
ABR Streaming of VBR-encoded Videos: Characterization,
Challenges, and Solutions

Yanyuan Qin1, Shuai Hao2, Krishna R. Pattipati1, Feng Qian3,
Subhabrata Sen2, Bing Wang1 and Chaoqun Yue1

1University of Connecticut 2AT&T 3Indiana University Bloomington

ABSTRACT
Adaptive Bitrate (ABR) video streaming is widely used for over-
the-top (OTT) video delivery. Recently, streaming providers have
been moving towards using Variable Bitrate (VBR) encodings for
the video content, spurred by the potential of improving user QoE
(Quality of Experience) and reducing network bandwidth require-
ments compared to Constant Bitrate (CBR) encodings. However
VBR introduces new challenges for ABR streaming, whose nature
and implications are little understood. We explore these challenges
across diverse video genres, encoding technologies, and platforms.
We identify distinguishing characteristics of VBR encodings that
impact user QoE and should be factored in any ABR adaptation
decision. Traditional ABR adaptation strategies designed for the
CBR case are not adequate for VBR. We develop novel best practice
design principles to guide ABR rate adaptation for VBR encodings.
As a proof of concept, we design a novel and practical control-
theoretic rate adaptation scheme, CAVA (Control-theoretic Adap-
tion for VBR-based ABR streaming), incorporating these concepts.
Extensive evaluations show that CAVA substantially outperforms
existing state-of-the-art adaptation techniques, validating the im-
portance of these design principles.

CCS CONCEPTS
• Information systems→Multimedia streaming;

KEYWORDS
Adaptive Video Streaming; VBR videos; DASH
ACM Reference Format:
Yanyuan Qin, Shuai Hao, K.R. Pattipati, Feng Qian, Subhabrata Sen, Bing
Wang, and Chaoqun Yue. 2018. ABR Streaming of VBR-encoded Videos:
Characterization, Challenges, and Solutions. In The 14th International Con-
ference on emerging Networking EXperiments and Technologies (CoNEXT ’18),
December 4–7, 2018, Heraklion, Greece. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3281411.3281439

1 INTRODUCTION
Adaptive Bitrate (ABR) streaming (specificallyHLS [2] andDASH [14])
has emerged as the de facto video streaming technology in indus-
try for dynamically adapting the video streaming quality based on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT’18, December 4–7, 2018, Heraklion, Greece
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6080-7/18/12. . . $15.00
https://doi.org/10.1145/3281411.3281439

varying network conditions. A video is compressed into multiple in-
dependent streams (or tracks), each specifying the same content but
encoded with different bitrate/quality. A track is further divided
into a series of chunks, each containing data for a few seconds’
worth of playback. During streaming playback, to fetch the content
for a particular play point in the video, the adaptation logic at the
client player dynamically determines what bitrate/quality chunk to
download.

The video compression for a track can be (1) Constant Bitrate
(CBR) – encodes the entire video at a relatively fixed bitrate, allo-
cating the same bit budget to both simple scenes (i.e., low-motion
or low-complexity scenes) and complex scenes (i.e., high-motion or
high-complexity scenes), resulting in variable quality across scenes,
or (2) Variable Bitrate (VBR) – encodes simple scenes with fewer bits
and complex scenes with more bits, while maintaining a consistent
quality throughout the track. VBR presents some key advantages
over CBR [22], such as the ability to realize better video quality
for the same average bitrate, or the same quality with a lower bi-
trate encoding than CBR. Traditionally, streaming services mainly
deployed only CBR, partly due to various practical difficulties in-
cluding the complex encoding pipelines for VBR, as well as the
demanding storage, retrieval, and transport challenges posed by
the multi-timescale bitrate burstiness of VBR videos. Most recently
content providers have begun adopting VBR encoding [16, 35, 46],
spurred by the promise of substantial improvements in the quality-
to-bits ratio compared to CBR, and by technological advancements
in VBR encoding pipelines. Current commercial systems and ABR
protocols do not fully make use of the characteristics of VBR videos;
they typically assume a track’s peak rate to be its bandwidth re-
quirement when making rate adaptation decisions [46]. Existing
ABR streaming research centered mostly on CBR encoding, and
very little on the VBR case (see §7). Therefore there exists little
prior understanding of the issues and challenges involved in ABR
streaming of VBR videos.

In this paper, we explore a number of important open research
questions around ABR streaming for VBR-encoded video. We make
the following main contributions:
• We analyze the characteristics of VBR videos (§3) using a rich
set of videos spanning diverse content genres, predominant encod-
ing technologies (H264 [18] and HEVC (H.265) [17]) and platforms
(§2). Jointly examining content complexity, encoding quality, and
encoding bitrates, we identify distinguishing characteristics of VBR
encodings that impact user QoE, and their implications for ABR
rate adaptation and QoE metrics. We find that, for real-world VBR
encoding settings, complex scenes, although encoded with more
bits, have inferior encoding quality compared to other scenes in
the same track, across a range of video quality metrics. We also

https://doi.org/10.1145/3281411.3281439
https://doi.org/10.1145/3281411.3281439

CoNEXT’18, December 4–7, 2018, Heraklion, Greece

find that different chunk sizes across the video can be used to iden-
tify relative scene complexity with high accuracy. These two key
observations (i) suggest the need to provide complex scenes with
differential treatment during streaming, as improving the quality
of complex scenes brings more QoE enhancement compared to
improving simple scenes [23], and (ii) provide us a practical path-
way towards achieving this differential treatment in the context
of today’s de facto ABR protocols where the scene complexity or
quality information is typically unavailable to the ABR logic.
• Based on our analysis, we enunciate three key design princi-
ples (non-myopic, differential treatment, and proactive) for ABR rate
adaptation for VBR videos (§4). These principles explicitly account
for the characteristics of VBR videos (including scene complexity,
quality, and bitrate variability across the video). Specifically, the
non-myopic principle dictates considering multiple future chunks
when making rate adaptation decisions, leading to better usage of
the available network bandwidth; the differential treatment princi-
ple strategically favors complex scenes over simple scenes for better
user QoE; the last principle proactively reacts to chunks’ variable
sizes/bitrates by, for example, pre-adjusting the target buffer level,
thus further facilitating the smoothness and adaptiveness of VBR
streaming.
•We design CAVA (Control-theoretic Adaption for VBR-based ABR
streaming), a novel, practical ABR rate adaptation algorithm based
on concrete instantiations of these principles (§5). CAVA uses con-
trol theory that has shown promise in adapting to dynamic network
bandwidth such as that in cellular networks [33, 47]. Its design in-
volves two tightly coupled controller loops that work in synergy
using easy-to-obtain information such as VBR chunk sizes and his-
torically observed network bandwidth. Specifically, CAVA improves
the QoE by (i) using Proportional-Integral-Derivative (PID) control
concepts [4] to maintain a dynamic target buffer level to limit stalls,
(ii) judiciously selecting track levels to maximize the quality while
minimizing quality changes, and (iii) strategically favoring chunks
for complex scenes by saving bandwidth for such chunks.
•We evaluate the performance of CAVA for a wide range of real-
world network scenarios, covering both LTE and broadband (§6).
Our results show that CAVA considerably outperforms existing
state-of-the-art ABR schemes across several important dimensions.
It provides significantly enhanced quality for complex scenes while
not sacrificing the quality of other scenes. Depending on the video,
the percentage of low-quality chunks under CAVA is up to 75%
lower than that of other schemes. CAVA also leads to substan-
tially lower rebuffering (up to 95%) and quality variation (up to
48%). The network data usage under CAVA is in the same ballpark
or slightly lower than most of the other schemes. The above re-
sults demonstrate that CAVA achieves a much better balance in
the multiple-dimension design space than other schemes. The per-
formance improvements hold across a wide spectrum of settings,
indicating that the three design principles hold broadly. Our imple-
mentation of CAVA in the open source dash.js [15] player further
demonstrates that CAVA is lightweight and practical.

2 THE VBR VIDEO DATASET
Our video dataset includes 16 videos: 8 encoded by YouTube, and 8
encoded by us using FFmpeg [13], following specifications in [11].

Each video is around 10 minutes, and includes 6 tracks/levels (we
use the terms track and level interchangeably) for ABR streaming,
with resolutions of 144p, 240p, 360p, 480p, 720p, and 1080p, respec-
tively. Our use of YouTube and FFmpeg encodings complement each
other. YouTube represents the state-of-the-art practice of VBR en-
coding from a popular commercial streaming service. With FFmpeg,
we explore state-of-the-art VBR encoding recommendations from
another commercial streaming service, Netflix [11]. We also use
FFmpeg to explore a variety of other settings (e.g., 4x-capped video
(§3.3), H.265 encoding) beyond the above cases. We next explain in
detail how we obtain our dataset.

Videos Encoded by FFmpeg.We select 4 publicly available raw
videos from [45]. These videos include Elephant Dream (ED), Big
Buck Bunny (BBB), Tears of Steel (ToS), and Sintel, in the categories
of animation and science fiction. We encode these 4 raw videos into
4 H.264 and 4 H.265 videos using FFmpeg (8 encoded videos in total).
For each video, we choose the aforementioned six tracks (144p to
1080p), consistent with [29]. To encode each track, we follow the
per-title “three-pass” encoding procedure from Netflix [11]. In the
first pass, a video clip is encoded using a fixed constant rate factor
(CRF) value, which accounts for motion and has been shown to
outperform other methods such as constant quantization param-
eter (QP) [36]. In the second and third passes, we use the output
bitrates of the first step to drive a two-pass VBR encoder to avoid
over-allocating bits for simple scenes and under-allocating bits for
complex scenes. In practice, capped VBR (i.e., the chunk bitrate is
capped at a certain high limit) is often used to limit the amount
of bitrate variability and enable the player to estimate the incom-
ing chunk sizes [46]. Following the latest recommendations from
HLS [3], we encode the videos to be 2× capped (i.e., the peak bitrate
is limited to 200% of the average) using -maxrate and -bufsize,
two options in FFmpeg. After a track is encoded, we segment it into
2-sec chunks. Our encoding uses both the widely adopted H.264,
and a more recent and efficient codec, H.265 [17]. We use CRF value
of 25, which provides good viewing quality [11, 36]. For an encoded
video, we assess its quality relative to a reference video (§3.1), which
is its corresponding raw video footage.

Videos Encoded by YouTube. We upload the aforementioned
4 raw videos to YouTube and download the encoded videos us-
ing youtube-dl [48]. We also downloaded 4 other videos from
YouTube, in the categories of sports, animal, nature and action
movies. The highest quality track of these 4 videos has a resolution
of 2160p, with average bitrate of 14 − 18 Mbps, significantly higher
than lower tracks. To be consistent with the other videos which
were 6-track with top track at 1080p, for these 4 videos, we use
the bottom six tracks between 144p and 1080p as the set of tracks
for ABR adaptation. We use the top track (2160p) as the reference
video to measure the video quality of the lower tracks, as we do
not have the raw source for these videos. All YouTube videos are
encoded using H.264 codec [18], with chunk duration around 5
seconds, consistent with that in [25].

ChunkDuration andBitrate Variability.Overall, our dataset
includes two chunk durations: 2 (FFmpeg encodings) and 5 seconds
(YouTube encodings). They are consistent with the range of chunk
durations (2 to 10 seconds) that are used in commercial services [46],
and allow us to investigate the impact of chunk duration on the
performance of ABR streaming in §6. All encoded videos exhibit

ABR Streaming of VBR-encoded Videos: Characterization, Challenges, and SolutionsCoNEXT’18, December 4–7, 2018, Heraklion, Greece

20 40 60 80 100
Chunk

0

1

2

3

4

B
itr

at
e

(M
bp

s)
144p 240p 360p 480p 720p 1080p

Figure 1: Bitrate of the chunks of a VBR video (Elephant
Dream, H.264, YouTube encoded).

significant bitrate variability: the coefficient of variation of the
bitrate in a track varies from 0.3 to 0.6. Fig. 1 shows an example
YouTube video; the six horizontal dashed lines mark the average
bitrate of the six tracks. All encodings are capped VBR: for YouTube
videos, the maximum bitrate of a track ranges between 1.1× to 2.3×
the average bitrate; for the FFmpeg videos, the corresponding range
is 1.4× to 2.4×. Note that although we set the cap to 2× explicitly for
FFmpeg, the resulting videos can exceed the cap slightly to achieve
the specified quality. For all videos, the two lowest tracks have
the lowest variability, since the low bitrate limits the amount of
variability that can be introduced in VBR encoding; for all the other
tracks, the ratio is 1.4 to 2.4.

3 VBR STREAMING: CHALLENGES
We now analyze our video dataset described in §2: we first present
the characteristics of VBR encoding, and then show its implica-
tions for ABR streaming, highlighting challenges of streaming VBR
videos.

3.1 VBR Video Characteristics
3.1.1 Scene Complexity and Chunk Size. Classifying chunks by

scene complexity is useful for ABR streaming since the knowledge
of scene complexity can be used for rate adaptation. For instance,
since complex scenes in a video play a particularly important role
in viewing quality [23], the player may choose higher tracks for
complex scenes to bring more enhancement to viewing experience.

One way of determining scene complexity is through Spatial in-
formation (SI) and Temporal Information (TI) [19], two commonly
used metrics for quantifying the spatial and temporal complexity
of the scenes. This approach, however, requires computation-heavy
content-level analysis. More importantly, such scene complexity in-
formation is not available in the complex ABR streaming pipeline in
today’s commercial services, and would involve non-trivial changes
to realize, including resources to compute the complexity informa-
tion and new features to the ABR streaming standard specifications.
Below, we propose a simple and lightweight method that uses rela-
tive chunk size to approximate scene complexity, and can be readily
used for ABR streaming (§3.2).

Our approach is motivated by the following two properties. (1)
Since the VBR encoding principles dictate that simple scenes are
encoded with fewer bits and complex scenes with more bits [12],
we expect that the relative size of a chunk (in bytes) can be used
as a proxy for the relative scene complexity. (2) Since the scene
complexity is a function of the content itself (e.g., motion, details in

the scene), we expect that the scene complexity at a given playback
point in a video is consistent among different tracks. Combining
with the property that the relative size of a chunk is correlated
with the scene complexity, we expect that a chunk that is relatively
large/small in one track (compared to other chunks in that track) is
also relatively large/small in another track.

0 20 40 60 80 100
SI

0

20

40

60

T
I

Q1
Q2
Q3
Q4

(a) H264, FFmpeg-encoded

0 20 40 60 80 100
SI

0

20

40

60

T
I

Q1
Q2
Q3
Q4

(b) H265, FFmpeg-encoded

Figure 2: Chunk SI & TI (Elephant Dream, Track 3).

We verify the above two properties as follows. To verify Property
(1), we calculate the SI and TI values (recall that SI and TI are two
commonly used complexity metrics) for each chunk in a video.
Specifically, we obtain SI and TI values from the raw video, which
is not affected by encoding distortion, and hence the SI and TI
values thus obtained reflect the inherent scene complexity more
accurately. We then consider an encoded video, for each track,
we classify the chunks into four categories, based on their size
distribution. Specifically, a chunk with a size falling into the first
quartile is called a Q1 chunk, and a chunk with a size falling into
the second quartile is called a Q2 chunk, and so on. We observe
that indeed chunks in lower quartiles have lower SI and TI values,
while the Q4 chunks tend to have the largest SI and TI values. Fig. 2
shows an example. For the H.264 encoding, Fig. 2(a) shows that
78% of Q4 chunks have SI and TI larger than 25 and 7, respectively,
while only 11% of Q1 chunks and 14% of Q2 chunks have SI and
TI larger than these thresholds. For H.265 (Fig. 2(b)), 75% of Q4
chunks have SI and TI larger than 25 and 7, respectively, while
only 5% of Q1 chunks and 14% of Q2 chunks have SI and TI larger
than these thresholds. To verify Property (2), let {cℓ,1, . . . , cℓ,n }
denote the sequence of the chunk categories for track/level ℓ, where
cℓ,i ∈ {1, 2, 3, 4} represents the category of the ith chunk in track
ℓ, and n is the number of chunks in a track. We then calculate the
correlation between each pair of tracks. Our results confirm that
all the correlation values are close to 1, indicating that chunks with
the same index (i.e., at the same playback position) are indeed in
consistent categories across tracks.

The above two properties together suggest that we can classify
chunks into different categories of scene complexity simply based
on chunk size. For consistent classification across tracks, we can
leverage the consistent relative sizes across tracks, use one track
as the reference track, and classify chunks at different playback
positions based on their chunk sizes in that track (so that chunks
with the same index will be in the same class). Specifically, we
choose a reference track (e.g., a middle track), and classify the
chunks at different playback positions into four categories, Q1, Q2,
Q3, and Q4 chunks, based on which quartile that the size of a chunk
falls into. After that, all chunks in the same playback positions are
placed into the same category, regardless of the tracks.

The above classification method is based on quartiles. Other
methods can also be used (e.g., using five classes instead of four

CoNEXT’18, December 4–7, 2018, Heraklion, Greece

25 30 35 40 45 50
PSNR (dB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Q1
Q2
Q3
Q4

0.7 0.8 0.9 1
SSIM

0

0.2

0.4

0.6

0.8

1

C
D

F

Q1
Q2
Q3
Q4

0 20 40 60 80 100
VMAF-TV

0

0.2

0.4

0.6

0.8

1

C
D

F

Q1
Q2
Q3
Q4

0 20 40 60 80 100
VMAF-Phone

0

0.2

0.4

0.6

0.8

1

C
D

F

Q1
Q2
Q3
Q4

Figure 3: Quality of chunks in a VBR video (Elephant Dream,
YouTube encoded, H.264).

classes); our design principles (§4) and rate adaptation scheme (§5)
are independent of this specific classification method.

3.1.2 Scene Complexity and Encoding Quality. After classifying
chunks into the four categories as above, we now analyze the encod-
ing quality of the chunks in each category. VBR encoding allocates
fewer bits to simple scenes and more bits to complex scenes so as to
maintain a constant quality across the scenes [12]. We show below,
however, the quality across the scenes is not constant in a specific
track. Specifically, we use three quality metrics, Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index (SSIM) [43], and
Video Multimethod Assessment Fusion (VMAF) [24, 27, 50]. PSNR
is a traditional image quality metric. The PSNR of a chunk is repre-
sented as the median PSNR of all frames in that chunk. SSIM is a
widely used perceptual quality metric; it utilizes local luminance,
contrast and structure measures to predict quality. VMAF is a re-
cently proposed perceptual quality metric that correlates quality
strongly with subjective scores and has been validated indepen-
dently in [34]. There are two VMAF models: TV model for larger
screens (TV, laptop, tablet), and phone model for smaller screens
(phones). The aggregate VMAF of a chunk can be calculated in
multiple ways [30]. We use the median VMAF value of all frames
in a chunk as the VMAF value for the chunk (using mean leads to
similar values for the videos in our dataset).

Fig. 3 plots the CDF of the quality, measured in PSNR, SSIM,
VMAF TV, and VMAF phone model, for a YouTube-encoded video.
For each quality metric, the results of a middle track (480p) are
shown in the figure. We observe that, while Q1 to Q4 chunks have
increasing sizes (in bits), they have decreasing quality. In addition,
the quality gap between Q4 and Q1–Q3 chunks is particularly large,
despite that Q4 chunks have the most bits. This is because it is
challenging to encode complex scenes to have the same quality of
simple scenes. We make similar observations for videos encoded
using FFmpeg and H.265 encoded videos (figures omitted).

3.2 Implications for Rate Adaptation
As described above, we have identified two important character-
istics of VBR encoding: (1) the relative size of a chunk (relative to
the other chunks in the same track) is a good indication of the scene
complexity, and (2) complex scenes, despite being encoded with more
bits, have inferior qualities compared to other scenes in the same

track, across a range of quality metrics. They both have important
implications on rate adaption during VBR streaming process.

In particular, the second observation is opposite to what one
would like to achieve during playback, where having higher quality
for complex scenes is more important [23]. It indicates that complex
scenes need to receive differential treatment to achieve a higher
quality, which requires (i) inferring the scene complexity, and (ii)
carefully designing ABR streaming algorithms. The first require-
ment can be achieved based on our first observation, by using chunk
sizes to infer scene complexity. It has two advantages compared
to using those based on video content (e.g., SI and TI). First, it is
simple to compute. Second, chunk sizes are already known at the
client in current dominant ABR standards1. Achieving the second
requirement is very challenging. Given that complex scenes are
already encoded with more bits than other scenes in the same track,
choosing higher tracks for complex scenes indicates that a signifi-
cant amount of network bandwidth needs to be allocated to stream
complex scenes, which may come at the cost of lower tracks for
simple scenes. We therefore need to design ABR streaming schemes
to judiciously use network bandwidth, favoring Q4 chunks while
not degrading the quality of other chunks too drastically (§4, §5).

3.3 VBR with Larger Cap
In this paper, we mainly use 2× capped VBR videos. The bitrate cap,
while limits the amount of bitrate variability and makes it easier
to stream VBR videos over the Internet, also limits the quality of
the videos, particularly for complex scenes. The recommendation
on VBR encoding has been evolving. The original recommendation
was to set the cap to 1.1× [2], and has now evolved to 2× [3]. It
is conceivable that the cap will be even larger in the future. For
this reason, we further encode one of the publicly available videos
to be 4× capped. We observe that the characteristics described in
§3 still hold for this video. Specifically, Q4 chunks, even under 4×
cap, are still of significantly lower quality than other chunks. As
an example, for the middle track (480p), the median VMAF value
(phone model) for the Q4 chunks is 79, significantly lower than the
values of 88, 88, and 85 for Q1 to Q3 chunks. This might be because
it is inherently very difficult to encode complex scenes to reach the
same quality as simple scenes [5]. Therefore, for VBR videos of
larger caps, we still need to incorporate these characteristics when
designing ABR schemes (§6.6).

4 DESIGN PRINCIPLES
We believe that a good rate adaptation scheme for VBR videos must
(i) take the per-chunk bitrate information into consideration (also
suggested by [46]), which is available to the clients in dominant
ABR standards (see §3.2), and (ii) use per-chunk bitrate information
properly, by incorporating the characteristics of VBR videos. We
next propose three design principles for VBR video rate adaptation.

Be Non-myopic (P1). This requires considering not only the
bitrate of the immediate next chunk, but also the bitrate of multiple
future chunks. A myopic scheme only considers the bitrate of the
immediate next chunk, leading to level selections that only match
the current resource (in terms of network bandwidth or player

1Chunk size information is included in the manifest file sent from server to client in
DASH, and more recently HLS has added this feature [46].

ABR Streaming of VBR-encoded Videos: Characterization, Challenges, and SolutionsCoNEXT’18, December 4–7, 2018, Heraklion, Greece

20 40 60 80 100
0

50

100

Pl
ay

ba
ck

 Q
ua

lit
y

V
M

A
F

BBA-1

20 40 60 80 100
0

50

100

Pl
ay

ba
ck

 Q
ua

lit
y

V
M

A
F

RBA

20 40 60 80 100
Chunk ID

0

50

100

Pl
ay

ba
ck

 Q
ua

lit
y

V
M

A
F

CAVA

Figure 4: Two myopic schemes and CAVA.

buffer level). As a result, a myopic scheme oftentimes mechanically
selects very high (low) levels for chunks with small (large) sizes –
exactly the opposite to what is desirable for VBR videos (§3). We
illustrate this using two myopic schemes: (i) BBA-1 [16], a buffer-
based scheme, and (ii) a rate-based scheme [49], referred to as RBA
henceforth. Both schemes are myopic: when selecting the track
for the next chunk, BBA-1 selects the highest track based on a
chunk map, which defines the allowed chunk sizes as a range from
the average chunk size of the lowest track to that of the highest
track; RBA selects the highest track so that after downloading the
corresponding chunk, the player buffer will still contain at least four
chunks, where the downloading time of a chunk is obtained as its
size divided by the estimated network bandwidth. Fig. 4 shows an
example that illustrates the performance of BBA-1 and RBA (the top
two plots), where the shaded bars mark the playback positions of
Q4 chunks. We observe that indeed BBA-1 and RBA tend to lead to
low qualities for Q4 chunks (recall that these tend to correspond to
complex scenes) and high qualities for Q1-Q3 chunks (with simpler
scenes). For comparison, we also plot our scheme CAVA (to be
described in §5) in Fig. 4. In this example, for BBA-1 and RBA, the
average VMAF quality of Q4 chunks is 49 and 52, and the amount
of rebuffering is 6s and 4s, respectively; both are significantly worse
than our scheme CAVA, under which the average VMAF quality of
Q4 chunks is 65 with no rebuffering.

Offer Differential Treatment (P2). This principle favors more
complex scenes by explicitly accounting for the chunk size and qual-
ity characteristics of VBR videos (§3.2). The differential treatment
can be achieved by using resources saved from simple scenes for
complex scenes. While this suggests potentially lower quality for
simple scenes, a good VBR rate adaptation scheme needs to achieve
a balance: improve the quality of complex scenes while not de-
grading too much the quality of simple scenes. This principle is
particularly important when complex scenes have lower quality
than simple scenes in the same track, as we have observed in §3.1.2,
since in this case, it is preferable to choose a higher track for com-
plex scenes to achieve comparable quality as simple scenes. Even in
an ideal VBR encoding, where complex scenes have similar quality
as simple scenes in the same track, this principle is still important,
since complex scenes, being of larger sizes, naturally need more

Optimizer Player

PID

Feedback

Control

Block

Estimated

Bandwidth

Current Buffer Level

Target

Buffer

Level

Selected

Track

VBR

Information

Preview

Controller

Base

Target

Buffer

Level

Short-term

Statistical

Filter

Long-term

Statistical

Filter

Outer Controller Inner Controller

Figure 5: CAVA design diagram.

resources than simple scenes in the same track. Offering differen-
tial treatment thus helps the VBR algorithm make judicious rate
adaptation decisions when the network bandwidth is limited.

Be Proactive (P3). Since VBR videos have high bitrate variabil-
ity and the size/bitrate of future chunks is known beforehand, it
is desirable to account for the variability proactively. This is es-
pecially true for complex scenes corresponding to large chunks.
Suppose when making a decision at time t , the player notices that
consecutive positions after t contain complex scenes. If the playback
buffer is low and the network bandwidth is low, then rebuffering
will inevitably occur. Fortunately, with the known chunk size in-
formation, the rate adaptation algorithm can, instead, react to the
cluster of large chunks early—before time t instead of right at t—by,
for example, pre-adjusting the target buffer level for buffer-related
approaches.

Discussion. Several existing schemes [23, 33, 47] use a window-
based approach that considers multiple future chunks in bitrate
adaptation, which differs from our non-myopic principle that is
motivated specifically by the dynamic chunk bitrates/sizes of VBR
videos (§5.3). Note that P1 and P3 share in common that they
both require considering future chunks. But they differ mainly in
the timescale: the non-myopic principle considers a small number
of future chunks to account for the variability of VBR videos in
the short timescale, in order to facilitate the current decision; the
proactive principle, on the other hand, considers chunks further
away in future to benefit future decisions in a proactive manner.

5 CAVA DESIGN AND IMPLEMENTATION
We now instantiate the three principles (§4) and design a control-
theoretic rate adaptation scheme, CAVA, for VBR streaming. The
reason for adopting a control-theoretic approach is because it has
shown promise in adapting to dynamic network bandwidth [33, 47].
The design of CAVA is compatible with the current dominant ABR
standards (DASH and HLS), and can be readily used in practice.

5.1 Overview of CAVA
We design CAVA to address both chunk size variability, an inherent
feature of VBR videos, and quality variability in VBR videos, a
characteristic that we identified in today’s VBR encodings (§3.1).
Even under an ideal VBR encoding where complex scenes have
similar quality as other scenes in the same track, CAVA still has
its value in addressing the inherent chunk size variability of VBR
videos.

CoNEXT’18, December 4–7, 2018, Heraklion, Greece

Fig. 5 shows the design diagram for CAVA, which builds on the
basic feedback control framework [33]. CAVA introduces significant
innovations by (i) generalizing the control framework from plain
CBR to VBR, (ii) designing an inner controller that reacts in short
timescale, and incorporates the non-myopic and differential treat-
ment principles, and (iii) designing an outer controller that reacts
over a longer timescale, and incorporates the proactive principle.

The control framework uses PID control [4], a widely used feed-
back control technique. The reason for using PID control is its good
performance and robustness [33]. As shown in Fig. 5, CAVA consists
of two controllers that work in synergy to realize the aforemen-
tioned three principles.
• The inner controller is responsible for selecting the appropriate
track level. It employs a PID feedback control block that maintains
the target buffer level by properly adjusting the control signals
(§5.2). Then based on the controller’s output, together with the
estimated bandwidth and a short-term average of future chunks’
bitrate, CAVA invokes an optimization algorithm that incorporates
non-myopic (P1) and differential treatment (P2) principles to per-
form VBR-aware track level selection (§5.3).
• The outer controller’s job is to determine the target buffer level
that is used by the inner controller. When doing so, CAVA exercises
proactive principle (P3) to adjust the target buffer level proactively
based on dynamics of future chunks (§5.4).

5.2 PID Feedback Control Block
The PID feedback control continuously monitors an “error value”,
i.e., the difference between the target and current buffer levels of the
player, and adjusts the control signal to maintain the target buffer
level. To account for the characteristics of VBR videos, it considers
per-chunk size information and uses a dynamic target buffer level.
This differs from the PID controller design for CBR [33], which uses
a fixed target buffer level and a fixed average bitrate for each track.

Specifically, letCt denote the network bandwidth at time t . Let ℓt
denote the track number selected at time t , with the corresponding
bitrate of the chunk denoted as Rt (ℓt). We use Rt (ℓt) instead of
R(ℓt) to reflect that it is a function of time t since for VBR videos,
the bitrate varies significantly even inside a track. The controller
output, ut , is defined as

ut =
Ct

Rt (ℓt)
, (1)

which is a unitless quantity representing the relative buffer filling
rate. The control policy is defined as

ut = Kp (xr (t) − xt) + Ki

∫ t

0
(xr (t) − xτ)dτ + 1(xt − ∆) (2)

where Kp and Ki denote respectively the parameters for propor-
tional and integral control (two key parameters in PID control), xt
and xr (t) denote respectively the current and target buffer level
at time t (both in seconds), ∆ denotes the playback duration of a
chunk, and the last term, 1(xt − ∆), is an indicator function (it is 1
when xt ≥ ∆ and 0 otherwise), which makes the feedback control
system linear, and hence easier to control and analyze. The target
buffer level is dynamic, set by the outer controller (§5.4).

C
h

u
n

k
si

ze

Actual Bandwidth

Chunk Index

Inflated Bandwidth

i i+W-1

Deflated
Bandwidth

Short-
term Avg.

Actual
Size

….
(a)

C
h

u
n

k
si

ze

Chunk Index

Ta
rg

et
 B

u
ff

er

Le
ve

l

Time
t(b)

Figure 6: Illustration of (a) track selection, and (b) setting
target buffer level.

5.3 The Inner Controller
The inner controller determines ℓt , the track at time t . Based on
the definition in Eq. (1), once the controller output ut is determined
using Eq. (2), we can simply determine ℓt so that the corresponding
bitrate Rt (ℓt) is the maximum bitrate that is below Ĉt /ut , where
Ĉt is the estimated network bandwidth at time t . This approach
is, however, myopic (only considering the next chunk), and is thus
undesirable for VBR videos.

We next formulate an optimization problem that accounts for
both the non-myopic and differential treatment principles (§4) to
determine ℓt . Fig. 6(a) illustrates the approach. Suppose at time
t , we need to select the track number for chunk i . Following the
non-myopic principle (P1), we consider a window ofW chunks,
from i to i +W − 1, and use the average bitrate of theseW chunks
to represent the bandwidth requirement of chunk i . This is handled
by the “Short-term Statistical Filter” in Fig. 5. Using the average
bitrate of W chunks (instead of the bitrate of chunk i) leads to
smoother bandwidth requirement from the chunks, avoiding me-
chanically choosing very high (low) levels for chunks with small
(large) bitrates.

To provide differential treatment (P2) to chunks with different
complexities, we assume either inflated or deflated network band-
width, depending on whether chunk i contains complex or simple
scenes. For complex scenes, we assume inflated network bandwidth,
allowing a higher track to be chosen, while for simple scenes, we
assume deflated bandwidth so as to save bandwidth for complex
scenes. The track selection algorithm maximizes the quality level
to match the assumed network bandwidth, while minimizing the
number of quality level changes between two adjacent chunks. In
the example in Fig. 6(a), chunk i is a Q4 chunk, and hence we as-
sume inflated bandwidth, which allows a higher level track to be
selected.
Optimization Formulation.We next describe our optimization
formulation. Our current design uses track level to approximate the
quality since this is currently the only available quality information
in predominant ABR standards; using such information only al-
lows CAVA to be easily deployable. In our performance evaluation
(§6), we use a perceptual quality metric (VMAF) to evaluate CAVA,
and show that it achieves good perceptual quality although the
formulation does not explicitly use a perceptual quality metric.

The optimization aims to minimize a weighted sum of two
penalty terms: the first term represents the deviation of the selected
bitrate from the estimated network bandwidth, and the second term
represents the track change relative to the previous chunk. Other
formulations might also be possible; our empirical results show
that this formulation works well in practice. Specifically, we aim to

ABR Streaming of VBR-encoded Videos: Characterization, Challenges, and SolutionsCoNEXT’18, December 4–7, 2018, Heraklion, Greece

minimize

Q(ℓt) =
t+N−1∑
k=t

(
uk R̄t (ℓt) − αt Ĉk

)2
+ ηt (r (ℓt) − r (ℓt−1))

2 , (3)

where uk and Ĉk are respectively the controller output and the
estimated link bandwidth for the k-th chunk, ηt ≥ 0 is a parameter
that represents the weight of the second term, R̄t (ℓt) is the average
bitrate over a window ofW chunks (according to P1), from t to
t +W , at track ℓt (here we slightly abuse the notation to use t to
represent the chunk index for time t), and r (ℓ) denotes the average
bitrate of track ℓ.

Penalty on deviation from estimated bandwidth. The first
term in Eq. (3) represents the penalty based on how much the re-
quired bandwidth deviates from the estimated network bandwidth.
Specifically, minimizing this penalty term aims at selecting the
largest ℓt (and hence the highest quality) so that the difference
between the required bandwidth, uk R̄t (ℓt), and the assumed band-
width, αt Ĉk , is minimized (αt is a factor that deflates or inflates
the estimated bandwidth; see details later on). Following the non-
myopic principle (P1), we use R̄t (ℓt) (instead of Rt (ℓt)), which is
the average bitrate ofW future chunks, to represent the bandwidth
requirement of chunk t . We refer toW as the inner controller window
size and explore its configuration in §6.2.

When operating online, CAVA only has a limited view towards
future network conditions. Therefore, the penalty term on devia-
tion from estimated bandwidth considers the bandwidth needed
to download a finite horizon of N future chunks. We assume that
these N chunks are all from the same track, ℓt , to reduce the num-
ber of quality level changes. In the rest of the paper, we set N
to 5 chunks, a relatively short horizon to accommodate network
bandwidth dynamics.

Note that several existing schemes [23, 33, 47] also examine a
finite horizon of chunks in their online algorithms (controlled by N
in CAVA). But none of them utilizes concepts like our non-myopic
principle in computing the bandwidth requirement from multiple
future chunks (controlled byW in CAVA), whose sizes may vary
significantly in VBR, for rate adaptation.

Penalty on track change. The second term in Eq. (3) repre-
sents the penalty on track change. Specifically, minimizing the
second term aims at selecting ℓt so that its difference from ℓt−1,
i.e., the track of the previous chunk, is minimized. We consider two
categories of chunks, Q4 and non-Q4 chunks when setting ηt , a
weight factor. If the current and previous chunks fall in different
categories, we set ηt to 0; otherwise we set ηt to 1 (so as to give
equal weight to the two terms in Eq. (3) since both are important for
QoE). That is, we do not penalize quality change if two consecutive
chunk positions are in different categories (and hence of different
importance in viewing quality).

Recall that r (ℓ) denotes the average bitrate of track ℓ. The penalty
term on track change uses r (ℓt) − r (ℓt−1), instead of ℓt − ℓt−1 or
Rt (ℓt)−Rt (ℓt−1). This is because r (ℓt)−r (ℓt−1) reflects track change,
and yet is in the unit of bitrate, which is the same as that of the first
term in Eq. (3). The expression ℓt − ℓt−1 represents track change
directly, whose unit is however different from that of the first term
in Eq. (3); the expression Rt (ℓt)−Rt (ℓt−1) represents bitrate change

on a per chunk level, which is not meaningful for VBR videos since
even chunks in the same track can have highly dynamic bitrate.

Deflating/inflating network bandwidth estimate. In Eq. (3),
αt Ĉk represents the assumed network bandwidth for chunk k . As
mentioned earlier, according to differential treatment principle (P2),
we set αt > 1 for complex scenes to inflate the bandwidth, and set
αt < 1 for simple scenes to deflate the bandwidth. Determining the
value of αt presents a tradeoff: a large value for complex scenes can
lead to higher quality level, at the cost of potential stalls; similarly,
a small αt value for simple scenes, while can save bandwidth and
eventually benefit complex scenes, may degrade the quality of
simple scenes too much. We have varied αt for complex scenes
from 1.1 to 1.5, and varied αt for simple scenes from 0.6 to 0.9. In
the rest of the paper, we set αt = 1.1 for Q4 chunks and αt = 0.8 for
Q1-Q3 chunks, which lead to a good tradeoff observed empirically.

In addition, we use the following heuristic for Q1-Q3 chunks: if
the current chunk is a Q1-Q3 chunk and the selected level is very
low (i.e., level 1 or 2) under the above strategy, while the buffer
level is above a threshold (chosen as 10 seconds in §6) indicating
low risk of stalls, we do not deflate network bandwidth, and instead
use αt = 1. This heuristic avoids choosing unnecessarily low levels
for Q1-Q3 chunks. Similarly, we can use a heuristic for Q4 chunks:
if the current chunk is a Q4 chunk and the buffer level is below
a threshold indicating high risk of stalls, we can also set αt to 1
(i.e., do not inflate network bandwidth). This heuristic can lead to
lower stalls at the cost of potentially reducing the quality of Q4
chunks. Our evaluations show that in the settings that we explore,
the number of stalls in CAVA is already very low even without
using this heuristic. Therefore, in §6, we only report the results
when this heuristic is disabled.

Time complexity. Let L be the set of all track levels. The opti-
mal track is

ℓ∗t = arg min
ℓt ∈L

Q(ℓt). (4)

We can find ℓ∗t easily by evaluating (3) using all possible values
of ℓt ∈ L, and selecting the value that minimizes the objective
function. For every ℓt ∈ L, obtaining Q(ℓt) requires computation
of N steps. Therefore, the total computational overhead of solving
(4) is O(N |L|).

5.4 The Outer Controller
When using the inner controller alone, we observe that rebuffering
sometimes happens when the network bandwidth is very low and
the buffer level is also low (due to relatively large chunks down-
loaded earlier). While the inner controller reacts by selecting the
track with the lowest bitrate, the reaction appears to be too late. To
deal with such cases, we incorporate the proactive principle (P3)
by adopting the concept of preview control from control theory [40]
to adjust the target buffer level proactively.

Fig. 6(b) illustrates our approach. The target buffer level is set
to the base target buffer level, added by a term that is determined
by future chunk size variability. Specifically, when there are large
chunks in the future, and hence a higher chance of longer down-
loading time and slower buffer filling rate that can lead to buffer
underrun, the target buffer level is adjusted to a higher level to react
proactively (handled by the “Long-term Statistical Filter” in Fig. 5),
as illustrated in the region around t in Fig. 6(b). This adjustment

CoNEXT’18, December 4–7, 2018, Heraklion, Greece

will reduce rebuffering because the controller aims to reach a higher
target buffer level.

Specifically, let xr denote a base target buffer level (we set it to
60 seconds in §6; setting it to 40 seconds leads to similar results).
The target buffer level at time t , xr (t), is set to be xr added by a
term that accounts for the future chunk size variability. We use a
track ℓ̃ (e.g., a middle track) as the reference track. If the average
size of the future chunks in that track is above the mean value of
that track, we proactively increase the target buffer level as:

xr (t) = xr +max

(
Σt+W

′

k=t Rk (ℓ̃)∆ − r (ℓ̃)W ′∆

r (ℓ̃)
, 0

)
, (5)

whereW ′ is referred to as outer controller window size that repre-
sents how much to look ahead, ∆ is the chunk duration, r (ℓ̃) is the
average bitrate of the reference track ℓ̃, and Rt (ℓ̃) represents the
bitrate of the chunk at time t (again we slightly abuse the notation
to use t to represent chunk index). In the second term in Eq. (5), the
numerator represents how much (in bits) the sum of the nextW ′

chunks deviates from the average value; dividing the numerator
by r (ℓ̃) converts the unit of the deviation to seconds, compatible
with how we represent buffer level. To avoid pathological scenarios
where xr (t) becomes too large, we limit its value to 2xr , which is
chosen empirically. The choice ofW ′ is explored in §6.2.

5.5 Implementation
We have implemented CAVA in dash.js, a production quality open-
source web-based DASH video player [15] (version v2.7.0). Under
the dash.js framework, we implemented a new ABR streaming
rule CAVARule.js (consisting of 520 LoC) to realize CAVA. In addi-
tion, the interface of dash.js only exposes limited information in-
cluding the track format, buffer occupancy level, bandwidth estima-
tion, and declared bitrate. The segment size information, however, is
not accessible by default.We therefore add a new LoadSegmentSize
class to expose such information to the ABR logic. We further de-
velop a bandwidth estimation module that responds to playback
progress events to estimate throughput using a harmonic mean of
the past 5 chunks.

6 PERFORMANCE EVALUATION
We explore CAVA and its parameter settings across a broad spec-
trum of real-world scenarios (covering both LTE and broadband),
using 16 video clips (§2). Each video is around 10 minutes long.
The length is much longer than network RTT and the timescale of
ABR rate adaptation. In addition, it allows the player to go beyond
the start-up phase, allowing us to understand both start-up and
longer-term behaviors. These videos cover different content genres
(i.e., animation, science fiction, sports, animal, nature and action),
track encodings (Youtube and FFmpeg [13]), codecs (H.264 [18] and
H.265 [17]), and chunk durations (2 and 5 seconds).

6.1 Evaluation Setup
To ensure repeatable experimentations and evaluate different schemes
under identical settings, we use real-world network trace-driven re-
play experiments. Tomake the large state space exploration scalable
and tractable, we use both trace-driven simulations, and experi-
ments with our prototype implementation in dash.js.

We use two sets of network traces. The first set, LTE, contains
200 cellular network traces we captured in commercial LTE net-
works with a collaborator driving coast-to-coast across the US. The
LTE traces were represented as per-second network throughput,
recorded when downloading a large file from a well-provisioned
server to a mobile phone. The second set, FCC, contains 200 broad-
band traces, randomly chosen from the set of traces collected by the
FCC [10], represented as per-5 second network throughput. Each
trace contains at least 18 minutes of bandwidth measurements.

ABR logic operates at the application level, using application-
level estimation of the network bandwidth (based on the throughput
for recently downloaded chunks) as part of the decision process to
determine the quality of the next chunk to download [16, 20, 46].
The impact of lower level network characteristics such as signal
strength, loss, and RTT on ABR adaptation behavior is reflected
through their impact on the network throughput. Therefore, our
evaluation is through replaying the network traces that capture the
network bandwidth variability over time.

ABR Schemes. We compare CAVA with the following state-of-
the-art rate adaptation schemes:
• MPC and RobustMPC [47], which are based on model predictive
control. RobustMPC is shown to outperform MPC under more
dynamic network bandwidth settings [28].
• PANDA/CQ [23], which incorporates video quality information
to optimize the performance of ABR streaming using dynamic pro-
gramming. Specifically, it considers a window of N future chunks
while making decisions. We investigate two variants, (i) max-sum
that maximizes the sum of the quality of the next N chunks, and
(ii) max-min that maximizes the minimum quality of the next N
chunks.
• BOLA-E [37], which selects the bitrate to maximize a utility func-
tion considering both rebuffering and delivered bitrate. It is an
improved version of BOLA [38].
• BBA-1 [16] and RBA [49]. Both are myopic schemes (§4). Through
extensive evaluation, we find that, consistent with the example in
§4, CAVA significantly outperforms these two schemes in all cases.
In the interest of space, we omit the results for these two schemes.

Since our focus is VBR-encoded videos, following the recom-
mendation of each scheme described above, we use the actual size
of a video chunk in making rate adaptation decisions. Note that,
of all the schemes, only PANDA/CQ relies on using video quality
information. Such information, however, is not available in the
dominant ABR protocols used today (i.e., HLS and DASH), limiting
the practical applicability and deployability of such a scheme. Still,
using video quality information as part of the adaptation decision
process can be potentially valuable, and for that reason, we include
PANDA/CQ in our evaluations. As we shall see later in §6.3, while
CAVA does not use such video quality information and relies only
on information available in ABR streaming protocols, it still outper-
forms PANDA/CQ. Learning based approaches such as [28] require
extensive training on a large corpus of data, and are not included
for comparison since our focus is on pure client-side based schemes
that are more easily deployable.

ABR Configurations. An important parameter in all schemes
is the playback startup latency, i.e., the minimum number of seconds
worth of video data that needs to be downloaded before the client
begins playback. We explore a range of values for this parameter,

ABR Streaming of VBR-encoded Videos: Characterization, Challenges, and SolutionsCoNEXT’18, December 4–7, 2018, Heraklion, Greece

guided by commercial production players [46], and report results
for one setting – 10 seconds (results for other practical settings
were similar). A startup delay of 10 seconds corresponds to having
two chunks in the buffer for chunk length of 5 seconds (as the
case for YouTube videos), consistent with the recommendation of
having at least two to three chunks before starting playback [46].
Another important factor is the network bandwidth estimation
technique used by the ABR logic. For a fair comparison, for all the
schemes that need bandwidth estimation, we use the harmonic
mean of the past 5 chunks as the bandwidth prediction approach,
as the technique has been shown to be robust to measurement
outliers [20, 47]. We evaluate the impact of inaccurate bandwidth
estimation on performance in §6.7. Unless otherwise stated, the
maximum buffer size is set to 100 seconds for all the schemes for
apple-to-apple comparison. The client does not download the next
chunk when the maximum buffer size is reached.

For CAVA, the base target buffer level, xr , is set to 60 seconds.
The controller parameters, Kp and Ki , are selected adopting the
methodology outlined in [33]. Specifically, we varied Kp and Ki ,
and confirmed that, similar to [33], a wide range of Kp and Ki
values lead to good performance.

Performance Metrics.We use five metrics: four for measuring
different aspects of user QoE and one for measuring resource ef-
ficiency, i.e., network data usage. All metrics are computed with
respect to the delivered video, i.e., considering the chunks that have
been downloaded and played back. We measure the video quality
using VMAF (a recently proposed perceptual quality metric from
Netflix, see §3.1). Specifically, we use the VMAF phone model (cov-
ers typical smartphone viewing settings) for the evaluations with
the cellular traces, and the VMAF TV model (covers typical larger
screen TV viewing settings) for the evaluations with the FCC traces,
based on the typical device types and viewing conditions prevalent
in cellular and home networks, respectively.

The performance metrics are (i) quality of Q4 chunks: captures
the video quality for the most complex scenes. (ii) low-quality chunk
percentage: among all the chunks played back in a given streaming
session, this measures the proportion of chunks that were selected
with low video quality. For the experiments, we identify VMAF val-
ues below 40 (representing poor or unacceptable quality [50]) as low
quality. (iii) rebuffering duration: measures the total rebuffering/stall
time in a video session. (iv) average quality change per chunk: is
defined as the average quality difference of two consecutive chunks
in playback order (since human eyes are more sensitive to level
changes in adjacent chunks) for a session, i.e.,

∑
i |qi+1 − qi |/n,

where qi denotes the quality of ith chunk (in terms of playback
order), and n is the number of chunks. (v) data usage: captures the
total amount of data downloaded (i.e., the total network resource
usage) for a session. While comparing two schemes, for each of
the last 4 metrics, a lower value is preferable; the only exception
is the first metric (quality of Q4 chunks), where a higher value is
preferable.

In the above performance metrics, we use perceptual quality
metrics since they quantify the viewing quality more accurately
compared to bitrate that is commonly used in the literature. As
an example, the average bitrate of the delivered video, which is
commonly used to quantify the quality of a streaming session, is

2 40 80 120 160
Window size (s)

40

60

80

Q
ua

lit
y

of
 Q

4
ch

un
ks

Percentile 10:90%
Mean

(a) Q4 Chunk Quality

2 40 80 120 160
Window size (s)

0

10

20

30

40

T
ot

al
 r

eb
uf

fe
rin

g
(s

)

Percentile 10:90%
Mean

(b) Rebuffering

Figure 7: Impact of inner controller window size.

an especially poor metric for VBR videos. To see this, consider two
cases with the same average bitrate. In the first case, the lowest
track is selected for Q4 chunks, while higher tracks are selected for
Q1-Q3 chunks; in the second case, a medium track is selected for Q4
chunks, while low or medium tracks are selected for Q1-Q3 chunks.
These two cases clearly lead to different viewing quality, while will
be classified as being the same quality based on the average bitrate.
In addition, we use metrics to capture both the average and tail
behaviors. Specifically, the percentage of low quality chunks is an
important metric on tail behavior since it has been reported that
human eyes are particularly sensitive to bad quality chunks [30].

6.2 Choice of Parameters for CAVA
Inner controller window size. Recall that the inner controller in
CAVA uses the average bitrate over a window ofW future chunks
to represent the bandwidth requirement of the current chunk. We
investigate the impact ofW on the performance of CAVA. Fig. 7
shows an example (Elephant Dream, FFmpeg encoded, H.264, LTE
traces); the solid lines represent the average values, and the top and
bottom of the shaded region represent the 90th and 10th percentile
across the network traces, respectively. When increasingW , (i)
the quality of the Q4 chunks first improves significantly and then
flattens out, and (ii) the amount of rebuffering increases slightly and
then sharply. IncreasingW at the beginning is beneficial because
even averaging over a few chunks can smooth out the bitrate of
the chunks, which allows higher levels to be chosen for Q4 chunks
(since the smoothed bitrate for a Q4 chunk tends to be lower than
its actual bitrate). The impact on smoothing the bitrate diminishes
afterW becomes sufficiently large, leading to diminishing gains for
Q4 chunks. The increase in rebuffering whenW is large is because
CAVA becomes less sensitive to the bitrate changes in that case. We
setW to 40 seconds (i.e., 20 and 8 chunks for 2 and 5 seconds chunk
durations, respectively) as this leads to a good tradeoff between
quality and rebuffering.
Outer controller window size. The outer controller in CAVA
uses a window of W ′ future chunks to adjust the target buffer
level. We varyW ′ to explore its impact. In general, the amount of
rebuffering decreases asW ′ increases since the controller reacts
more proactively with largerW ′. For some videos, however, the
amount of rebuffering may start to increase asW ′ increases further.
This is because using very largeW ′ smoothes out the effect of the
variability of the video (i.e., the average bitrate of the futureW ′

chunks becomes closer to the average bitrate of the track, causing
little increment in the target buffer level as shown in Eq. (5)). We set
W ′ to 200 seconds (i.e., 100 and 40 chunks for 2 and 5 seconds chunk
durations, respectively), which leads to good results in reducing
rebuffering.

CoNEXT’18, December 4–7, 2018, Heraklion, Greece

0 20 40 60 80 100
Quality of Q4 chunks

0

0.2

0.4

0.6

0.8

1

C
D

F

(a)
0 10 20 30 40
Percentage of low quality chunks (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

(b)
0 20 40 60 80 100

Total rebuffering (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

(c)
0 5 10 15 20

Avg quality change (/chunk)

0

0.2

0.4

0.6

0.8

1

C
D

F

(d)
-10 0 10 20 30 40

Relative Data Usage(MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

CAVA
MPC
RobustMPC
PANDA/CQ max-sum
PANDA/CQ max-min

(e)

Figure 8: Performance comparison for one video (Elephant Dream, FFmpeg encoded, H.264) under LTE traces.

6.3 Comparison with Other Schemes
We compare CAVA with other ABR schemes using all the videos
under both LTE and FCC traces (the comparison with BOLA-E is
deferred to §6.8). Fig. 8(a)-(e) compare the performance of CAVA
with other schemes for one FFmpeg encoded video under the LTE
traces. Our results below focus on CAVA versus RobustMPC and
PANDA/CQmax-min; MPC can have significantly more rebuffering
than RobustMPC, and PANDA/CQ max-sum can have significantly
lower quality for Q4 chunks than PANDA/CQmax-min.We observe
that CAVA significantly outperforms RobustMPC and PANDA/CQ
max-min. (i) With CAVA, a much larger proportion (79%) of the
Q4 chunks are delivered at a quality higher than 60 (considered as
good quality [50]), compared to only 59% and 57% for RobustMPC
and PANDA/CQ max-min, respectively. The median VMAF value
across Q4 chunks is 78 under CAVA, 11 and 12 larger than the
corresponding values for RobustMPC and PANDA/CQ max-min,
respectively, indicating noticeable perceptual improvements (It has
been reported that a difference of 6 or more in VMAF would be
noticeable to a viewer [31]). (ii) For the percentage of low-quality
chunks, under CAVA, 40% of the traces have no low-quality chunks
(VMAF score < 40); and 82% of the traces have less than 10% low-
quality chunks, significantly larger than the corresponding values
65% and 40% for RobustMPC and PANDA/CQmax-min, respectively.
(iii) CAVA has no rebuffering for 85% of the traces, compared to
only 20% and 68% of traces under RobustMPC and PANDA/CQmax-
min, respectively. (iv) For average quality change per chunk, CAVA
realizes substantially lower changes than the other schemes (on
average, 67% and 29% of the values of RobustMPC and PANDA/CQ
max-min, respectively), resulting in less variability in playback
quality, and therefore more consistent and smoother playback expe-
rience. (v) CAVA has 5% to 40% lower data usage than RobustMPC.
PANDA/CQmax-min has slightly lower data usage than CAVA (10%
at most), at the cost of lower Q4 quality and overall quality (see
below). Figures 9(a) and (b) show the quality of Q1-Q3 chunks and
all the chunks, respectively. We observe that while CAVA does not
lead to very high quality for Q1-Q3 chunks, it does not choose low
quality for these chunks either. Overall, CAVA leads to a desired
tradeoff in choosing less low-quality chunks compared to other
schemes.

0 20 40 60 80 100
Quality of Q1-Q3 chunks

0

0.2

0.4

0.6

0.8

1

C
D

F

CAVA
MPC
RobustMPC
PANDA/CQ max-sum
PANDA/CQ max-min

(a)
0 20 40 60 80 100

Quality of all chunks

0

0.2

0.4

0.6

0.8

1

C
D

F

CAVA
MPC
RobustMPC
PANDA/CQ max-sum
PANDA/CQ max-min

(b)

Figure 9: Quality of Q1-Q3 chunks and all the chunks.

The above results are for one FFmpeg video under LTE traces.
Table 1 shows the results for several YouTube videos under both

Table 1: Performance comparison (YouTube videos).

Video
Q4

chunk
quality

Low-qual.
chunks
(%)

Stall
duration

(%)

Quality
changes

(%)

Data
usage
(%)

LT
E

BBB ↑13, ↑4 ↓61, ↓31 ↓62, ↓64 ↓48, ↓37 ↓11, ↓5
ED ↑10, ↑4 ↓54, ↓37 ↓73, ↓77 ↓38, ↓36 ↓9, ↓4
Sintel ↑8, ↑4 ↓75, ↓42 ↓83, ↓77 ↓37, ↓32 ↓8, ↓3
ToS ↑9, ↑6 ↓72, ↓55 ↓84, ↓81 ↓39, ↓40 ↓9, ↓3
Animal ↑15, ↑3 ↓4, ↓7 ↓83, ↓95 ↓43, ↓38 ↓11, ↓10
Nature ↑10, ↑3 ↓17, ↓11 ↓80, ↓97 ↓40, ↓41 ↓7, ↓10
Sports ↑18, ↑9 ↓30, ↓2 ↓83, ↓83 ↓35, ↓31 ↓8, ↓2
Action ↑14, ↑6 ↓49, ↓27 ↓79, ↓74 ↓38, ↓25 ↓8, ↓3

FC
C

BBB ↑11, ↑4 ↓70, ↓28 ↓26, ↓51 ↓48, ↓32 ↓8, ↓4
ED ↑8, ↑3 ↓33, ↓11 ↓79, ↓34 ↓36, ↓31 ↓7, ↓2
Sintel ↑7, ↑4 ↓87, ↓70 ↓94, ↓85 ↓35, ↓26 ↓6, ↓2
ToS ↑6, ↑6 ↓69, ↓62 ↓90, ↓6 ↓40, ↓38 ↓7, ↓1

↑ better ↓ better ↓ better ↓ better ↓ better
* The two numbers in each cell represents the changes by CAVA
relative to RobustMPC and PANDA/CQ max-min, respectively.

LTE and FCC traces. For Q4 chunk quality, we show two values:
the metric value (averaged over all the runs) obtained by CAVA
subtracted by that of RobustMPC and PANDA/CQmax-min, respec-
tively. For each of the other four performance metrics, we show two
percentage values, (i) the difference in the metric value (averaged
over all runs) for CAVA subtracted by that for RobustMPC, as a
percentage of the latter value, and (ii) the corresponding value for
CAVA vs. PANDA/CQ max-min. In Table 1, ↑ indicates that CAVA
has a higher value; while ↓ indicates that CAVA has a lower value.
The first part of Table 1 shows the results under LTE traces. We
observe that CAVA leads to average quality improvement for Q4
chunks in the range of 8-18 VMAF points compared to RobustMPC,
and 3-9 VMAF points compared to PANDA/CQ max-min. Also
CAVA substantially reduces the average stall/rebuffering duration
by 62%-95%, reduces the quality change per chunk by 25%-48%, and
reduces the percentage of low-quality chunks by 4%-61%. Last, the
data usage of CAVA is 7%-11% lower than RobustMPC, and 2%-10%
lower than PANDA/CQ max-min.

The second part of Table 1 shows the results for FCC traces. Com-
pared to the LTE trace results, the rebuffering for all the schemes
becomes lower due to smoother network bandwidth profiles; CAVA
still leads to lower rebuffering and better performance in all the
performance metrics.

6.4 Impact of CAVA Design Principles
Recall CAVA incorporates three key design principles (§4). In the
following, we investigate the contribution of each principle to the
performance of CAVA. As detailed in §4, the first (i.e., non-myopic)
principle is used in the inner controller of CAVA: it uses the aver-
age bitrate of multiple future chunks to represent the bandwidth
requirement of the current chunk when deciding the track level for

ABR Streaming of VBR-encoded Videos: Characterization, Challenges, and SolutionsCoNEXT’18, December 4–7, 2018, Heraklion, Greece

the current chunk. The second (i.e., differential treatment) principle
favors Q4 chunks over Q1-Q3 chunks. The third (i.e., proactive)
principle is used in the outer controller: it considers long-term fu-
ture (within tens of chunks) and increases the target buffer level to
be prepared for incoming large chunks in the future. Of the three
principles, the first principle is the basic principle, while the other
two principles are used on top of the basic principle. In the follow-
ing, we consider three variants of CAVA, referred to as CAVA-p1,
CAVA-p12 and CAVA-p123, which includes the first principle, the
first two principles, and all three principles, respectively.

Our evaluation confirms that the three principles indeed suc-
cessfully play their individual roles. Specifically, CAVA-p1 already
leads to fast responses to dynamic network bandwidths, consistent
playback quality and low rebuffering; CAVA-p12 leads to higher Q4
chunk quality, while CAVA-p123 leads to lower rebuffering. Fig. 10
shows an example for one video (ED, FFmpeg encoded, H.264) under
LTE traces. Fig. 10(a) plots the Q4 chunk quality under the two vari-
ants with the differential treatment principle (i.e., CAVA-p12 and
CAVA-p123) relative to CAVA-p1. Specifically, it shows the distribu-
tion of the metric value under CAVA-p12 and CAVA-p123 minus the
value under CAVA-p1 across all runs. We observe that for around
40% of the Q4 chunks, CAVA-p12 and CAVA-p123 lead to higher Q4
chunk quality. For only around 5% of the Q4 chunks, the quality
under CAVA-p12 and CAVA-p123 is lower than CAVA-p1. Fig. 10(b)
shows the total rebuffering of CAVA-p123 relative to CAVA-p12 for
traces that lead to rebuffering under either of these two variants (35
out of 200 traces fall into this category). Specifically, it shows the
metric value under each variant minus the value under CAVA-p12.
We see that CAVA-p123 leads to lower rebuffering than CAVA-p12
in 55% of these traces and the reduction is up to 20 seconds.

-20 10 0 10 20 30 40
Relative quality of Q4 chunks

0

0.2

0.4

0.6

0.8

1

C
D

F

CAVA-p1
CAVA-p12
CAVA-p123

(a)

-20 -15 -10 -5 0 5
Relative total rebuffering (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

CAVA-p12
CAVA-p123

(b)

Figure 10: Impact of the design principles of CAVA.

6.5 Codec Impact
For each video, the performance of all the schemes under H.265
encoding is better than that under H.264 encoding (figures omitted).
This is due to the significantly lower bitrate requirement of H.265
encoding. We observe that CAVA also significantly outperforms all
the other schemes under H.265 encoding. Compared to RobustMPC
and PANDA/CQ max-min, on average, Q4 chunk quality under
CAVA is 7-12 higher, the percentage of low-quality chunks is 51%-
82% lower, rebuffering is 52%-91% lower, and average quality change
is 27%-72% lower. Also CAVA has similar data usage compared to
other schemes.

6.6 Impact of Higher Bitrate Variability
We further use the 4× capped VBR-encoded video (Elephant Dream
FFmpeg encoded, in H.264) to explore the impact of higher bitrate
variability. In this case, we observe similar trends as the earlier
results. For CAVA, the average Q4 chunk quality is 65 across the

LTE traces, 8 and 7 larger than RobustMPC and PANDA/CQ max-
min, respectively. The average quality change is 42% and 68% lower,
the rebuffering is 90% and 89% lower, and the average percentage
of low-quality chunks is 39% and 57% lower.

6.7 Impact of Bandwidth Prediction Error
So far, we have used a particular bandwidth estimation algorithm
(harmonic mean of past 5 chunks) to predict available network
bandwidth. We next investigate the impact of bandwidth predic-
tion errors on different schemes in a controlled manner as follows.
We assume the bandwidth prediction error is err . That is, if the
actual network bandwidth at time t is Ct , we assume that the pre-
dicted network bandwidth is uniformly randomly distributed in
Ct (1 ± err). We vary err from 0 to 50% with a step of 25%. We
observe that CAVA is insensitive to bandwidth prediction errors:
the quality of Q4 chunks, the amount of rebuffering and the per-
centage of low quality chunks when err=50% are similar to those
when err=0 (i.e., perfect prediction), demonstrating that CAVA is
adaptive and tolerant to relatively significant bandwidth prediction
errors (due to the control-theoretical underpinning). In comparison,
MPC leads to significantly more rebuffering and data usage when
err=50%, compared to those when err=0. PANDA/CQ max-min
leads to noticeably more rebuffering when err is increased from 0
to 50%. The reason why CAVA is resilent to bandwidth estimation
errors is because it is a principled approach based on control the-
ory – it continuously monitors the “errors" in the system, namely
the difference between the target and current buffer levels of the
player, and adjusts the control signal to correct “errors" caused by
inaccurate bandwidth estimation.

6.8 DASH Implementation Results
We evaluate CAVA using the dash.js implementation (§5.5), and
compare its performance with that of BOLA-E [37] implemented in
dash.js version 2.7.0, which contains a stable release of BOLA-E.
Our evaluations below use two computers (Ubuntu 12.04 LTS, CPU
Intel Core 2 Duo, memory 4GB) with a 100 Mbps direct network
connection to emulate the video server (Apache httpd) and client.
At the client, we use Selenium [32] to programmatically run a
Google Chrome web browser and use dash.js APIs to collect the
streaming performance data. We use tc [26] to emulate real-world
variable network conditions by programmatically “replaying” the
network traces (§6.1).

We find that CAVA is very light-weight – even with the current
prototype implementation, the runtime overhead (from profiling)
is only around 56ms for a 10-minute video.

We compare the performance of CAVA with three versions of
BOLA-E. Two versions are based on the original BOLA-E imple-
mentation, which takes a single bitrate value from each track (i.e.,
the declared bitrate from the manifest file). Specifically, we consider
BOLA-E (peak), where the declared bitrate for a track is the peak bi-
trate of the track, and BOLA-E (avg), where the declared bitrate for a
track is the average bitrate of the track. In the third version, referred
to as BOLA-E (seg), we modified the original BOLA-E implementa-
tion to use the actual chunk size for each chunk, as suggested by the
paper [38] for VBR encodings. All the three versions use the default
parameters in BOLA-E. Fig. 11 shows the performance of CAVA and
the three versions of BOLA-E for one Youtube video. We observe

CoNEXT’18, December 4–7, 2018, Heraklion, Greece

0 20 40 60 80 100
Quality of Q4 chunks

0
0.2
0.4
0.6
0.8

1

C
D

F

0 20 40 60 80 100
Quality of Q1-Q3 chunks

0
0.2
0.4
0.6
0.8

1

C
D

F

0 20 40 60
Pct. of low quality chunks (%)

0
0.2
0.4
0.6
0.8

1

C
D

F

0 20 40 60 80
Total rebuffering (s)

0.4

0.6

0.8

1

C
D

F

0 5 10 15
Avg quality change (/chunk)

0
0.2
0.4
0.6
0.8

1

C
D

F

20 40 60 80 100
Total Data Usage (MB)

0
0.2
0.4
0.6
0.8

1

C
D

F

CAVA
BOLA-E (avg)
BOLA-E (peak)
BOLA-E (seg)

Figure 11: Performance comparison in dash.js (Big Buck Bunny, YouTube encoded, H.264, LTE traces).

Table 2: CAVA versus BOLA-E in dash.js.

Video
Q4

chunk
quality

Low-qual.
chunks
(%)

Stall
duration

(%)

Quality
changes

(%)

Data
usage
(%)

BBB ↑21 ↓87 ↓65 ↓45 ↑56
ED ↑20 ↓73 ↓15 ↓35 ↑50

Sports ↑10 ↓75 ↓29 ↓40 ↑25
ToS ↑12 ↓76 ↓19 ↓24 ↑45

that CAVA outperforms the three versions of BOLA-E in having
higher Q4 chunk quality, lower percentage of low-quality chunks,
lower rebuffering, and lower quality changes. While the data usage
of BOLA-E (all three variants) is lower than that of CAVA, it comes
at the cost of worse performance in other performance metrics.
The lower data usage of BOLA-E could be because it sometimes
pauses before fetching the next chunk under various scenarios. In
addition, the implementation uses bitrate capping when switching
to a higher bitrate to avoid bitrate oscillations.

Of the three BOLA-E variants, not surprisingly, BOLA-E (peak) is
the most conservative variant in choosing bitrate, since it uses the
peak bitrate of a track as the bitrate of every chunk in the track, and
hence overestimates the bandwidth requirements of the individual
chunks. In comparison, BOLA-E (avg) is the most aggressive, and
BOLA-E (seg) is between BOLA-E (peak) and BOLA-E (avg). We see
that for Q1-Q3 chunks, BOLA-E (seg) can choose even higher tracks
than BOLA-E (avg), since BOLA-E (seg) uses the actual chunk size
and can choose higher quality for some small chunks (that fall into
Q1-Q3). We further see that using the actual chunk size in BOLA-E
(seg) leads to more significant quality changes compared to BOLA-E
(peak) and BOLA-E (avg). The above behaviors demonstrate once
again that while it is important to consider individual chunk sizes
to handle ABR streaming of VBR videos, the actual decision logic
needs to be developed with VBR characteristics in mind; simply
plugging in the individual chunk sizes is insufficient.

Table 2 compares the performance of CAVA and BOLA-E (seg)
for four YouTube videos, all under LTE traces. We observe that
while the data usage of BOLA-E (seg) is lower, CAVA outperforms
BOLA-E (seg) in all the other metrics: on average, Q4 chunk quality
under CAVA is 10-21 higher, the percentage of low-quality chunks
is 73%-87% lower, rebuffering is 15%-65% lower, and quality changes
is 24%-45% lower.

7 RELATEDWORK
There is a large body of existing work on ABR streaming [1, 6, 8, 16,
20, 23, 28, 33, 38, 39, 41, 44, 47, 49, 51]. Rate-based (e.g., [20, 21, 49])
ABR schemes select bitrate simply based on network bandwidth
estimates. Buffer-based schemes, e.g., BBA [16], BOLA [38], and
BOLA-E [37], select bitrate only based on buffer occupancy. Most
recent schemes combine both rate-based and buffer-based tech-
niques. For instance, MPC [47] and PIA [33] use control-theoretic

approaches to design rate adaptation based on both network band-
width estimates and buffer status. Oboe [1] dynamically adjusts the
parameters of an ABR logic to adapt to various network conditions.
Another group of related studies [7, 9, 28, 42] uses machine learning
based approaches, which “learns" ABR schemes from data.

While content providers have recently begun adopting VBR
encoding, their treatment to VBR videos is simplistic (e.g., by simply
assuming that the bandwidth requirement of a chunk equals to
the peak bitrate of the track) [46]. As we have seen in §6.8, such
simplistic treatment can lead to poor performance. Of the large
number of existing studies, only a few targeted VBR videos [16, 23,
49]; most others were designed for and evaluated in the context of
CBR encodings. While several schemes in the latter category can
be applied for VBR videos by explicitly incorporating the actual
bitrate of each chunk, they were not designed ground up to account
for VBR characteristics, nor had their performance been evaluated
for that case. We evaluate the performance of schemes from both
categories in this paper (see §4 and §6), and show that they can
suffer from a large amount of rebuffering and/or significant viewing
quality impairments when used for VBR videos.

Our study differs from all the above works in several important
aspects, including developing insights based on analyzing content
complexity, encoding quality, and encoding bitrates, identifying
general design principles for VBR streaming, and developing a
concrete, practical ABR scheme for VBR streaming that significantly
outperforms the state-of-the-art schemes.

8 CONCLUSIONS AND FUTUREWORK
Through analyzing a number of VBR-encoded videos from a vari-
ety of genres, we identified a number of characteristics related to
scene complexities, bandwidth variability, and quality levels, that
are relevant to ABR streaming and QoE. Based on these insights,
we proposed 3 key principles to guide rate adaptation for VBR
streaming. We also designed CAVA, a practical control-theoretic
rate adaptation scheme that explicitly leverages our proposed prin-
ciples. Extensive evaluations demonstrate that CAVA substantially
outperforms existing ABR schemes even in challenging network
conditions common in cellular networks. The results demonstrate
the importance of utilizing these design principles in developing
ABR adaptation schemes for VBR encodings. In this paper, we pri-
marily focused on the VoD setting. As future work, we will explore
extending CAVA and its concepts to ABR streaming of live VBR
encoded videos.
ACKNOWLEDGEMENTS
We express our sincerest gratitude towards the anonymous review-
ers who gave valuable and insightful feedback to improve this work,
and our shepherd, Behnaz Arzani, for guiding us through the re-
visions. The work of Feng Qian was partially supported by NSF
under award CNS-1750890.

ABR Streaming of VBR-encoded Videos: Characterization, Challenges, and SolutionsCoNEXT’18, December 4–7, 2018, Heraklion, Greece

REFERENCES
[1] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen,

Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. 2018. Oboe:
auto-tuning video ABR algorithms to network conditions. In Sigcomm. ACM.

[2] Apple. 2017. Apple’s HTTP Live Streaming. https://goo.gl/eyDmBc. (2017).
[3] Apple. 2017. HLS Authoring Specification for Apple Devices. (2017). https:

//goo.gl/kYrCW5
[4] Karl Johan Åström and Richard M. Murray. 2008. Feedback Systems: An Introduc-

tion for Scientists and Engineers. Princeton University Press.
[5] Chao Chen, Yao-Chung Lin, Anil Kokaram, and Steve Benting. 2017. Encoding

Bitrate Optimization Using Playback Statistics for HTTP-based Adaptive Video
Streaming. arXiv preprint arXiv:1709.08763 (2017).

[6] J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan, and M. Chiang. 2013. A
Scheduling Framework for Adaptive Video Delivery over Cellular Networks. In
Proc. of ACM MobiCom.

[7] Federico Chiariotti, Stefano D’Aronco, Laura Toni, and Pascal Frossard. 2016.
Online Learning Adaptation Strategy for DASH Clients. In Proc. ACMMultimedia
systems. ACM.

[8] L. De Cicco, S. Mascolo, and V. Palmisano. 2011. Feedback Control for Adaptive
Live Video Streaming. In Proc. of ACM MMSys.

[9] Maxim Claeys, Steven Latré, Jeroen Famaey, TingyaoWu, Werner Van Leekwijck,
and Filip De Turck. [n. d.]. Design and optimisation of a (FA)Q-learning-based
HTTP adaptive streaming client. Connection Science 26, 1 ([n. d.]).

[10] Federal Communications Commission. 2016. Measuring Fixed Broadband Report.
https://goo.gl/STv4pg. (December 2016).

[11] Jan De Cock, Aditya Mavlankar, Anush Moorthy, and Anne Aaron. 2016. A
large-scale video codec comparison of x264, x265 and libvpx for practical VOD
applications. In SPIE, Applications of Digital Image Processing.

[12] Wolfgang Effelsberg, Otto Spaniol, André Danthine, and Domenico Ferrari. 1996.
High-speed networking for multimedia applications. Springer.

[13] FFmpeg. 2017. FFmpeg Project. https://www.ffmpeg.org/. (2017).
[14] International Organization for Standardization. 2012. ISO/IEC DIS 23009-1.2

Dynamic adaptive streaming over HTTP (DASH). (2012).
[15] DASH Industry Forum. 2017. Reference Client 2.4.1. https://goo.gl/XJcciV. (2017).
[16] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark

Watson. 2014. A buffer-based approach to rate adaptation: Evidence from a large
video streaming service. In Proc. of ACM SIGCOMM.

[17] MulticoreWare Inc. 2018. H.265 Video Codec. http://x265.org/hevc-h265/. (2018).
[18] ITU. 2017. H.264 : Advanced video coding for generic audiovisual services.

https://www.itu.int/rec/T-REC-H.264. (2017).
[19] ITU-T P. 910. 2008. Subjective Video Quality Assessment Methods for Multimedia

Applications. (2008).
[20] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving fairness, efficiency,

and stability in HTTP-based adaptive video streaming with FESTIVE. In Proc. of
ACM CoNEXT.

[21] Robert Kuschnig, Ingo Kofler, and Hermann Hellwagner. 2010. An evaluation of
TCP-based rate-control algorithms for adaptive internet streaming of H.264/SVC.
In Proc. ACM Multimedia systems.

[22] TV Lakshman, Antonio Ortega, and Amy R Reibman. 1998. VBR video: Tradeoffs
and potentials. Proc. IEEE (1998).

[23] Zhi Li, Ali Begen, Joshua Gahm, Yufeng Shan, Bruce Osler, and David Oran. 2014.
Streaming video over HTTP with consistent quality. In ACM MMSys.

[24] J. Y. Lin, T.-J. Liu, E. C.-H. Wu, and C.-C. J. Kuo. 2014. A Fusion-based Video
Quality Assessment (FVQA) Index. APSIPA Transactions on Signal and Information
Processing (2014).

[25] Yao-Chung Lin, Hugh Denman, and Anil Kokaram. 2015. Multipass encoding for
reducing pulsing artifacts in cloud based video transcoding. In Image Processing
(ICIP), 2015 IEEE International Conference on. IEEE, 907–911.

[26] Linux. 2014. tc. https://linux.die.net/man/8/tc. (2014).
[27] T.-J. Liu, J. Y. Lin,W. Lin, and C.-C. J. Kuo. 2013. Visual Quality Assessment: Recent

Developments, Coding Applications and Future Trends. APSIPA Transactions on
Signal and Information Processing (2013).

[28] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive
Video Streaming with Pensieve. In Proc. of ACM SIGCOMM.

[29] Netflix. 2015. Per-Title Encode Optimization. https://goo.gl/hahDG4. (2015).
[30] Netflix. 2016. VMAF score aggregation. https://github.com/Netflix/vmaf/issues/

20. (2016).
[31] Jan Ozer. 2017. Finding the Just Noticeable Difference with Netflix VMAF. https:

//goo.gl/TGWCGV. (September 2017).
[32] Selenium Projects. 2017. Selenium Web Browser Automation. http://www.

seleniumhq.org. (2017).
[33] Yanyuan Qin, Ruofan Jin, Shuai Hao, Krishna R Pattipati, Feng Qian, Subhabrata

Sen, Bing Wang, and Chaoqun Yue. 2017. A Control Theoretic Approach to ABR
Video Streaming: A Fresh Look at PID-based Rate Adaptation. In INFOCOM.

[34] Reza Rassool. 2017. VMAF reproducibility: Validating a perceptual practical
video quality metric. In IEEE International Symposium on Broadband Multimedia
Systems and Broadcasting (BMSB).

[35] Andrew Reed and Benjamin Klimkowski. 2016. Leaky streams: Identifying
variable bitrate DASH videos streamed over encrypted 802.11n connections. In
Consumer Communications & Networking Conference. IEEE.

[36] Werner Robitza. 2017. CRF Guide (Constant Rate Factor in x264 and x265).
http://slhck.info/video/2017/02/24/crf-guide.html. (February 2017).

[37] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2018. From Theory to
Practice: Improving Bitrate Adaptation in the DASH Reference Player (MMSys
’18). ACM.

[38] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2016. BOLA: Near-
Optimal Bitrate Adaptation for Online Videos. In INFOCOM. IEEE.

[39] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, NanshuWang, Tao Liu,
and Bruno Sinopoli. 2016. CS2P: Improving video bitrate selection and adaptation
with data-driven throughput prediction. In SIGCOMM. ACM.

[40] Kiyotsugu Takaba. 2003. A tutorial on preview control systems. In SICE.
[41] Guibin Tian and Yong Liu. 2012. Towards agile and smooth video adaptation in

dynamic HTTP streaming. In Proc. of ACM CoNEXT.
[42] Jeroen van der Hooft, Stefano Petrangeli, Maxim Claeys, Jeroen Famaey, and

Filip De Turck. 2015. A learning-based algorithm for improved bandwidth-
awareness of adaptive streaming clients. In IFIP/IEEE International Symposium on
Integrated Network Management.

[43] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on
Image Processing 13, 4 (2004).

[44] Xiufeng Xie, Xinyu Zhang, Swarun Kumar, and Li Erran Li. 2015. piStream:
Physical Layer Informed Adaptive Video Streaming Over LTE. In Proc. of ACM
MobiCom.

[45] Xiph.Org. 2016. Xiph.org Video Test Media. https://media.xiph.org/video/derf/.
(2016).

[46] Shichang Xu, Z. Morley Mao, Subhabrata Sen, and Yunhan Jia. 2017. Dissecting
VOD Services for Cellular: Performance, Root Causes and Best Practices. In Proc.
of IMC.

[47] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-
Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In Proc.
of ACM SIGCOMM.

[48] youtube-dl developers. 2018. youtube-dl. https://goo.gl/mgghW8. (2018).
[49] Tong Zhang, Fengyuan Ren, Wenxue Cheng, Xiaohui Luo, Ran Shu, and Xiaolan

Liu. 2017. Modeling and analyzing the influence of chunk size variation on bitrate
adaptation in DASH. In INFOCOM. IEEE.

[50] Li Zhi, Aaron Anne, Katsavounidis Ioannis, Moorthy Anush, and
Manohara Megha. 2016. Toward A Practical Perceptual Video
Quality Metric. (2016). https://medium.com/netflix-techblog/
toward-a-practical-perceptual-video-quality-metric-653f208b9652

[51] Xuan Kelvin Zou, Jeffrey Erman, Vijay Gopalakrishnan, Emir Halepovic, Rittwik
Jana, Xin Jin, Jennifer Rexford, and Rakesh K. Sinha. 2015. Can Accurate Predic-
tions Improve Video Streaming in Cellular Networks?. In Proc. of HotMobile.

https://goo.gl/eyDmBc
https://goo.gl/kYrCW5
https://goo.gl/kYrCW5
https://goo.gl/STv4pg
https://www.ffmpeg.org/
https://goo.gl/XJcciV
http://x265.org/hevc-h265/
https://www.itu.int/rec/T-REC-H.264
https://linux.die.net/man/8/tc
https://goo.gl/hahDG4
https://github.com/Netflix/vmaf/issues/20
https://github.com/Netflix/vmaf/issues/20
https://goo.gl/TGWCGV
https://goo.gl/TGWCGV
http://www.seleniumhq.org
http://www.seleniumhq.org
http://slhck.info/video/2017/02/24/crf-guide.html
https://media.xiph.org/video/derf/
https://goo.gl/mgghW8
https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-quality-metric-653f208b9652
https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-quality-metric-653f208b9652

	Abstract
	1 Introduction
	2 The VBR Video Dataset
	3 VBR Streaming: Challenges
	3.1 VBR Video Characteristics
	3.2 Implications for Rate Adaptation
	3.3 VBR with Larger Cap

	4 Design Principles
	5 CAVA Design and Implementation
	5.1 Overview of CAVA
	5.2 PID Feedback Control Block
	5.3 The Inner Controller
	5.4 The Outer Controller
	5.5 Implementation

	6 Performance Evaluation
	6.1 Evaluation Setup
	6.2 Choice of Parameters for CAVA
	6.3 Comparison with Other Schemes
	6.4 Impact of CAVA Design Principles
	6.5 Codec Impact
	6.6 Impact of Higher Bitrate Variability
	6.7 Impact of Bandwidth Prediction Error
	6.8 DASH Implementation Results

	7 Related Work
	8 Conclusions and Future Work
	References

