unit, normalized testing cost is the number of components
that are tested divided by the number of lossy components
in the network.

We compare our sequential testing schemes with two
existing studies [5], [13] that also localize and repair all
faults in a network (Section 1 describes them briefly). One
approach [13] tests a single link in each iteration, which
requires a large number of iterations to localize and repair
all lossy links (the number of iterations increases linearly

with the number of bad paths, and it can require 30
iterations for only 30 bad paths). To reduce the number of
iterations, Lee et al. [13] propose another approach that tests
multiple links in parallel. This approach is similar in spirit
to the exhaustive inspection approach [5], and under our
setting (i.e., all links have the same probability of being
lossy and the same testing cost), the best heuristic using this
approach is essentially the same as exhaustive inspection. In
the following, we only present comparison results with
exhaustive inspection.3 In our preliminary version [25], we
also evaluate a baseline sequential testing scheme that
randomly selects a component (from the remaining poten-
tial lossy components) to test, and show that its perfor-
mance is much inferior to the greedy scheme. In this paper,
in the interest of space, we do not present results under this
randomized scheme.

Our simulation results are under three scenarios: where
only nodes are lossy, when only links are lossy, and when
both nodes and links can be lossy. In the following, we only
present the results under the second and third scenarios; the
results under the first scenario are similar to those under the
second one.

6.1 Lossy Links

We say a link is lossy if its transmission rate lies below 0.8
(i.e., its loss rate is above 0.2); otherwise, it is good. We use
two loss models. In the first model, a good link has
transmission rate of 0.99 and a bad link has transmission
rate of 0.75 (this model is also used in [14], [15]). In the
second loss model, a good link has transmission rate
uniformly distributed in ½�; 1� and a bad link has transmis-
sion rate uniformly distributed in ½0; ��, � > 0:8 and � < 0:8.
We only describe the results under the second loss model;
the results under the first one are similar.

We assume the losses at a link follow a Bernoulli or
Gilbert process. Under Bernoulli process, a packet traver-
sing a link is dropped with a probability that is equal to the
link loss rate. Under Gilbert process, a link is in a good or
bad state. When in a good state, the link does not drop any
packet; while in a bad state, the link drops all packets. The
transition probabilities between good and bad states are
chosen so that the average loss rate is what assigned to
the link. We only show the results under Bernoulli loss
process; the results under Gilbert loss process are similar
(since our algorithms use average loss rates and hence are
not sensitive to the loss process).

For each topology, we vary the percentage of lossy
links from 1 to 30 percent, and randomly choose lossy
links. For simplicity, we assume that once a lossy link is
repaired, it remains good (although our schemes can
handle the case where a repaired link becomes lossy again
in a later iteration).

6.1.1 Static Routing

In this setting, a good link has reception rate uniformly
distributed in ½0:95; 1�; a bad link has reception rate
uniformly distributed in ½0; 0:60�. We can find a threshold

448 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 3, MARCH 2012

3. When implementing exhaustive inspection, we use the inference
algorithm in [16], which is applicable to general topologies and is the same
as that in [5] for a tree topology (the algorithm in [5] only considers trees).

to determine whether a path is good or bad. This is because
for a path of h links, its reception rate is at least 0:95h if it is
good and is at most 0.60 otherwise. We have h � 5 when the
branch ratio is 10 (i.e., b ¼ 10) and h � 7 when the branch
ratio is 5 (i.e., b ¼ 5). In both cases, 0:95h > 0:60, and hence
we can find a threshold to determine whether this path is
good or bad. In particular, we use ð0:95h þ 0:60Þ=2 as the
threshold. In each iteration, a source sends 400 packets to
the sink; the reception rate of a path is estimated from these
packets (when using 400 packets, the decision on whether a
path is good or bad is correct with probability close to one
in our setting). Each confidence interval below is obtained
from 150 simulation runs, using five randomly generated
routing trees and 30 simulation runs in each tree. We do not
plot them in the figures since they are very tight.

Fig. 7 plots the results when b ¼ 10. The results of
exhaustive inspection, and greedy and ordering sequential
testing schemes are plotted in the figure. We observe that
all three schemes require only a few iterations to localize all
lossy links. Under exhaustive inspection, the normalized
testing cost is at least 1 (it is higher than 1 since some
identified links are false positives). The two sequential
testing schemes have similar normalized testing costs (the
two curves overlap in the figure), which are around 0.2 for
all the settings, indicating that only a small fraction of links
(0.002 to 0.06 when the fraction of lossy link changes from
0.01 to 0.30) needs to be tested to localize all lossy links.

Fig. 8 plots the results when b ¼ 5. As expected, the
number of iterations and the normalized testing cost are
larger than those when b ¼ 10 for all the three schemes,
since end-to-end data in a “taller” and “thinner” tree
posses a larger amount of ambiguity in determining the
status of individual links. In this case, all three schemes
still need only a few iterations to localize all lossy links;

greedy and ordering sequential testing schemes still
maintain low normalized testing costs (around 0.4 for all
the settings), while exhaustive inspection has normalized
testing costs above 1.

6.1.2 Dynamic Routing

Under dynamic routing, we assume that the routing tree
from the sources to the sink is chosen randomly with equal
probability from two trees at every time unit. This is
motivated from the measurement results that for each
source, a small number of paths carry most traffic in a
sensor network under dynamic routing [15]. The two
routing trees have the same set of leaves (which are the
sources), and differ in the structure of intermediate nodes
(we form the second tree by randomly changing the parents
of the nodes in the first tree). Again, the number of
branches of an intermediate node is uniformly distributed
in ½1; b�, b ¼ 10 or 5. In all the topologies we generated,
above 94 and 91 percent of the sources use two paths when
b ¼ 10 and 5, respectively, the rest of the sources use one
path. For a source that uses two paths, the path lengths are
the same. Again, each confidence interval below is obtained
from 150 simulation runs, over five randomly generated
topologies and 30 simulation runs in each topology; we
omit them in the figures since they are very tight.

When knowing complete path information, the settings
for good and bad links are the same as those in the static
routing. In each iteration, a source sends 800 packets to the
sink (if a source uses two paths, approximately 400 packets
are sent on each path). Fig. 9 plots the results when b ¼ 5
(the results when b ¼ 10 are slightly better, figures omitted).
Again, all three schemes require a few iterations to localize
all lossy links. The normalized testing costs under all
three schemes are lower than those under static routing (see
Fig. 8). This is because the path diversity when using two
routing trees leads to less ambiguity than that when using a
single routing tree. Last, the normalized testing costs under
greedy and ordering sequential testing schemes are below
0.3 for all the settings, much lower than those under
exhaustive inspection.

When knowing probabilistic path information, a good
link has reception rate uniformly distributed in ½0:99; 1�; a
bad link has reception rate uniformly distributed in ½0; 0:60�.
In this setting, we can find a threshold to determine
whether a source-sink pair is good or bad. This is because,
for a source using two paths with equal probability, each
path of h links, the source-sink reception rate is at least 0:99h

WANG ET AL.: FAULT LOCALIZATION USING PASSIVE END-TO-END MEASUREMENTS AND SEQUENTIAL TESTING FOR WIRELESS... 449

Fig. 7. Lossy link scenario, simulation results under static routing,
b ¼ 10.

Fig. 8. Lossy link scenario, simulation results under static routing, b ¼ 5.

Fig. 9. Lossy link scenario, simulation results under dynamic routing
when knowing complete path information, b ¼ 5.

when the source-sink pair is good, and is at most ð1þ 0:6Þ=2
otherwise. Since 0:99h > ð1þ 0:6Þ=2 (h � 5 when b ¼ 10 and
h � 7 when b ¼ 5), we can find a threshold to determine
whether the source-sink pair is good or bad. In particular,
we choose the threshold to be in the middle of ð1þ 0:6Þ=2
and 0:99h. In each iteration, a source sends 800 packets to
the sink, and the path report service sends 40 path reports
(it runs every 20 time units) to the sink for each source.

Fig. 10 plots the results under probabilistic path
information when b ¼ 5 (the results when b ¼ 10 are
slightly better, figures omitted). Again, all three schemes
require a few iterations, and the two sequential testing
schemes incur much lower testing costs than exhaustive
inspection. Observe that the number of iterations under the
two sequential testing schemes is slightly larger than that
under exhaustive inspection, which is opposite to the trend
when knowing complete path information (Figs. 8a and 9a).
This difference is due to the different amount of ambiguity
in these two settings: the setting with only probabilistic
path information has much more ambiguity than the setting
with complete path information (since the end-to-end
information in the former is for each source-sink pair,
containing all the links that are used by a source-sink pair
over all paths, while the end-to-end information in the
latter is for each individual path). Also, observe that the
testing costs under all three schemes are much larger than
those when knowing complete path information. This is
again due to the much larger amount of ambiguity when
not knowing the exact path information. Under the
sequential testing schemes, the number of links tested is
close to the number of lossy links (the normalized testing
cost is close to 1). Furthermore, for large fraction of lossy
links, the ordering heuristic slightly outperforms the greedy
heuristic. This is because, when all the links have the same
prior probability of being lossy, the ordering scheme does
not need to know the exact value, while the greedy scheme
uses the value to calculate the gain from testing a link, and
hence can be affected by inaccurate estimates of this value
(as in our case).

6.1.3 Heterogenous Cost Model

Results under the heterogeneous cost model have similar
trends as those under the homogeneous cost model.
However, we observe that the testing costs of the two
heuristic sequential testing schemes have slightly more
dramatic difference under the heterogeneous cost model.
For instance, under static routing and b ¼ 10, the normalized

testing costs using the greedy scheme are 4 to 7 percent
higher than those using the ordering scheme (figure
omitted), while in the homogeneous model, the perfor-
mance of these two schemes are very close (see Fig. 7). This
might be because the performance of the greedy scheme is
impacted more significantly by the inaccurate estimates of
the prior probabilities that links are lossy under the
heterogeneous cost model.

6.2 Lossy Nodes and Links

When both nodes and links can be lossy, we again say a
node or link is bad if its transmission rate lies below 0.8;
otherwise, it is good. A good node or link has transmission
rate uniformly distributed in ½�; 1� and a bad link has
transmission rate uniformly distributed in ½0; ��, � > 0:8 and
� < 0:8. Furthermore, we assume that when a node is lossy,
it causes all incoming and outgoing links to be lossy. When
choosing faulty components, we first decide whether to
choose a node or link (with equal probability), and then
randomly choose a node or link to be faulty. The percentage
of faulty components is from 1 to 30 percent. Since a lossy
node causes its adjacent links to be lossy, the number of
lossy components is larger than the specified value.

We again investigate static and dynamic routings, and
find that in all the cases the two sequential test schemes
have similar performances, and both require significantly
less iterations and lower testing costs than exhaustive
inspection. Fig. 11 shows one result under static routing,
b ¼ 10. We observe that the number of iterations required
by sequential test schemes is 37 to 52 percent lower than
that by exhaustive inspection, and the normalized inspec-
tion cost is around 26 percent lower than that by
exhaustive inspection. The more dramatic difference in
the number of iterations compared to those when only
links are lossy is because sequential testing schemes are
more effective in detecting and repairing lossy nodes in
earlier iterations. When a lossy node is repaired, all the
links that are faulty due to this node become good, which
leads to less ambiguity in end-to-end results, and hence
reduces the number of iterations.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we formulated an optimal sequential testing
problem that carefully combines active and passive mea-
surements for fault localization in wireless sensor networks.
This problem determines an optimal testing sequence of

450 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 3, MARCH 2012

Fig. 10. Lossy link scenario, simulation results under dynamic routing
when knowing probabilistic path information, b ¼ 5.

Fig. 11. Simulation results under static routing when both nodes and
links can be lossy, b ¼ 10.

network components based on end-to-end data to minimize
testing cost. We proposed a recursive approach and two
heuristic algorithms to solve it. Extensive simulation
demonstrated that our heuristic algorithms only require a
few iterations and testing a small subset of components to
identify all lossy components in a network.

As future work, we are pursuing in the following two
directions: 1) evaluating the performance of our approach
under other scenarios, for instance, when the location of
faulty components follows a more clustered distribution
instead of uniform random distribution and 2) developing
more scalable approaches to reduce the overhead in obtain-
ing complete path information under dynamic topologies.

ACKNOWLEDGMENTS

A preliminary version of this paper appeared in [25]. This
work was partially supported by US National Science
Foundation CAREER award 0746841 and Qualtech Systems
Incorporated. The authors would like to thank Yoo-Ah Kim,
Jim Kurose, Prashant Shenoy, and Patrick Thiran for their
helpful comments and suggestions. They also thank the
anonymous reviewers for their insightful comments and
associate editor Saurabh Bagchi for handling the paper.

REFERENCES

[1] A. Adams, T. Bu, R. Caceres, N. Duffield, T. Friedman, J.
Horowitz, F.L. Presti, S. Moon, V. Paxson, and D. Towsley, “The
Use of End-to-End Multicast Measurements for Characterizing
Internal Network Behavior,” IEEE Comm. Magazine, vol. 38, no. 5,
pp. 152-159, May 2000.

[2] M. Adler and B. Heeringa, “Approximating Optimal Binary
Decision Trees,” Proc. Int’l Workshop Approximation, Randomiza-
tion and Combinatorial Optimization: Algorithms and Techniques
(APPROX/RANDOM ’08), Aug. 2008.

[3] V.T. Chakaravarthy, V. Pandit, S. Roy, P. Awasthi, and M.
Mohania, “Decision Trees for Entity Identification: Approxima-
tion Algorithms and Hardness Results,” Proc. 26th ACM SIGMOD-
SIGACT-SIGART Symp. Principles of Database Systems, 2007.

[4] W. Dong, X. Liu, C. Chen, Y. He, G. Chen, Y. Liu, and J. Bu,
“DPLC: Dynamic Packet Length Control in Wireless Sensor
Networks,” Proc. IEEE INFOCOM, Mar. 2010.

[5] N. Duffield, “Network Tomography of Binary Network Perfor-
mance Characteristics,” IEEE Trans. Information Theory, vol. 52,
no. 12, pp. 5373-5388, Dec. 2006.

[6] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and
S. Wicker, “Complex Behavior at Scale: An Experimental Study of
Low-Power Wireless Sensor Networks,” Technical Report UCLA/
CSD-TR 02-0013, Feb. 2002.

[7] M.R. Garey, “Optimal Binary Identification Procedures,” SIAM
J. Applied Math., vol. 23, no. 2, pp. 173-186, Sept. 1972.

[8] C. Gruenwald, A. Hustvedt, A. Beach, and R. Han, “SWARMS: A
Sensornet Wide Area Remote Management System,” Proc. Third
Int’l Conf. Testbeds and Research Infrastructure for the Development of
Networks and Communities (TridentCom), May 2007.

[9] G. Hartl and B. Li, “Loss Inference in Wireless Sensor Networks
Based on Data Aggregation,” Proc. Third Int’l Symp. Information
Processing in Sensor Networks (IPSN), Apr. 2004.

[10] C.-F. Hsin and M. Liu, “A Distributed Monitoring Mechanism for
Wireless Sensor Networks,” Proc. First ACM Workshop Wireless
Security (WiSe), Sept. 2002.

[11] P. Jelenkovic and J. Tan, “Dynamic Packet Fragmentation for
Wireless Channels with Failures,” Proc. ACM MobiHoc, May 2008.

[12] J. Korhonen and Y. Wang, “Effect of Packet Size on Loss Rate and
Delay in Wireless Links,” Proc. IEEE Wireless Comm. and
Networking Conf. (WCNC), Mar. 2005.

[13] P.P. Lee, V. Misra, and D. Rubenstein, “Toward Optimal Network
Fault Correction in Externally Managed Overlay Networks,” IEEE
Trans. Parallel and Distributed Systems, vol. 21, no. 3, pp. 354-366,
Mar. 2010.

[14] Y. Mao, F.R. Kschischang, B. Li, and S. Pasupathy, “A Factor
Graph Approach to Link Loss Monitoring in Wireless Sensor
Networks,” IEEE J. Selected Areas in Comm., vol. 23, no. 4, pp. 820-
829, Apr. 2005.

[15] H.X. Nguyen and P. Thiran, “Using End-to-End Data to Infer
Lossy Links in Sensor Networks,” Proc. IEEE INFOCOM, Apr.
2006.

[16] H.X. Nguyen and P. Thiran, “The Boolean Solution to the
Congested IP Link Location Problem: Theory and Practice,” Proc.
IEEE INFOCOM, May 2007.

[17] K.R. Pattipati and M.G. Alexandridis, “Application of Heuristic
Search and Information Theory to Sequential Fault Diagnosis,”
IEEE Trans. Systems, Man and Cybernetics, vol. 20, no. 4, pp. 872-
887, July/Aug. 1990.

[18] V. Raghavan, M. Shakeri, and K.R. Pattipati, “Optimal and Near-
Optimal Test Sequencing Algorithms with Realistic Test Models,”
IEEE Trans. Systems, Man and Cybernetics, vol. 29, no. 1, pp. 11-26,
Jan. 1999.

[19] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D.
Estrin, “Sympathy for the Sensor Network Debugger,” Proc. Third
Int’l Conf. Embedded Networked Sensor Systems (SenSys), Nov. 2005.

[20] N. Reijers, G. Halkes, and K. Langendoen, “Link Layer Measure-
ments in Sensor Networks,” Proc. IEEE Int’l Conf. Mobile Ad-Hoc
and Sensor Systems (MASS), Oct. 2004.

[21] S. Rost and H. Balakrishnan, “Memento: A Health Monitoring
System for Wireless Sensor Networks,” Proc. Third Ann. IEEE
Comm. Soc. on Sensor and Ad Hoc Comm. and Networks (SECON),
Sept. 2006.

[22] T. Schmid, H. Dubois-Ferriére, and M. Vetterli, “SensorScope:
Experiences with a Wireless Building Monitoring,” Proc. Workshop
Real-World Wireless Sensor Networks, June 2005.

[23] G. Tolle and D. Culler, “Design of an Application-Cooperative
Management System for Wireless Sensor Networks,” Proc. Second
European Workshop Wireless Sensor Networks (EWSN), Jan. 2005.

[24] M. Vuran and I. Akyildiz, “Cross-Layer Packet Size Optimization
for Wireless Terrestrial, Underwater, and Underground Sensor
Networks,” Proc. IEEE INFOCOM, Apr. 2008.

[25] B. Wang, W. Wei, W. Zeng, and K.R. Pattipati, “Fault Localization
Using Passive End-to-End Measurement and Sequential Testing
for Wireless Sensor Networks,” Proc. Ann. IEEE Comm. Soc. Conf.
Sensor, Mesh and Ad Hoc Comm. and Networks (SECON), June 2009.

[26] D.B. West, Introduction to Graph Theory, second ed. Prentice Hall,
Sept. 2000.

[27] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim, J. Jeong, J.
Hui, P. Dutta, and D. Culler, “Marionette: Providing an Interactive
Environment for Wireless Debugging and Development,” Proc.
Fifth Int’l Conf. Information Processing in Sensor Networks (IPSN),
Apr. 2006.

[28] A. Woo, T. Tong, and D. Culler, “Taming the Underlying
Challenges of Reliable Multihop Routing in Sensor Networks,”
Proc. First Int’l Conf. Embedded Networked Sensor Systems (SenSys),
Nov. 2003.

[29] J. Zhao, R. Govindan, and D. Estrin, “Residual Energy Scans for
Monitoring Wireless Sensor Networks,” Proc. IEEE Wireless Comm.
and Networking Conf. (WCNC), Mar. 2002.

[30] J. Zhao, R. Govindan, and D. Estrin, “Computing Aggregates for
Monitoring Wireless Sensor Networks,” Proc. IEEE Int’l Workshop
Sensor Network Protocols and Applications (SNPA), May 2003.

[31] G. Zhou, T. He, S. Krishnamurthy, and J.A. Stankovic, “Models
and Solutions for Radio Irregularity in Wireless Sensor Net-
works,” ACM Trans. Sensor Networks, vol. 2, no. 2, pp. 221-262,
May 2006.

[32] M. Zuniga and B. Krishnamachari, “An Analysis of Unreliability
and Asymmetry in Low-Power Wireless Links,” ACM Trans.
Sensor Networks, vol. 3, no. 2, June 2007.

WANG ET AL.: FAULT LOCALIZATION USING PASSIVE END-TO-END MEASUREMENTS AND SEQUENTIAL TESTING FOR WIRELESS... 451

Bing Wang received the BS degree in compu-
ter science from Nanjing University of Science
& Technology, China, in 1994, and the MS
degree in computer engineering from Institute
of Computing Technology, Chinese Academy of
Sciences, in 1997. She then received two
MS degrees in computer science and applied
mathematics and the PhD degree in computer
science from the University of Massachusetts,
Amherst, in 2000, 2004, and 2005, respectively.

Afterward, she joined the Computer Science and Engineering Depart-
ment at the University of Connecticut as an assistant professor. Her
research interests are in computer networks, multimedia, and
distributed systems. She received the US National Science Foundation
CAREER award in February 2008. She is a member of the IEEE and
the IEEE Computer Society.

Wei Wei received the BS degree in applied
mathematics from Beijing University, China, in
1992, and the MS degree in statistics from
Texas A&M University in 2000. He then received
two MS degrees in computer science and
applied mathematics and the PhD degree in
computer science from the University of Massa-
chusetts, Amherst, in 2004, 2004, and 2006,
respectively. He is currently a senior postdoctor-
al researcher in the Department of Computer

Science at the University of Massachusetts, Amherst. His research
interests are in the areas of computer networks, distributed embedded
systems, and performance modeling. He is a member of the IEEE and
the IEEE Computer Society.

Hieu Dinh received the BS degree in computer
science from the Vietnam National University at
Hanoi in 2005 and the MS degree in computer
science and engineering from the University of
Connecticut in 2008. He is currently working
toward the PhD degree in the Computer Science
and Engineering Department at the University of
Connecticut, working on combinatorial optimiza-
tion and approximation algorithms with applica-
tions in networks and bioinformatics.

Wei Zeng received the BS and MS degrees in
computer science and engineering from the
South China University of Technology, Guangz-
hou, China, in 2000 and 2003, respectively.
Currently, she is working toward the PhD degree
in the Computer Science and Engineering
Department at the University of Connecticut.
Her research topics are in network diagnosis,
network measurement, and network manage-
ment for wireless sensor networks. She is a

student member of the IEEE.

Krishna R. Pattipati is a professor of electrical
and computer engineering at the University of
Connecticut, Storrs. He has published more than
330 articles, primarily in the application of
systems theory and optimization techniques to
large-scale systems. He received the Centennial
Key to the Future Award in 1984 from the IEEE
Systems, Man and Cybernetics (SMC) Society
and was elected a fellow of the IEEE in 1995 for
his contributions to discrete-optimization algo-

rithms for large-scale systems and team decision making. He received
the Andrew P. Sage Award for the best IEEE Transactions on Systems,
Man, and Cybernetics paper for 1999, the Barry Carlton award for the
best IEEE Transactions on Aerospace and Electronic Systems paper for
2000, the 2002 NASA Space Act Award, the 2003 AAUP Research
Excellence Award, and the 2005 School of Engineering Teaching
Excellence Award at the University of Connecticut. He also won best
technical paper awards at the 1985, 1990, 1994, 2002, 2004, and 2005
IEEE AUTOTEST Conferences and at the 1997 and 2004 Command
and Control Conferences. He served as editor-in-chief of the IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
during 1998-2001.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

452 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 3, MARCH 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

