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ABSTRACT
We consider the following channel assignment problem in multi-
radio multi-channel wireless networks: Given a wireless network
where k orthogonal channels are available and each node has multi-
ple wireless interfaces, assign a channel to each link so that the total
number of conflicts is minimized. We present an integer semidef-
inite programming formulation for the problem and show that it is
equivalent to an optimal channel assignment. By relaxing integral-
ity constraints, we can find a lowerbound on the optimal channel
assignment. We develop several channel assignment algorithms
based on the solution to the SDP relaxation. Our results from
numerical evaluations and packet-level simulations show that our
SDP-based rounding algorithms outperform other simple heuris-
tics (up to 200% improvement in throughput). In particular, our
schemes achieve even larger performance improvement when nodes
have different numbers of interfaces, in which simple heuristics
(e.g., greedy) do not perform well.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph Algorithms, Network Problems;
C.2.1 [Network Architecture and Design]: Wireless Communi-
cation

General Terms
Algorithms, Experimentation, Performance

Keywords
Channel assignment, semidefinite programming, multi-radio, multi-
channel, wireless networks

1. INTRODUCTION
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Grant.
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Figure 1: In this network, three channels are available, and
each node has two wireless interface cards. The above channel
assignment uses a distinct channel for each link, resulting in no
conflict among links.

In wireless networks, it is well known that interferences can affect
network capacity significantly. For example, consider the network
shown in Figure 1. If all three wireless links use the same channel,
only one link can be used at a time due to the broadcast property of
wireless medium. One popular way to overcome this limitation is
to utilize orthogonal channels [1, 2, 13, 15, 18–21]. In Figure 1, if
there are three channels available in the network and each node is
equipped with two wireless interface cards, all links can be used at
the same time by assigning a distinct channel to each link.

We consider multi-radio multi-channel wireless mesh networks,
where multiple orthogonal channels are available and there are nodes
equipped with multiple interfaces. Thus, those nodes can simulta-
neously communicate with several neighbors using different chan-
nels. An important problem here is which channels they should
use for communications to maximize the network capacity. We as-
sume that once assigned a channel, a link uses the channel for an
extended period of time as in [2, 13, 20, 21]. In this paper, we
consider the following CHANNEL ASSIGNMENT problem: Given
a wireless network where k orthogonal channels are available and
each node v has Cv wireless interfaces, assign a channel to each
link so that the total number of conflicts is minimized. We say a
pair of links are conflicting if they are within interference range of
each other and use the same channel. The problem is NP-hard even
when Cv’s are the same for all v, by a reduction from the EDGE
COLORING problem.

In this paper, we present an integer semidefinite programming (ISDP)
formulation, which we prove is equivalent to an optimal channel
assignment—our formulation provides a necessary and sufficient
condition for an optimal channel assignment. By relaxing integral-



ity constraints, we can obtain a lowerbound on the optimal solution
in polynomial time. Subramanian et al. [21] recently developed
a different SDP formulation. However, their formulation provides
only a necessary condition to the problem even before the relax-
ation. They used the lowerbounds obtained from the formulation
to evaluate their (non-SDP based) channel assignment algorithms.
We compare these two SDP formulations and show that combining
the two formulations gives a tighter lowerbound on the optimal.

We develop several channel assignment algorithms based on the
SDP solution. Our numerical evaluations and packet-level simu-
lations show that our SDP-based rounding algorithms consistently
outperform other simple heuristics (up to 200% improvement in
throughput). In particular, the performance improvement is more
dramatic when network environments make it more difficult to uti-
lize channel diversity while maintaining network connectivity, for
example, when nodes have different Cv’s, or Cv’s are much less
than the number of channels available in the network.

The remainder of this paper is organized as follows. In Section 2
we describe the network model and formally define the problem.
We review related work in Section 3. In Section 4, we present our
ISDP formulation and several channel assignment algorithms. We
discuss numerical and simulation results in Sections 5.

2. PROBLEM DEFINITION
We represent a network as an undirected graph G = (V, E), where
V is a set of nodes, and E a set of links. For each link e, I(e)
denotes a set of links that are within interference range of e. We
also define I(e, e′) to be 1 if two links, e and e′, are within inter-
ference range of each other, and 0 otherwise. Let CG be the num-
ber of orthogonal channels available in the system (global channel
constraint) and Cv be the number of wireless interface cards at
node v ∈ V (local interface constraints). Without loss of gener-
ality, we assume ∀v, Cv ≤ CG. We call a network homogeneous
if Cv = l, ∀v ∈ V for some constant l. We call a network het-
erogeneous otherwise. We assume that each network interface can
operate only on one channel at a given time.

Our objective is to assign channels to links to minimize the total
number of conflicts. More formally, let E(v) be the edges incident
to node v and c(e) be the channel assigned to edge e. Then, due to
the local interface constraints, a channel assignment should satisfy
|Se∈E(v) c(e)| ≤ Cv , and due to the global channel constraint,
|Se c(e)| ≤ CG. Let us define the conflict number, CFe(A), of
an edge e ∈ E in a channel assignment A to be the number of other
edges in I(e) that use the same channel as e in assignment A. We
want to find a channel assignment that minimizes the total number
of conflicts, CFG(A), which is defined as:

CFG(A) =
1

2

X
e∈E

CFe(A). (1)

Note that our channel assignment problem is a variant of the edge
coloring problem. The objective of the traditional edge coloring
problem is to minimize the number of colors used such that no two
adjacent edges have the same color. In our problem, however, the
maximum number of total colors (or channels) is a problem input,
and the goal is to minimize the number of conflicts. In addition, we
consider more general interference models. For example, in two-
hop interference model, two edges may be conflicting with each
other if they are incident to a common edge. In the remainder of
this paper, we use colors and channels interchangeably.

Generalizations: We can generalize our model to take account of
asymmetric networks and non-uniform interferences. When links

between two nodes are asymmetric, we can assume that the net-
work is a directed graph and define I(e) for each directed link ac-
cordingly. In the case where the traffic in each link is non-uniform,
we can define a weight function w(e1, e2) for each pair of links to
indicate the interference level, and incorporate it in the objective
function. All the algorithms presented in this paper can be easily
extended to these general cases.

3. RELATED WORK
Recently, a number of papers studied various issues in multi-radio
multi-channel wireless networks. Raniwala et al. [18, 19] and Alicherry
et al. [2] study the joint problem of channel assignment and routing
in the context of mostly static mesh networks and present channel
assignment schemes assuming the knowledge of long-term traffic
load. Distributed channel assignment schemes are discussed in [12,
20], and a few recent papers analyze the capacity of multi-radio
networks [13, 15].

Closest to our work is the recent one by Subramanian et al. [21], in
which they consider the same channel assignment problem and in-
dependently come up with a different SDP formulation. Their for-
mulation only provides a necessary condition to the problem while
our Integer SDP formulation is equivalent to an optimal channel
assignment. We also show that combining the two formulations in
SDP relaxation leads to a tighter lowerbound to the optimal channel
assignment. They developed two heuristic algorithms—one using
greedy strategy and the other using Tabu search—and use the SDP
solution to evaluate the heuristic algorithms as it provides a lower-
bound on the optimal. In our work, we design several rounding
algorithms, in which the SDP solution is used to obtain valid chan-
nel assignments.

A special case of our problem where CG = Cv = k for all v is
the same as MIN k-PARTITION for the conflict graph1 of network
G [9]. It has been shown that for k > 2 and for every ε > 0,
there exists a constant α such that the MIN k-PARTITION cannot
be approximated within α|V |2−ε unless P = NP . In fact, our
SDP formulation without interface constraints is similar to the one
used for MAX k-CUT [5], which is the dual problem of MIN k-
PARTITION. In the general channel assignment problem, we also
have local interface constraints, for which we develop a formula-
tion that is equivalent to an optimal channel assignment.

We have developed approximation algorithms for several special
cases [11]. In one-hop interference model2, we develop an algo-
rithm yielding at most |V | more conflicts than the optimal solution
when Cv = k for all v, and show that this approximation result is
best possible unless P = NP . When Cv = 1 or k, we present an
algorithm with (2 − Θ( ln k

k
))OPT + (1 − Θ( ln k

k
))|E| conflicts

where OPT is the optimal number of conflicts.

4. CHANNEL ASSIGNMENT ALGORITHMS
In this section, we discuss several channel assignment algorithms.
We first describe two greedy heuristics to illustrate the shortcom-
ings of simple approaches, and then show how our SDP-based al-
gorithms overcome the limitations.

4.1 Simple Heuristics
Heuristic 1: In this heuristic, each node v first chooses the channel
set Sv and then picks the best channel for each link. Specifically,
v first chooses Sv = {1, . . . , Cv}. Then a link e = (u, v) can
1In a conflict graph of a network G, there is a vertex for each link
in G, and an edge between two vertices if the corresponding links
can interfere with each other in G.
2In the one hop interference model, two links can interfere with
each other if they are incident to a common node.
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Figure 2: Channel assignments when black node has k = 4 interface
cards and white nodes have only one interface card.

use any channel from Su

T
Sv = {1, . . . , min(Cu, Cv)}, which

ensures all links have a nonempty channel set to choose a channel
from. Given Sv , we consider each link in an arbitrary order and as-
sign a channel that creates the minimum number of conflicts. More
formally, let n(e, i) be the number of edges using color i in B(e),
where B(e) includes all edges in I(e) that have chosen their colors
before e. Then e chooses a channel i with the minimum value of
n(e, i) from Su

T
Sv . We call this heuristic NAIVE ALGORITHM.

(See Algorithm 1 for the pseudocode.) A major shortcoming of

Algorithm 1 NAIVE ALGORITHM

for each edge e = (u, v) do
S = {1, . . . , min(Cu, Cv)}.
assign color c ∈ S with min value of n(e, c) to e.

end for

this approach is that the total number of different channels used
may be much smaller than CG as each node chooses Sv conser-
vatively to ensure the connectivity. For example, see the network
shown in Figure 2. Suppose that the black node has k interface
cards and all other nodes have only one interface. NAIVE assigns
the same color for all edges whereas in the optimal solution, we can
distribute edges evenly for each of those k colors.

Heuristic 2: A reasonable approach to utilize more channel diver-
sity is to allow each edge to choose any channel from {1, . . . , CG}
without restricting the channel set at the beginning. Once a node
uses Cv different channels, then it has to restrict the channel set and
cannot add more channels to obey the local interface constraint. A
link can choose its channel that minimizes the number of conflicts
to be created, as in NAIVE, among the allowed channels. We call
this heuristic GREEDY ALGORITHM. A more detailed description
is as follows (see the pseudocode in Algorithm 2): For any node v,
let Sv be the colors that any edge in E(v) is already using. Sv is
said to be tight if |Sv| = Cv . When neither Su nor Sv is tight, a
new color can be added to both sets and therefore, e = (u, v) can
use any of CG colors. Otherwise if either Su or Sv is tight, then
e chooses any color from the tight set. When both sets are tight, e
has to choose a color from S = Su

T
Sv . We choose color c with

the minimum n(e, c) among all allowed colors. Note that an edge e
may be dropped (i.e., node u and v cannot communicate with each
other directly) in case that S = ∅.

While the greedy approach may reduce the number of conflicts by
utilizing more channels, the biggest drawback of this algorithm is
that it may drop a significant number of edges. For example in
Figure 2 (c), the black node may greedily choose channels for links
so that the conflicts on the node can be minimized. As a result,
33% of links cannot be used in the solution. If an edge is dropped,
then the pair of nodes will have to use another route to commu-
nicate with each other, thus increasing the traffic on links along
that route. Therefore, dropping too many edges is undesirable and

more importantly, may lead to network partition after channel as-
signment. As we can see in the experiments (Section 5), GREEDY
drops 10 − 25% of edges in heterogeneous cases and sometimes
the network is disconnected.

Algorithm 2 GREEDY ALGORITHM

for each edge e = (u, v) do
if |Sv| = Cv and |Su| = Cu then

S = Su

T
Sv .

else if |Sv| = Cv and |Su| < Cu then
S = Sv .

else if |Sv| < Cv and |Su| = Cu then
S = Su.

else
S = {1, . . . , CG}.

end if
if S = ∅ then

drop edge e.
else

let c ∈ S be the color with min n(e, c).
assign color c to edge e.
add c to Sv and Su if not included.

end if
end for

In the rest of this section, we present our SDP-based channel as-
signment algorithms. The algorithms are essentially greedy but as
channel assignments are guided by the SDP solutions, we can re-
duce the number of conflicts compared to NAIVE while dropping
fewer edges than GREEDY. We next formulate the problem as an
integer semidefinite programming (Section 4.2), present rounding
algorithms to obtain a valid channel assignment (Section 4.3), and
describe how to further improve the assignment via local search
(Section 4.4).

4.2 Semidefinite Programming Formulation
Global Channel Constraints: We first present ISDP formulation
with only global channel constraints (i.e., any node can use all CG

channels) and later extend the formulation considering local inter-
face constraints. Without interface constraints, the problem can be
formulated in a way similar to the one used in MAX-k-CUT and
VERTEX COLORING [5, 10]. Let CG = k. Consider a (k − 1)-
dimensional vector Xe for each edge e.

ISDP:

min
X

I(e1,e2)=1

1

k
((k − 1)Xe1 ·Xe2 + 1) (2)

|Xe| = 1 ∀e ∈ E (3)

Xe1 ·Xe2 ∈ {1,
−1

k − 1
} for I(e1, e2) = 1 (4)

We can relate a solution of ISDP to a channel assignment as fol-
lows. Consider k unit length vectors in (k − 1)-dimensional space
such that for any pair of vectors the dot product is − 1

k−1
. (Only k

such vectors can be chosen and these k vectors make an equilateral
k-simplex in (k − 1)-dimensional space [5, 10].) For example, see
Figure 3(a) where CG = 3. We choose three vectors such that the
dot product of any pair is − 1

2
and map each channel to a distinct

vector. A feasible channel assignment will correspond to assigning
one of these three vectors to Xe. The objective function is exactly
the same as the number of conflicts in the given channel assignment
since if Xe1 = Xe2 (e1 and e2 use the same channel), it contributes
one to the objective function, and 0 otherwise.
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Figure 3: Vectors satisfying Constraints (4) and (5)

Local Interface Constraints: We now consider the interface con-
straints that each node v has Cv interfaces. We introduce a unit
vector Yv for each node v and let Tv =

q
1

Cv
· k−Cv

k−1
. We add the

following constraints.

Interface Constraints 1 (IC1)

Yv ·Xe ≥ Tv for ∀v, e where Cv < k and e ∈ E(v) (5)
|Yv| = 1 ∀v ∈ V (6)

Intuitively, vector Yv will be positioned in the center of the hyper-
cone defined by Xe’s, e ∈ E(v). For example, see Figure 3 (b)
where k = 3 and Cv = 2. Edges in E(v) can use only two out of
three vectors since the dot product of Yv and Xe should be no less
than 1

2
. In the following, we show that ISDP (2) - (6) is equivalent

to an optimal channel assignment.

LEMMA 1. ISDP (2) - (6) provides a necessary condition to an
optimal channel assignment.

PROOF. Given an optimal channel assignment, we can map each
channel to one of k vectors for which the dot product of any pair
is exactly −1

k−1
and easily check Constraints (2) - (4) are satisfied.

Therefore, we only have to check Constraints (5). Since a node
v uses at most Cv channels, let Sv = {X1, X2, . . . , Xt} be the
vectors corresponding to the channels used by edges in E(v) where
t ≤ Cv . Then we can define Yv to be

Pt
i=1 Xi/|

Pt
i=1 Xi| (that

is, Yv is the unit vector which has the same distance to all vectors
in Sv). Then

Yv ·Xi = Xi ·
Pt

i=1 Xi

|Pt
i=1 Xi|

=
1− t−1

k−1

|Pt
i=1 Xi|

=
1

|Pt
i=1 Xi|

· k − t

k − 1
=

r
1

t
· k − t

k − 1
.

The last equality is because |Pt
i=1 Xi| =

qP
i

P
j Xi ·Xj =p

t− t(t− 1)/(k − 1). Since
q

1
t
· k−t

k−1
is decreasing as t in-

creases, Constraints (5) are satisfied.

LEMMA 2. ISDP (2) - (6) provides a sufficient condition to an
optimal channel assignment.

PROOF. As (2)-(4) gives an optimal solution when at most k
channels can be used in the network [5], we now show that Con-
straints (5) ensure that edges in E(v) can have only Cv colors. Sup-
pose that different vectors used by edges in E(v) is X1, X2, . . . , Xt.
We need to show that t ≤ Cv . Since Xi ·Xj = −1

k−1
, we have

|
tX

i=1

Xi| =
r

t(1− t− 1

k − 1
). (7)

We also have Xi · Yv ≥ Tv , which means
Pt

i=1 Xi · Yv ≥ tTv

Channel 1

Channel 2
Channel 3

Figure 4: Black node has 2 interface cards and white nodes have only
one interface card. If we only use IC2 for interface constraints then
the black node can use 3 channels even though Cv = 2.

and therefore,

|
tX

i=1

Xi| ≥ Yv ·
tX

i=1

Xi =

tX
i=1

Xi · Yv ≥ tTv. (8)

The first inequality comes from the fact that |x| ≥ y · x for any
vector x if y is a unit vector. Comparing (7) with (8), we can obtain
t ≤ Cv .

By Lemma 1 and 2, we have the following theorem.

THEOREM 1. ISDP (2)-(6) is equivalent to an optimal channel
assignment.

SDP relaxation: Solving ISDP is NP-hard and therefore, we relax
Constraints (4) to

Xe1 ·Xe2 ≥
−1

k − 1
for I(e1, e2) = 1 (9)

Then we can solve the SDP relaxation (2),(3),(5),(6),(9) in poly-
nomial time (within any desired precision) [3, 7, 8, 16, 17], and
the corresponding m-dimensional vectors Xe, Yv can be obtained
by Cholesky decomposition for some m ≤ |V | + |E| [6]. The
solution gives a lowerbound on the optimal channel assignment.

Interface Constraints in [21]: Subramanian et al. [21] suggested
a different formulation to ensure that each node uses at most Cv

channels. Let dv be the degree of vertex v, and αv = b dv
k
c and

βv = dv mod k where CG = k.

Then the number of conflicting pairs at node v when node v can
use only Cv interfaces is at least:

γ(dv, Cv) =
βvαv(αv + 1) + (Cv − βv)αv(αv − 1)

2

and the dot product of the remaining pairs is at least −1
k−1

. Let Φ(v)

be γ(dv , Cv) + (

�
dv

2

�
− γ(dv , Cv)) · −1

k−1
. Then the following

constraints can be obtained.

Interface Constraints 2 (IC2)X
e1,e2∈E(v)

Xe1 ·Xe2 ≥ Φ(v) for each vertex v (10)

IC2 provides only a necessary condition for an optimal channel as-
signment and does not give a valid channel assignment even with
integrality constraints whereas our interface constraints IC1 pro-
vides an optimal feasible channel assignment. Consider the in-
stance given in Figure 4. In the figure, k = 3 and Cv = 2 for
the black node and all other nodes have Cv = 1. Note that the
clique component has to use the same channel for all edges. If



we use IC2, the center node can use all three channels which vio-
late interface constraints, and no conflicts are created except in the
clique. Note that in the optimal solution, only two channels (one
for the clique and another for the remaining edges) can be used.
Assuming the two-hop interference model, the optimal solution to
the instance is 46 whereas using IC2 gives 45, and using IC1 gives
46.

After relaxing integrality constraints, however, we show in the fol-
lowing that having both IC1 and IC2 provides a tighter lower-
bound on the optimal solution.

Comparison between IC1 and IC2: We compare IC1 and IC2

and show that having both constraints gives a tighter bound on an
optimal solution.

PROPERTY 1. IC1 implies IC2 when βv = 0 for all v.

Proof of Property (1): Let {X1, X2, . . . , Xdv} be the set of vectors
used by edges in E(v) in a solution to SDP relaxation with IC1.
Let X =

Pdv
i=1 Xi. Then due to IC1 we have Yv ·X ≥ dvTv and

therefore,

|X|2 ≥ |Yv|2|X|2 ≥ |Yv ·X|2 ≥ d2
v

Cv

k − Cv

k − 1
.

On the other hand,

|X|2 =
X

i

|Xi|2 + 2
X
i6=j

Xi ·Xj = dv + 2
X
i6=j

Xi ·Xj .

Therefore, X
i6=j

Xi ·Xj ≥ 1

2
(
d2

v

Cv

k − Cv

k − 1
− dv)

=
dv

2
(αv

k − Cv

k − 1
− 1)

which is exactly Φ(v) when βv = 0.

PROPERTY 2. Including both IC1 and IC2 in the SDP relax-
ation provides a tighter lowerbound on the optimal solution. In
general, IC2 is likely to have a tighter bound in homogeneous
cases whereas IC1 performs better in heterogeneous cases.

We have already seen an example in Figure 4 in which IC1 gives
a tighter bound than IC2. On the other hand, the following gives
a concrete example where IC2 is tighter than IC1. Consider a star
graph where a center node v has three edges to nodes u1, u2, and
u3. Let CG = Cv = 2. In an optimal solution, there should be
one conflict as at least two out of three edges should use the same
channel, which can be achieved with IC2. If we use IC1 then
the solution to the relaxed SDP is 3

4
by assigning vectors so that

Xi ·Xj = − 1
2

for every pair.

In Figure 5, we compare the solution with IC2 to the one with
IC1 in various networks (See Section 5.1 for the details of net-
work graphs). In our experiments, IC2 gives tighter bounds in ho-
mogeneous cases and IC1 gives tighter bounds in heterogeneous
cases (random and proportional distributions). We include both
constraints to obtain tighter lowerbounds, and the lowerbounds are
used to evaluate the performance of various channel assignment al-
gorithms in Section 5.2.

4.3 Rounding Algorithms

Figure 5: The ratio of the solution with IC2 to IC1.

Algorithm 3 SDP-COLORSET ALGORITHM

solve SDP and obtain {Xe, Yv}.
randomly select k vectors (Let R = {r1, r2, · · · , rk} be the
chosen vectors).
for each vertex v do

include Cv vectors with maximum ri · Yv in Sv .
end for
for each edge e do

S = Su

T
Sv .

if S = ∅ then
drop edge e.

else
choose the vector with maximum value of ri ·Xe from S.
assign color ri to edge e.

end if
end for

We now present our rounding algorithms. Given an optimal solu-
tion to the SDP relaxation, we round the solution to obtain a fea-
sible channel assignment by satisfying both channel and interface
constraints.

To round the solution, we first select CG random vectors, denoted
as R = {r1, r2, · · · , rCG}, each of which represents one of CG

channels. Each random vector ri = (ri,1, ri,2, . . . ri,m) is selected
by choosing each component ri,j independently at random from
a standard normal distribution N(0, 1), as in [5, 10]. We con-
sider three rounding algorithms. The first two algorithms (SDP-
COLORSET and SDP-GREEDY) do not guarantee the connectivity
of the network although they preserve connectivity in almost all our
experiments in Section 5. The third algorithm (SDP-SKELETON)
finds a spanning tree (called skeleton) and maintains all the edges
in the skeleton to guarantee the network connectivity.

SDP-COLORSET (Algorithm 3): In this algorithm, we first choose
Cv vectors (based on Yv) as color set Sv ⊆ R for each node v
and then choose a vector for an edge e = (u, v) from Su

T
Sv . In

more detail, for each node v, Sv is chosen to be Cv vectors closest
to Yv . That is, |Sv| = Cv and ri · Yv ≥ rj · Yv for any ri ∈ Sv ,
rj 6∈ Sv . Let S = Sv

T
Su. We assign a vector ri ∈ S to an edge

e = (u, v) so that ri ·Xe ≥ rj ·Xe for any rj ∈ S (i.e., ri is the
closest vector to Xe in S). If S is empty, then e is dropped.

SDP-GREEDY (Algorithm 4): We greedily choose vectors for each
edge from R instead of choosing color sets for nodes first. The al-
gorithm is similar to GREEDY ALGORITHM but we choose a vector
closest to Xe instead of choosing the one with the minimum con-
flicts. That is, we find the closest vector ri to Xe among the vectors
that can be used for e. As in GREEDY ALGORITHM, S is defined
to be R if |Su| < Cu and |Sv| < Cv , and otherwise if either set is
tight, we choose the tight set as S. If both are tight, S = Su

T
Sv .



Algorithm 4 SDP-GREEDY ALGORITHM

solve SDP and obtain {Xe, Yv}.
randomly select k vectors (Let R = {r1, r2, · · · , rk} be the
chosen vectors).
for each edge e = (v, u) do

if |Sv| = Cv and |Su| = Cu then
S = Su

T
Sv .

else if |Sv| = Cv and |Su| < Cu then
S = Sv .

else if |Sv| < Cv and |Su| = Cu then
S = Su.

else
S = R.

end if
if S = ∅ then

drop edge e.
else

choose the vector with maximum value of ri ·Xe from S.
assign color ri to edge e.
add ri to Sv and Su if not included.

end if
end for

The edge is dropped if S = ∅.

We now describe how we can guarantee network connectivity us-
ing a tree property. Suppose a given network is a rooted tree,
and we assign channels to links as in SDP-GREEDY, but in the
breadth first search (BFS) order starting from the root. Then, no
tree edge is dropped because links are considered in a top-down
fashion, and when we assign a channel to a link e = (u, v), one
of the endpoints has an empty color set (thus at least one color set
is not tight). SDP-SKELETON utilizes this property to obtain a
connectivity-guaranteed channel assignment.

SDP-SKELETON (Algorithm 5): We first find a spanning tree T in
the network. We choose an arbitrary node as the root of T and
assign channels to links in T in BFS order. As in SDP-GREEDY,
the closest vector satisfying the interface constraints will be chosen
for each link. After finishing all links in T , we assign channels for
the remaining links as in SDP-GREEDY.

4.4 Improvements via Local Search
Given a channel assignment, we further improve it by checking
if we can make local changes to reduce the number of conflicts.
For each edge e we check if there is any color c′ other than the
current color c(e) so that setting c(e) to c′ does not violate interface
constraints and reduce the number of conflicts. We repeat this until
no such changes can be made.

We adopt this improvement to all the channel assignments obtained
by the algorithms in the previous sections, and improve the channel
assignments. Subramanian et al. [21] used the improvement algo-
rithm, in which they start with assigning channel 1 to all nodes.
We compare their algorithm (S-GREEDY) with our schemes in the
following section.

5. PERFORMANCE EVALUATION
We now compare our SDP-based algorithms to alternative algo-
rithms using numerical studies and packet-level simulations. More
specifically, we compare the following algorithms: SDP-COLORSET,
SDP-GREEDY, SDP-SKELETON, GREEDY, NAIVE and S-GREEDY.
For SDP-based algorithms, we solve the semidefinite programming
using DSDP 5.0 [4]. Then for each rounding algorithm we find a
channel assignment by choosing the best result among 10 random

Algorithm 5 SDP-SKELETON ALGORITHM

solve SDP and obtain {Xe, Yv}.
randomly select k vectors (Let R = {r1, r2, · · · , rk} be the
chosen vectors).
compute a spanning tree T and its root
sort edges in BFS order
for each edge e = (v, u) ∈ T (in sorted order) do

suppose |Su| = 0.
if |Sv| = Cv then

S = Sv .
else

S = R.
end if
choose the vector with maximum value of ri ·Xe from S.
assign color ri to edge e.
add ri to Sv and Su if not included.

end for
for each edge e = (v, u) /∈ T do

if |Sv| = Cv and |Su| = Cu then
S = Su

T
Sv .

else if |Sv| = Cv and |Su| < Cu then
S = Sv .

else if |Sv| < Cv and |Su| = Cu then
S = Su.

else
S = R.

end if
if S = ∅ then

drop edge e.
else

choose the vector with maximum value of ri ·Xe from S.
assign color ri to edge e.
add ri to Sv and Su if not included.

end if
end for

sets of vectors. That is, we select the result with the minimum
number of conflicts among the ones with the least number of edge
drops. (We consider the number of edge drops first as dropping
edges may lead to a network partition.)

5.1 Settings
Network graphs: We place 50 nodes in a 1000m by 1000m square
area uniformly at random, and create an edge between two nodes
if they are within transmission range. We use 200m and 300m
for the transmission range, which create sparse and dense graphs,
respectively. In the rest of the paper, we use 5 sparse and dense
graphs thus generated. Our algorithm can be used in any inter-
ference model but in experiments we use the two-hop interference
model3 [14].

Number of Channels and Interface Cards: We vary CG, from
2 to 8, and Cv is no more than 3 (considering realistic scenarios).
Furthermore, we consider the following three different types of dis-
tributions for Cv:

• Homogeneous distribution: Every node v has the same num-
ber of interface cards. We represent this distribution as h(l)
where Cv = l for all v.

• Random distribution: We assign Cv uniformly at random

3In the two-hop interference model, two edges can interfere with
each other if they are within two-hop distance.



(a) Homogeneous dist. (b) Random/proportional dist. (c) The Percentage of dropped edges

Figure 6: The ratio of the number of conflicts to the lowerbound. (α, β) in x-axis represents that CG = α and the distribution of Cv

follows β. Only cases with no edge drops are plotted.

from {1, . . . , l} for each node v. We represent this distribu-
tion as r(l).

• Proportional distribution: Cv is proportional to the degree
of v. That is, the network administrator may assign more
wireless cards to nodes with high degrees (hub nodes) to
handle the network traffic. We consider Cv = ddv/2e and
ddv/3e where dv is the degree of node v. We represent this
distribution as p(l) where l is either dv/2 or dv/3.

5.2 Numerical Results
For the various algorithms, we first compare the number of con-
flicts, and then investigate the number of dropped edges and the
connectivity of a network. We present the results for sparse graphs;
the results for dense graphs are similar.

Number of conflicts: When comparing the number of conflicts, we
only consider the cases where no edge is dropped after channel as-
signment. This is because when different sets of edges are dropped
in channel assignments, we cannot directly compare the number of
conflicts as more edge drops typically decreases the number of con-
flicts. Note that when the number of conflicts is reduced by drop-
ping edges, it does not necessarily lead to network performance
improvement. We compare the performance for these cases using
packet-level simulations in Section 5.3.

We first present the results for homogeneous distributions. Fig-
ure 6(a) compares the ratio of the number of conflicts to the lower-
bound that we obtained from the SDP relaxation with both inter-
face constraints. (The results are averaged over 5 graph instances).
SDP-based algorithms outperform all other algorithms, with more
significant performance improvements for larger number of chan-
nels. Moreover, SDP-based algorithms give solutions close to the
optimal solution.

The results for random or proportional distributions are shown in
Figure 6(b). The results for GREEDY are not included in the figure
since it drops edges in all the cases plotted. For SDP-COLORSET,
only the results when there is no edge drop are plotted (i.e., when
CG < 5). We again observe that SDP-based algorithms outperform
other algorithms and obtain solutions close to the optimal solution.

Number of Dropped Edges and Network Connectivity: The
channel assignments by SDP-based algorithms and GREEDY may
lead to edge drops. Fig. 6 (c) shows the percentage of dropped
edges by these algorithms. In general, SDP-GREEDY and SDP-
SKELETON drops the least number of edges among these algo-
rithms. As CG increases, SDP-COLORSET drops more edges be-
cause in SDP-COLORSET, each node independently chooses its
color set without considering the information in the neighborhood
(even though it is guided by the solution to SDP). Therefore, as
CG increases, the chances that the two endpoints of an edge fall

into disjoint sets increase. (However, as we will see below SDP-
COLORSET maintains network connectivity in most instances even
when it drops more edges than GREEDY.)

Dropping edges may result in a disconnected network. We ob-
serve that GREEDY leads to several cases of network partition when
CG ≥ 3 and the nodes have different number of interface cards. In
particular, when Cv follows a random or proportional distribution,
32 out of 50 sparse instances (64%) were disconnected. For SDP-
based algorithms, all solutions are connected except one instance
in SDP-COLORSET.

5.3 Packet-level Simulation Study
We now evaluate the performance of the various channel assign-
ment algorithms using simulation through the ns-2 simulator. For
this purpose, we have modified ns-2 to support multiple radios in
the network and multiple interfaces for each node. Our goal of this
simulation-based study is twofold: First, we compare the perfor-
mance of various algorithms in realistic environments, especially
for the cases where some edges are dropped. Second, we inves-
tigate whether minimizing conflicts is a good indicator of perfor-
mance observed by applications.

Simulation Settings: Traffic inside the network (graph) is gen-
erated as follows. We first separate the 50 nodes uniformly into
two groups, each with 25 nodes, representing the source and desti-
nation group respectively. We then generate a random one-to-one
mapping between the source and destination groups to obtain 25
source-destination pairs. We generate 10 such traffic instances and
apply them to each graph. The path from a source to a destination
is obtained using the shortest path routing (in terms of hop counts).
The maximum data transmission rate is fixed at 1 Mbps for all the
nodes.

The performance metric we use is sustainable aggregate through-
put obtained as follows. All sources generate a constant-bit-rate
flow at the same bitrate (a flow consists of 1024-byte UDP pack-
ets). The aggregate throughput is the sum of the bitrate of all the
flows. We say that the aggregate throughput of the flows is sus-
tainable when the average success delivery ratio of all the flows is
at least 98%. To obtain the sustainable aggregate throughput, all
flows start with a low bit rate (at 2 Kbps) and increase the bitrate
with an increment of 2 Kbps until the aggregate bitrate cannot be
sustained. If the initial bitrate is not sustainable, the sustainable
aggregate throughput is set to 0.

Simulation Results: We now present the results for sparse graphs.
(The results for dense graphs are similar.) In homogeneous net-
works, performances under the various algorithms are similar, while
SDP-based algorithms slightly outperform other algorithms when
there are more than 3 channels (figure omitted). However, in het-



(a) Random distribution. (b) Proportional distribution.

Figure 7: ns-2 simulation results for sparse graphs. (α, β) in x-axis represents that CG = α and the distribution of Cv follows β.

erogeneous networks (random or proportional distributions) we ob-
serve a significant gain from using SDP-based algorithms, as shown
in Figure 7. The 95% confidence intervals are obtained from 50
simulation runs (over five random graphs, each with 10 traffic in-
stances). When Cv follows a random distribution (Figure 7 (a)),
SDP-based algorithms consistently outperform other algorithms in
all cases. When Cv follows a proportional distribution (Figure 7
(b)), SDP-GREEDY outperforms other algorithms; SDP-COLORSET
may lead to disconnected networks (one disconnected instance is
when CG = 8 and Cv = ddv/2e) and does not perform as well
as SDP-GREEDY. The channel assignment under GREEDY leads
to many dropped edges and several disconnected networks when
Cv follows a proportional distribution, and results in much lower
throughput compared to other algorithms.

6. CONCLUSIONS
In this paper, we have considered the channel assignment problem
in multi-radio wireless networks where nodes have multiple wire-
less interface cards. We have presented various algorithms to min-
imize the number of conflicts among nearby edges. We have for-
mulated the problem as an integer semidefinite programming and
developed several rounding algorithms based on the relaxed SDP
solution. Our experimental results indicate that the SDP-based al-
gorithms outperform other heuristics in various scenarios. In this
work, we have focused on a simplified scenario where interference
relation is determined solely by the network topology. In practice,
however, wireless interference is more complicated. For exam-
ple, ongoing transmissions of other nodes can collectively lead to
packet errors due to increased noise. Our next step is to implement
our proposed schemes on a testbed and validate the performance
improvement in real wireless networks in various scenarios.
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