
Fault Localization Using Passive End-to-End
Measurement and Sequential Testing

for Wireless Sensor Networks
Bing Wang, Wei Wei, Wei Zeng

Computer Science & Engineering Dept.
University of Connecticut, Storrs, CT, 06269
{bing, weiwei, wei.zeng}@engr.uconn.edu

Krishna R. Pattipati
Electrical & Computer Engineering Dept.

University of Connecticut, Storrs, CT, 06269
krishna@engr.uconn.edu

Abstract—Faulty components in a network need to be localized
and repaired to sustain the health of the network. In this
paper, we propose a novel approach that carefully combines
active and passive measurements to localize faults in wireless
sensor networks. More specifically, we formulate a problem of
optimal sequential testing guided by end-to-end data. This problem
determines an optimal testing sequence of network components
based on end-to-end data in sensor networks to minimize testing
cost. We prove that this problem is NP-hard and propose a
greedy algorithm to solve it. Extensive simulation shows that
in most settings our algorithm only requires testing a very small
set of network components to localize and repairall faults in the
network. Our approach is superior to using active and passive
measurements in isolation. It also outperforms the state-of-the-
art approaches that localize and repair all faults in a network.

I. I NTRODUCTION

Wireless sensor networks have been deployed for a wide
range of applications. A deployed sensor network may suffer
from many network-related faults, e.g., failure or lossy nodes
or links [1], [2]. These faults affect the normal operation
of the network, and hence should be detected, localized and
corrected/repaired. Existing studies on sensor network fault
localization use active or passive measurement (see Section II).
Active measurement incurs additional monitoring traffic (a
node needs to monitor itself or its neighbors, and transmit
the monitoring results locally or to a centralized server). It
hence consumes precious energy of sensor nodes, and may
reduce the lifetime of the network. On the other hand, it has
the advantage that it can exactly pinpoint the faults. Passive
measurement uses existing end-to-end data inside the network.
It introduces no additional traffic into the network, and hence
is an attractive approach for energy-stringent sensor networks.
On the other hand, it poses the challenge of faultinference
since a faulty end-to-end behavior only indicates that some
components are faulty and does not dictate exactly which
components are faulty. Accurate inference from end-to-end
data (i.e., locating all faults with low false positives) is not
always possible because end-to-end measurement can have
inherent ambiguity (see Section III).

Motivated by the complementary strengths of active and

passive measurement, we propose a novel approach that
uses active measurement to resolve ambiguity in passive
measurement, and uses passive measurement to guide active
measurement to reduce testing cost (i.e., cost incurred from
active measurement, see Section III). More specifically, we
formulate a problem ofoptimal sequential testing guided by
end-to-end data. This problem determines an optimal testing
sequence of network components that minimizes the total
testing cost: it picks the first component to be tested (through
active measurement), based on the test result (i.e., it is faulty
or not faulty) and the end-to-end data, it determines the next
component to be tested. This sequential testing continues until
the identified faulty components have explained all end-to-end
faulty behaviors. Since these identified faults may not have
included all faults in the network, we identify all faults by
solving the optimal sequential testing problem in iterations.
In an iteration, based on end-to-end data in this iteration, we
solve the optimal sequential testing problem to identify a set
of faulty components. We then repair all the identified faulty
components and start the next iteration. The iteration repeats
until all end-to-end behaviors are normal. At this time,all
faulty components have been identified and repaired.

We prove the problem of optimal sequential testing is NP-
hard, and develop a greedy algorithm to solve it. We evaluate
the performance of our algorithm through extensive simulation
in sensor networks of static and dynamic topologies. Our
simulation results show that we only need a few iterations
and testing a very small subset of components to localize all
faults in a network. These results demonstrate the benefits of
our approach: it is superior to using active measurement alone
since it selectively tests a very small subset of components; it
is superior to fault inference using passive measurement since
it localizes all faulty components while fault inference may
suffer from a large number of false positives and negatives [3],
[4], [5].

Our approach also outperforms two state-of-the-art ap-
proaches [6], [7] that identify and repair all faults in a
network. These two approaches also run in iterations. The
exhaustive inspection approach [6] differs from our approach
in that in each iteration, it infersin parallel (rather than in



sequence) a set of potential faulty components from end-to-
end measurement, and tests each identified component and
repairs the faulty ones at the end of the iteration. It has to
test all identified components because some of them may be
false positives. Hence the number of tests is at least equal to
the total number of faulty components, while our approach
requires much less number of tests. The approach in [7]
infers the best component to be tested in each iteration, and
repairs the component if necessary. Since it only tests a single
component in an iteration, it may lead to a large number
of iterations to localize and correct all faults. To reduce the
number of iterations, the authors also consider identifying
multiple faultsin parallel in an iteration, which is in a similar
spirit as exhaustive inspection [6] and suffers from the same
drawbacks.

The rest of the paper is organized as follows. Section II
reviews related work. Section III presents the problem set-
ting. Section IV describes our approach. Section V presents
evaluation results. Finally, Section VI concludes the paper and
presents future work.

II. RELATED WORK

We consider localizing and correcting network-related faults
in a deployed sensor network. Most existing studies use either
active or passive measurement for this purpose.

Active measurement provides accurate view of the network
at the price of introducing additional monitoring traffic into the
network. Zhao et al. design a residual energy scan for a sensor
network that depicts the remaining energy inside the net-
work [8]. From the scan, a network operator can discover areas
with low residual energy and take corrective actions. The same
authors also propose an architecture that computes aggregates
for sensor network monitoring [9]. This approach continuously
collects aggregates (sum, average, count) of network properties
(e.g., loss rates, energy level), triggers scan of the network
when observing sudden changes in the aggregates, and further
debugs the problem through detailed dumps of node states.
To limit the scope of the monitoring traffic to a local area,
Hsin et al. propose a distributed monitoring architecture where
each node monitors its neighbors by periodically sending them
probes [10]. More recently, Tolle et al. design a sensor network
management system (SNMS) that allows a network operator
to query the network for health information [1]. Whitehouse
et al. propose Marionette, which extends SNMS by providing
users the ability to call functions, and read or write variables
in embedded applications [11]. Ramanathan et al. propose
Sympathy, a tool for detecting and debugging failures in
sensor networks [2]. Sympathy carefully selects metrics that
enable efficient failure detection and includes an algorithm that
analyzes root causes. Rost and Balakrishnan design a health
monitoring system, Memento, that delivers state summaries
and detects node failures [12]. Last, Gruenwald et al. propose
a remote management system for a wide area sensor network
that contains multiple and heterogenous networks [13].

Active measurement consumes precious resources of the
senor network. Furthermore, malicious behaviors can mislead

fault localization that solely relies on active measurement,
e.g., a node may not report its status or its neighbors’ status
honestly, or an intermediate node may manipulate the for-
warded messages or aggregates. Passive measurement using
existing end-to-end data in sensor networks does not suffer
from the above drawbacks. Hartl et al. use traditional network
tomography techniques to infer node loss rates [3], and Mao
et al. use a factor graph decoding method to infer link loss
rates [4]. Both techniques, however, heavily rely on a data
aggregation procedure (that is used to guarantee correlation
among packets). Furthermore, their assumption of a fixed
tree limits their applicability. Nguyen et al. propose lossy
link inference schemes that use uncorrelated packets and take
account of dynamic network topologies [5]. Their schemes,
however, may lead to a large number of false positives and
negatives in certain circumstances. Broadly speaking, fault
inference from end-to-end data falls into network tomography,
i.e., inferring internal properties through end-to-end measure-
ment. A rich collection of network tomography techniques has
been developed in the past (see [14] for a review). Most of
these techniques are developed for wired networks and cannot
be applied directly to wireless sensor networks. This is because
most of them rely on correlated packets (through multicast or
striped unicast packets) and require static topology. In wireless
sensor networks, however, end-to-end data are not correlated
and topology may change over time.

Our approach differs from existing studies on sensor net-
work fault localization in that it carefully combines active
measurement and end-to-end data. The study in [2] also uses
end-to-end data together with active measurement: it uses
end-to-end data to detect faults, which in turn trigger active
measurement and root-cause analysis. It, however, does not
utilize end-to-end data to guide selective active measurement
(to reduce testing cost) as in our study. Two existing stud-
ies [6], [7] combine end-to-end measurement and active testing
to identify and correct all faults in a network. Our approach
outperforms these two approaches (see Sections I and V).

Last, sequential testing has been studied in the fields of
machine troubleshooting, medical diagnosis and computer
decision making (e.g., [15], [16], [17]). Our sequential testing
problem differs from that in other fields in two important
aspects: (i) our sequential tests are on individual components
(instead of multiple components) with the guidance of end-to-
end data that provide insights into multiple components; and
(ii) we detect multiple faults instead of a single fault that is
often assumed in other fields.

III. PROBLEM SETTING

A. Assumptions

Consider a sensor network where sensed data are sent
(periodically) from sources to a sink. As in [2], we assume
the amount of end-to-end data can be used to detect faults
in the network: insufficient amount of data indicates faults,
while sufficient amount of data indicates that the network is
operating normally. The status of a component (i.e., whether
faulty or not) can be tested through active measurement, e.g.,
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Fig. 1. An example network topology.

by monitoring the component locally, or looking into the inter-
nal states of relevant components (e.g., using [11]). This test
incurs atesting cost. It is due to the extra energy consumption
(for monitoring and transferring the monitoring result locally
or to the sink) or personnel time when a personnel is involved.

A fault in a sensor network can be of various forms. In the
rest of the paper, for ease of exposition, we only consider
faults in the form of lossy links (we briefly discuss lossy
nodes in Section III-C). In particular, our goal is to locate
persistentlylossy links that are used in routing (we do not
consider transient lossy links since they are not caused by
persistent faults that need to be localized and corrected). We
say link l is lossyor bad if its reception rate (defined as one
minus the link loss rate) lies below a threshold,tl. Otherwise,
we sayl is not lossyor good. The threshold depends on the
application, and is known beforehand. We assume the losses at
different links are independent of each other (as shown in [5]).
Furthermore, if a link is good (or bad) on one path, then it is
good (or bad) on all paths that use the link.

The routing path from a source to the sink can be static or
dynamic (e.g., due to a dynamic routing technique [18]). Fig. 1
shows an example topology, where sourcess1 and s3 use a
single path; sources2 uses two paths dynamically. We consider
two settings: (1) we knowcompletepath information, i.e., we
know the path used by a source at any point of time; and (2) we
only know probabilistic path information, i.e., we only know
the set of paths that are used by a source and the probability
to use each path. The first setting applies to static topologies,
and dynamic topologies where up-to-date path information is
available (e.g., obtained through a path reporting service [19]
or from information embedded in data packets [18]). The
second setting applies to dynamic topologies where it is too
costly to obtain complete path information (e.g., it might
consume too much energy).

When knowing complete path information, we definepath
reception rateas the probability that a packet traverses a path
successfully. It can be estimated from end-to-end data: when
n packets are transmitted along a path andm packets are
received successfully, it is estimated asm/n. As mentioned
earlier, we assume the amount of end-to-end data indicates
whether a fault exists along a path. In particular, we assume,
for path P , there exists a threshold,tP , so that it contains
at least one bad linkif and only if its reception rate is
below tP . This assumption holds when good and bad links
differ significantly. It is a reasonable assumption for wireless
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Fig. 2. An example of sequential testing. In (a),n0 is the sink,n3 andn4

are the sources, and end-to-end data indicate that both paths are lossy.

sensor networks since measurement studies have shown that
link loss rates in sensor networks are either large or small,
but rarely in between [20], [5]1. We next illustrate when the
above assumption holds. Consider a path ofh links. Assume
good links have reception rate at leastα, while bad links have
reception rate no more thanβ, 0 ≤ β < α ≤ 1. Then the
above assumption holds whenαh > β. This is because when
the path contains no bad links, the path reception rate is at
least αh; otherwise, it is no more thanβ. Therefore, when
αh > β, there exists a threshold (any number in(β, αh)) so
that the path contains at least one bad link if and only if its
reception rate is below this threshold2. For convenience, we
say pathP is lossyor bad if its reception rate is below the
threshold,tP (in other words, it contains at least one lossy
link); otherwise, it isnot lossyor good.

When only knowing probabilistic path information, we
define source-sink reception rateas the probability that a
packet is sent from a source to the sink successfully. It can
be estimated from end-to-end data: whenn packets are sent
from a source to the sink, andm packets arrive successfully,
it is estimated asm/n. We again assume that there exists a
threshold so that at least one link used by a source-sink pair
is lossy if and only if the source-sink reception rate is below
this threshold. Again, we say a source-sink pair (or simply a
pair) is lossyor bad if its reception rate is below the threshold;
otherwise, it isnot lossyor good.

The above assumptions imply that all the links on a good
path/pair are good, and a bad path/pair contains at least one
bad link. Therefore, the potential bad links are the ones that
are used by bad paths/pairs, excluding those used by good
paths/pairs.

1Several other studies reveal links that have intermediate loss rates [18],
[21], [22]. Since these types of links can have significant negative impact on
the performance of upper-layer protocols [21], [23], we assume the routing
protocol used in the sensor network avoids using such links, and hence most
links used in the routes have either large or small loss rates.

2In practice, we can check whether such a threshold exists for a path by
first estimatingα andβ (e.g., as in [5]), and then checking whetherαh > β
holds. An extreme case in which the above condition holds is whenβ = 0,
i.e., a bad link is a failure link.



B. Sequential testing guided by end-to-end data

Using end-to-end data, we have narrowed down the potential
lossy links to the set of links that are used by bad paths/pairs,
excluding those used by good paths/pairs (since all the links
on a good path/pair are good). Pinpointing which potential
lossy links are indeed lossy requires testing individual links.
We now motivate the need of sequential testing using an
example in Fig. 2(a). This example shows two paths,P1 =
(n3, n2, n1, n0) and P2 = (n4, n2, n1, n0). Suppose end-to-
end data indicate that both paths are bad. When determining
which links are lossy, we face the following ambiguities. First,
since links l1 and l2 are used by both paths, they cannot
be differentiated solely from end-to-end data. Second, since
both paths are lossy, the lossy links can be the common
links (i.e., l1 and/or l2), both leaf links (i.e.,l3 and l4), or a
combination of the above two scenarios. The above ambiguity
can be resolved through testing individual links. An advantage
of doing sequential testing is that as we reveal the status of
one link, this knowledge may provide information on other
links, and hence inform later decisions.

We next formulate the problem of sequential testing guided
by end-to-end data. For simplicity, the formulation below
assumes complete path information (the scenario where we
know probabilistic path information only differs in that we
use source-sink pairs instead of paths). A sequential testing
problem takes the following input: (i) a set of bad paths,
P1, . . . , PN , that are identified from end-to-end data; (ii) a
set of potential bad links,l1, . . . , lM , which are the links
used by bad paths but not used by good paths; (iii) a set
of probabilities,p1, . . . , pM , where pi ∈ (0, 1) denotes the
probability that linkli is lossy, and a set of costs,c1, . . . , cM ,
whereci > 0 denotes the testing cost for linkli; and (iv) a
routing dependency matrixR = (rij)M×N whererij = 1 if
link li is used by pathPj andrij = 0 otherwise.

A solution to the sequential testing problem is to determine
the next link to test depending on the previous link that is
tested, its corresponding test result (i.e., it is lossy or not
lossy), and end-to-end data, so that all bad paths are explained
(i.e., each bad path contains at least one link that has been
tested and found to be lossy). More conveniently, we can
describe a solution to the sequential testing problem using
a binary AND/OR decision tree. In the tree, an OR node
represents the set of lossy paths to be explained and the
potential lossy links to explain them, an AND node represents
testing a link, and a leaf node represents an empty set of lossy
paths to be explained (i.e., all lossy paths have been explained)
and a set of bad links that has been identified to explain the
lossy paths. Each AND node has two branches, leading to two
OR nodes based on whether the link tested is lossy or not. If
the link is lossy, the AND node branches left and the arc is
marked with “B”; otherwise, the AND node branches right
and the arc is marked with “G”.

Theexpected total testing costof a solution to the sequential
testing problem is the sum of the expected testing costs over
all links (in the input of the problem), where the expected

testing cost of a link is the testing cost of this link times
the probability that this link is tested. More conveniently, the
expected total testing cost can be calculated from the binary
decision tree: it is the sum of the expected testing costs over
all AND nodes, where the expected testing cost of an AND
node is the testing cost for the link tested at this AND node
times the probability that this AND node is reached in the
tree. Anoptimal solution to the sequential testing problem is
one that leads to the minimum expected total testing cost.

We next use an example to illustrate sequential testing.
Fig. 2(b) plots a binary decision tree (not necessarily the
optimal one) for the example in Fig. 2(a). The root of the
tree contains all lossy paths and potential lossy links. The
first link tested isl1. If l1 is bad, sequential testing stops
(since both lossy paths have been explained) and identifies
one lossy link,l1. Otherwise, the set of potential bad links
is reduced tol2, l3, l4, and the next link tested isl2. If l2 is
bad, sequential testing stops and identifies one lossy link,l2.
Otherwise, sequential testing stops and concludes that linksl3
andl4 are lossy. The expected total testing cost of this decision
tree isc1 + (1− p1)c2 since there are two AND nodes in the
decision tree; the expected testing cost of the AND node that
testsl1 is c1, while the expected testing cost of the AND node
that testsl2 is (1 − p1)c2 (since l2 is only tested whenl1 is
good, which happens with the probability of1− p1).

Note that we may not have identified all lossy links when
the above sequential testing stops. For instance, in the scenario
where bothl1 and l3 are lossy, it stops after finding linkl1 to
be lossy. To identify all lossy links, we run sequential testing
in iterations; at the end of an iteration, we repair all lossy
links (using tools such as [2] to find out the root causes and
remove the root causes) that have been found in the iteration.
The iteration continues until all end-to-end behaviors are good.
The reason why we do not intend to find all lossy links in one
iteration is that end-to-end data in a later iteration may reveal
link status at no additional testing cost. For instance, in the
above example, ifl1 is lossy and the next iteration shows no
lossy links, then we know that the rest of the links are good
without any additional test.

Our sequential testing problem differs from existing stud-
ies [6], [5], [24] in important ways. The goal of existing studies
is to find the most likely set of lossy links that explains the
faulty end-to-end behaviors, while our goal is to minimize
testing cost. Therefore, we may purposely test a link that is
likely to be good as long as it can reduce testing cost. Our
approach and the ones in existing studies can run in iterations
until all lossy links are located and repaired. As we shall
see (Section V), our approach requires a similar number of
iterations and a much lower testing cost.

C. Discussion

The above sequential testing formulation considers lossy
links. By simply replacing links with nodes, it applies to a
scenario where faults are lossy nodes (similarly, by replacing
links with nodes, our scheme in Section IV applies to a lossy-
node scenario). Furthermore, by taking account of correlation



between a node and its adjacent links (e.g., all the links
adjacent to a lossy node can be lossy), the formulation can
be extended to a scenario where faults include both lossy
links and nodes. Further investigation of this scenario is left
as future work.

The goal of our sequential testing problem is to minimize
testing cost. In practice, minimizing the total number of
iterations to locate and repair all faulty components can also
be an important goal. Our formulation can be extended to
incorporate this goal as follows. We can use a cost to represent
the number of iterations required to locate and repair all faulty
components, and minimize a weighted sum of this cost and the
testing cost. Or we can formulate a constrained optimization
problem that minimizes total testing cost under a constraint
on the number of iterations, or minimizes the required number
of iterations under a constraint on total testing cost. Further
exploration of these problems is left as future work.

IV. SEQUENTIAL TESTING SCHEME

In this section, we first prove that the sequential testing
problem formulated in Section III is NP-hard. We then develop
a greedy algorithm to solve it.

A. Complexity of the sequential testing problem

Theorem 1:Optimal sequential testing guided by end-to-
end data is NP-hard.

Proof: We prove the problem is NP-hard by showing that
a special instance of this problem contains a NP-hard problem
(minimum set cover problem). Suppose that the testing costs
for all the links are1, the probability that a link is lossy is
1−ε, ε ∈ (0, 1), andε is close to 0. LetP denote the set of bad
paths, i.e.,P = {P1, . . . , PN}. Let Pi denote the set of bad
paths that use linkli, i.e.,Pi = {Pj | rij = 1}, i = 1, . . . ,M .
It is clear thatPi ⊆ P. SupposeT is an optimal decision
tree with the expected cost ofC. Without loss of generality,
assume that the links tested in the leftmost branch ofT are
l1, . . . , lm. That is, the first link tested isl1; if it is lossy, the
second link tested isl2, and so on. In the following, we prove
thatP1, . . . ,Pm is a minimum set cover forP.

First, we have
⋃m

i=1 Pi = P. This is because the leftmost
branch terminates with a leaf node, where all bad paths have
been explained. Since the set of bad paths that the leftmost
branch explains is

⋃m
i=1 Pi, we have

⋃m
i=1 Pi = P. We next

prove thatP1, . . . ,Pm is a minimum set cover forP. Suppose
that the links tested in the leftmost branch are replaced by
l′1, . . . , l

′
m′ . Let this new tree beT ′ with the expected cost of

C ′. It is clear that
⋃m′

i=1 P ′i = P, whereP ′i is the set of bad
paths that use linkl′i. We only need to show thatm′ ≥ m.
For treeT , we have

C ≥ 1 + (1− ε) + · · ·+ (1− ε)m−1 (1)

This is becauseC is no less than the total testing cost in the
leftmost branch ofT . In the leftmost branch, the expected cost
for testing l1 is 1, the expected cost of testingl2 is (1 − ε)
because its testing cost is 1 and the probability that it is tested
is (1−ε) (i.e., whenl1 is lossy). Similarly, the expected testing

cost of testinglm is (1 − ε)m−1. Summing up the expected
costs of all links tested in the leftmost branch, we have (1).
For treeT ′, let C ′0 be the expected cost for testing the leftmost
branch. LetT ′i denote the subtree that is connected to the right
branch of the AND node that inspectsl′i (i.e., whenl′i is good),
i = 1, . . . , m′. Let C ′i denote the expected cost ofT ′i . Then

C ′0 = 1 + (1− ε) + · · ·+ (1− ε)m′−1 (2)

C ′i ≤ ε(1− ε)i−1(2M−i − 1) (3)

where (2) is for the same reason as we explained for (1), the
inequality in (3) is becauseT ′i is at most a balanced binary
tree of heightM − i − 1, with the maximum testing cost of
(2M−i − 1). SinceC ′ =

∑m′

i=0 C ′i, we have

C ′ ≤ 1 + (1− ε) + · · ·+ (1− ε)m′−1

+ ε(2M−1 − 1) + · · ·
+ ε(1− ε)m′−1(2M−m′ − 1) (4)

From the assumption thatT is an optimal decision tree, we
have C ≤ C ′. From (1) and (4), we can always find an
ε close to 0 so thatC ≤ C ′ can only be satisfied when
m ≤ m′. Therefore,P1, . . . ,Pm is a minimum set cover
for P. In summary, we have proved that a special instance
of the optimal sequential testing problem embodies a NP-hard
problem (minimum set cover problem). Therefore, the optimal
sequential testing problem is NP-hard.

B. Greedy Algorithm

Since the sequential testing problem is NP-hard, we develop
a heuristic scheme to solve it. Observe that, during sequential
testing, as we reveal the status of one link, this knowledge may
render testing some other links unnecessary. For instance, in
the example in Fig. 2(a), after knowing thatl1 is lossy, testing
links l2, l3 and l4 becomes unnecessary; after knowing that
l1 and l2 are good, testingl3 and l4 becomes unnecessary.
Therefore, revealing the status of a link may lead to cost
savings (from the links that do not need to be tested due to this
knowledge). This saving subtracted by the testing cost of this
link is the gain from testing this link. Our scheme is greedy
in nature: each time it tests the link that provides the highest
gain among all the potential bad links that need to be tested.

Before presenting our scheme, we first describe two types
of links whose status can be determined without testing.
We refer to them asnon-responsibleand responsible links,
respectively. A non-responsible link is a link that we determine
as good without testing (we may discover that it is bad in a
later iteration), i.e., it is used by none of the bad paths to
be explained (hence testing it does not provide any further
information in explaining bad paths). A responsible link is a
link that we determine as bad without test, i.e., there exists
at least one bad path that can only be explained by this link
being lossy. In the example in Fig. 2(a), after knowing that
l1 is lossy, we identifyl2, l3 and l4 as non-responsible links;
after knowing thatl1 and l2 are good, we identifyl3 and l4
as responsible links.



We now describe our scheme in detail. LetL denote the
set of potential bad links that needs to be tested. InitiallyL =
{l1, . . . , lM}. Let P denote the set of bad paths that needs
to be explained. InitiallyP = {P1, . . . , PN}. A decision in
sequential testing picks a link fromL to test, then, based on
the test result, removes a set of links that does not need to be
further tested fromL, and removes a set of paths that has been
explained fromP. This process continues untilP is empty.
We definePi as the set of bad paths that can be explained by
link li being lossy. ThenPi is the set of bad paths that uses
li, i.e.,Pi = {Pj | rij = 1}. We next describe how to adjust
L andP after each test. Suppose linklk is tested. Then we
removelk from L (since it does not need to be tested further).
Depending on the test result, we adjustL andP as follows.

• If lk is bad, all the bad paths inPk have been explained,
and hence can be removed fromP. After removingPk

from P, we may discover non-responsible links. We
identify li ∈ L as a non-responsible link ifPi ∩ P = ∅,
i.e., none of the bad paths that needs to be explained uses
li. After identifying non-responsible links, we remove
them fromL.

• If lk is good, after removinglk from L, we may discover
responsible links. We identifyli as a responsible link if
there exists a bad pathPj ∈ P that can only be explained
by li being bad (i.e.,Pj usesli and does not use any
other link in L). After identifying responsible links, we
remove these links fromL, and remove all the bad paths
that use these links fromP, which may further lead to
non-responsible links to be removed fromL.

During sequential testing, each time we pick the link
that provides the maximum gain for the currentL and
P. When givenL and P, the gain from testing a link is
obtained as follows. For linklk ∈ L, let Gb

k denote the
cost saving when knowinglk is bad; let Gg

k denote the
cost saving when knowinglk is good. To obtainGb

k, we
assume lk is bad and identify a set of non-responsible
links as described earlier. ThenGb

k is the sum of the
testing costs of all the non-responsible links thus identified.
Similarly, to obtainGg

k, we assumelk is good and identify
a set of responsible and non-responsible links as described
earlier. Then Gb

k is the sum of the testing costs of all
the responsible and non-responsible links thus identified.
Let Gk be the expected gain from knowing the status of
link lk. Then Gk = pkGb

k + (1 − pk)Gg
k − ck, where pk

is the probability thatlk is bad, andck is the cost of testinglk.

Our scheme is summarized in Algorithm 1, whereLb

denotes the set of lossy links discovered in an iteration,L is the
set of potential bad links that needs to be tested, andP is the
set of bad paths to be explained. Lines 1-3 initializeLb = ∅,
L = {l1, . . . , lM}, andP = {P1, . . . , PN}, respectively. Lines
4-11 identify responsible and non-responsible links, and adjust
Lb, L andP accordingly before testing any link. Afterwards,
the algorithm runs in a loop and stops when all lossy paths
have been explained (i.e.,P is empty). In the loop, it calculates

Algorithm 1 Sequential Testing (Greedy Scheme)
1: Lb = ∅
2: L = {l1, . . . , lM}
3: P = {P1, . . . , PN}
4: for ∀li ∈ L s.t. li is a responsible linkdo
5: L = L \ {li}
6: Lb = Lb ∪ {li}
7: P = P \ Pi

8: end for
9: for ∀li ∈ L s.t. li is a non-responsible linkdo

10: L = L \ {li}
11: end for
12: while P 6= ∅ do
13: for ∀li ∈ L do
14: calculate the gain from knowing the status ofli, Gi

15: end for
16: k = arg maxi Gi

17: test link lk
18: L = L \ {lk}
19: if link lk is lossythen
20: Lb = Lb ∪ {lk}
21: P = P \ Pk

22: for ∀li ∈ L s.t. li is a non-responsible linkdo
23: L = L \ {li}
24: end for
25: else
26: for ∀li ∈ L s.t. li is a responsible linkdo
27: L = L \ {li}
28: Lb = Lb ∪ {li}
29: P = P \ Pi

30: end for
31: for ∀li ∈ L s.t. li is a non-responsible linkdo
32: L = L \ {li}
33: end for
34: end if
35: end while
36: repair all links inLb

the expected gain for each link that needs to be tested, and tests
the one with the highest gain. The calculation of the gain for
a link is as described earlier and is presented formally in the
Appendix. The algorithm then adjustsL, P andLb according
to the test result: lines 20-24 are the adjustment when the
tested link is bad; lines 26-33 are the adjustment when the
tested link is good. At the end, the algorithm repairs all the
links that are found lossy (i.e., those inLb).

We next use an example to illustrate our scheme. The
topology is shown in Fig. 3, where noden0 is the sink and
nodesn3, . . . , n7 are the sources. Fig. 3 shows eight links,
l1, . . . , l8. The ground truth is that linksl1, l6, l7 and l8 are
bad. The cost for testing a link is 1 unit. The probability
that a link is lossy isp = 0.2. We first assume that we
know complete path information. In this case, end-to-end data
indicate that all paths are lossy. We denote the bad paths
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Fig. 3. An example to illustrate the greedy scheme.

as P1 = (l3, l1), P2 = (l4, l1), P3 = (l5, l1), P4 = (l6),
P5 = (l7, l2), and P6 = (l8, l2). From the routing matrix,
for link li, we obtainPi, the set of bad paths that useli.
Then P1 = {P1, P2, P3}, P2 = {P5, P6}, P3 = {P1},
P4 = {P2}, P5 = {P3}, P6 = {P4}, P7 = {P5}, and
P8 = {P6}. At the beginning,Lb = ∅, L = {l1, . . . , l8},
and P = {P1, . . . , P6}. Without any testing, we identifyl6
as a responsible link since it is only used byP4, and P4 is
lossy. Therefore, we removel6 from L, removeP6 = {P4}
from P, and addl6 to Lb. For the rest of the links, we
calculate their gains asG1 = 3p + 3(1 − p) − 1 = 2, G2 =
2p + 2(1− p)− 1 = 1, G3 = G4 = G5 = 3(1− p)− 1 = 1.4,
and G7 = G8 = 2(1 − p) − 1 = 0.6. The expected gainG1

is obtained as follows. Ifl1 is bad, thenP1, P2 and P3 are
explained and hence we do not need to test linksl3, l4 andl5,
leading to a saving of 3; ifl1 is good, thenl3, l4 andl5 are bad
without the need of test, leading to a saving of3. Therefore,
G1 = 3p+3(1−p)−1 = 2. The expected gainG3 is obtained
as follows. If l3 is bad, then it leads to a saving of 0; ifl3
is good, thenl1 must be bad, which makes testingl4 and l5
unnecessary (sinceP2 andP3 have been explained byl1), and
hence the total saving is3. Therefore,G3 = 3(1−p)−1 = 1.4.
The gains for other links are obtained in a similar manner.
Since testingl1 provides the highest gain, we choose to test
l1. The result is thatl1 is lossy. We therefore removel1 from
L, removeP1 = {P1, P2, P3} from P, and addl1 to Lb. We
then identifyl3, l4 andl5 as non-responsible links and remove
them fromL. For the rest of the links (i.e.,l2, l7, l8), we again
calculate their gains, and select to testl2 since it provides the
highest gain. The result is thatl2 is good. We therefore remove
l2 from L, identify l7 and l8 as responsible links, and hence
add them toLb and remove the paths that they use fromP.
At this time,P is empty, the iteration ends, and all lossy links
have been identified and repaired (end-to-end data in the next
iteration will indicate that all paths are good). To summarize,
our algorithm uses one iteration and two tests to identify all
lossy links.

Let us look at the above example again assuming that we
only know probabilistic path information. In this case, we
consider five source-sink pairs, all identified as bad from
end-to-end data. Denote these bad pairs asP1 = (l3, l1),
P2 = (l4, l1), P3 = (l5, l6, l1), P4 = (l7, l2), andP5 = (l8, l2).
The greedy algorithm will testl1 and thenl2, and identify
l1, l7, l8 as bad links. After these links are repaired, in the

next iteration, we find that onlyP3 is lossy. SinceP3 uses
three links,l1, l5 andl6, andl1 andl5 are used by good pairs,
we identify l6 as bad. To summarize, our algorithm uses two
iterations and two tests to identify all lossy links.

V. PERFORMANCE EVALUATION

We evaluate the performance of our greedy algorithm
through extensive simulation (using a simulator that we de-
veloped) in a sensor network. This network is deployed in
a 10 unit × 10 unit square. A single sink is deployed at
the center, and500 other nodes (sources and/or relays) are
uniformly randomly deployed in the square. The transmission
range of each node is 3 units. At a given point of time, the
paths from the sources to the sink form a reversed tree. In
the tree, noden1 has a directed link ton2 if n2 is in the
transmission range ofn1, andn2 forwards data forn1.

We say a link is bad if its transmission rate lies below
0.8 (i.e., its loss rate is above0.2); otherwise, it is good.
We use two loss models. In the first model, a good link has
transmission rate of0.99 and a bad link has transmission
rate of 0.75 (this model is also used in [4], [5]). In the
second loss model, a good link has transmission rate uniformly
distributed in [α, 1] and a bad link has transmission rate
uniformly distributed in[0, β], α > 0.8 andβ < 0.8. We only
describe the results under the second loss model; the results
under the first one are similar.

We assume the losses at a link follow a Bernoulli or Gilbert
process. Under Bernoulli process, a packet traversing a link is
dropped with a probability that is equal to the link loss rate.
Under Gilbert process, a link is in a good or bad state. When
in a good state, the link does not drop any packet; while in a
bad state, the link drops all packets. The transition probabilities
between good and bad states are chosen so that the average
loss rate is what assigned to the link. We only show the results
under Bernoulli loss process; the results under Gilbert loss
process are similar (since our algorithm uses average loss rates
and hence is not sensitive to the loss process).

We assume all the links have the same testing costs of 1 unit.
If a network has been operating for a long time, the probability
that a link is lossy can be estimated from historical data.
Otherwise, the probability is unknown and one may assume
that all links have the same probability of being lossy (as in
[6]). In the following, we assume the latter case, and letp
denote the probability that a link is lossy. We setp to 0.2,
0.4, 0.6, or 0.8 and find that our scheme is not sensitive to the
choice ofp. The results below are forp = 0.2.

We consider both static and dynamic routing. Under static
routing, the paths from the sources to the sink are fixed,
and we know the complete path information. Under dynamic
routing, the routing tree from the sources to the sink is chosen
randomly from multiple trees at every time unit, and we
assume a path report service that reports path information
periodically to the sink. When this service runs at every time
unit, it provides complete path information; when it runs at
coarser time scales, it provides probabilistic path information
and the probability to use a route is estimated from the



frequency that this route is used. For each topology, we vary
the percentage of lossy links from1% to 30%, and randomly
choose lossy links. For simplicity, we assume that once a lossy
link is repaired, it remains good (although our scheme can
handle the case where a repaired link becomes lossy again in
a later iteration).

We compare our sequential testing scheme with two existing
studies [6], [7] that also localize and repair all faults in a
network (Section I describes them briefly). One approach in [7]
tests a single link in each iteration, which requires a large
number of iterations to localize and repair all lossy links (the
number of iterations increases linearly with the number of
bad paths, and it can require 30 iterations for only30 bad
paths; while in all the settings we investigate, the average
number of iterations under our scheme is below 6, even for
over 600 bad paths). To reduce the number of iterations, [7]
proposes another approach that tests multiple links in parallel.
This approach is similar in spirit to the exhaustive inspection
approach [6], and under our setting (i.e., all links have the
same probability of being lossy and the same testing cost),
the best heuristic using this approach is essentially the same
as exhaustive inspection. In the following, we only present the
comparison results of our scheme and exhaustive inspection3.

We also compare our greedy scheme with a baseline sequen-
tial testing scheme, which differs from the greedy scheme in
that it randomly selects a link (from the remaining potential
lossy links) to test, instead of choosing the one that provides
the maximum gain. We refer to this baseline scheme asrandom
sequential testing.

We next report the results under static and dynamic routing
respectively. The performance metrics we use are thenumber
of iterationsrequired to identify all lossy links andtotal testing
cost. Since the testing cost of each link is 1 unit, the total
testing cost equals to the number of link that are tested. We
normalize the total testing cost by the number of lossy links
in the network, and refer to the resulting metric asnormalized
testing cost.

A. Static routing

We build a routing tree as a spanning tree rooted at the sink.
The leaves of the tree are the sources. Each intermediate node
in the tree has the number of branches uniformly distributed
in [1, B], whereB = 10 or 5. A tree generated usingB = 5
is “taller” and “thinner” than one generated usingB = 10. A
good link has reception rate uniformly distributed in[0.95, 1];
a bad link has reception rate uniformly distributed in[0, 0.60].
In this setting, we can find a threshold to determine whether a
path is good or bad. This is because for a path ofh links, its
reception rate is at least0.95h if it is good and is at most0.60
otherwise. Since0.95h > 0.60 (h ≤ 5 whenB = 10 andh ≤
7 whenB = 5), we can find a threshold to determine whether
this path is good or bad. In particular, we use(0.95h+0.60)/2
as the threshold. In each iteration, a source sends400 packets

3When implementing exhaustive inspection, we use the inference algorithm
in [24], which is applicable to general topologies and is the same as that in [6]
for a tree topology (the algorithm in [6] only considers trees).
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Fig. 4. Simulation results under static routing,B = 10.
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Fig. 5. Simulation results under static routing,B = 5.

to the sink; the reception rate of a path is estimated from these
packets (when using 400 packets, the decision on whether a
path is good or bad is correct with probability close to one in
our setting). Each confidence interval below is obtained from
150 simulation runs, using five randomly generated routing
trees and 30 simulation runs in each tree.

Fig. 4 plots the results whenB = 10. The results of
exhaustive inspection, and greedy and random sequential
testing are plotted in the figure. We observe that all three
schemes require only a few iterations to localize all lossy
links. Under exhaustive inspection, the normalized testing cost
is at least 1 (it is higher than 1 since some identified links
are false positives). Under the two sequential testing schemes,
the normalized testing costs are below 1. Furthermore, the
normalized testing cost under greedy sequential testing is
much lower than that under random sequential testing. It
around 0.2 for all the settings, indicating that only a small
fraction of links (0.002 to 0.06 when the fraction of lossy link
changes from 0.01 to 0.30) needs to be tested to localize all
lossy links.

Fig. 5 plots the results whenB = 5. As expected, the
number of iterations and the normalized testing cost are larger
than those whenB = 10 for all the three schemes, since end-
to-end data in a “taller” and “thinner” tree posses a larger
amount of ambiguity in determining the status of individual
links. In this case, all three schemes still need only a few
iterations to localize all lossy links; greedy sequential testing
still maintains low normalized testing cost (around 0.4 for all
the settings), while both exhaustive inspection and random
sequential testing have normalized testing costs above 1.
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Fig. 6. Simulation results under dynamic routing when knowing complete
path information,B = 5.

B. Dynamic routing

Under dynamic routing, we assume the routing tree from the
sources to the sink is chosen randomly with equal probability
from two trees at every time unit. This is motivated from the
measurement results that for each source, a small number of
paths carry most traffic in a sensor network under dynamic
routing [5]. The two routing trees have the same set of
leaves (which are the sources), and differ in the structure of
intermediate nodes (we form the second tree by randomly
changing the parents of the nodes in the first tree). Again,
an intermediate node has the number of branches uniformly
distributed in [1, B], B = 10 or 5. In all the topologies we
generated, above 94% and 91% of the sources use two paths
when B = 10 and 5, respectively, the rest of the sources
use one path. For a source that uses two paths, the path
lengths are the same. Again, each confidence interval below
is obtained from 150 simulation runs, over five randomly
generated topologies and 30 simulation runs in each topology.

When knowing complete path information, the settings for
good and bad links are the same as those in the static routing.
In each iteration, a source sends800 packets to the sink (if a
source uses two paths, approximately400 packets are sent on
each path). Fig. 6 plots the results whenB = 5 (the results
when B = 10 are slightly better, figure omitted). Again, all
three schemes require a few iterations to localize all lossy
links. The normalized testing costs under all three schemes
are lower than those under static routing (see Fig. 5). This
is because the path diversity when using two routing trees
leads to less ambiguity than that when using a single routing
tree. Last, the normalized testing cost under greedy sequential
testing is much lower than that under the other two schemes.
It is below 0.3 for all the settings.

When knowing probabilistic path information, a good link
has reception rate uniformly distributed in[0.99, 1]; a bad link
has reception rate uniformly distributed in[0, 0.60]. In this
setting, we can find a threshold to determine whether a source-
sink pair is good or bad. This is because, for a source using
two paths with equal probability, each path ofh links, the
source-sink reception rate is at least0.99h when the source-
sink pair is good, and is at most(1 + 0.6)/2 otherwise. Since
0.99h > (1 + 0.6)/2 (h ≤ 5 whenB = 10 and h ≤ 7 when
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Fig. 7. Simulation results under dynamic routing when knowing probabilistic
path information,B = 5.

B = 5), we can find a threshold to determine whether the
source-sink pair is good or bad. In particular, we choose the
threshold to be in the middle of(1 + 0.6)/2 and 0.99h. In
each iteration, a source sends800 packets to the sink; and the
path report service sends40 path reports (it runs every 20 time
units) to the sink for each source. Fig. 7 plots the results when
B = 5 (the results whenB = 10 are slightly better, figure
omitted). Again, all three schemes require a few iterations, and
greedy sequential testing incurs much lower testing costs than
the other two schemes. Observe that the testing costs under
all three schemes are much larger than those when knowing
complete path information. This is due to a larger amount
of ambiguity when not knowing the exact path information.
Under greedy sequential testing, the number of links tested is
close to the number of lossy links (the normalized testing cost
is close to 1).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we formulated an optimal sequential testing
problem that carefully combines active and passive measure-
ments for fault localization in wireless sensor networks. This
problem determines an optimal testing sequence of network
components based on end-to-end data to minimize testing cost.
We proved that this problem is NP-hard and proposed a greedy
algorithm to solve it. Extensive simulation demonstrated that
our scheme only requires a few iterations and testing a small
subset of links to identify all lossy links in a network.

As future work, we are pursuing in the following directions:
(1) evaluating the performance of our approach under other
scenarios, e.g., for heterogeneous loss probabilities that change
over time, and for different faulty component distributions
inside the network (e.g., the location of faulty components
follows a more clustered distribution instead of uniform ran-
dom distribution), (2) developing more scalable approaches to
reduce the overhead in obtaining complete path information
under dynamic topologies, and (3) developing alternative se-
quential testing algorithms.

APPENDIX

Algorithm 2 describes how to calculate gain,Gk, for link
lk ∈ L in the greedy algorithm. Lines 3-7 obtain the cost
saving when assuminglk is bad. Lines 8-17 obtain the cost



saving when assuminglk is good. Last, line 19 obtains the
gain.

Algorithm 2 Calculate gain, Gk, for link lk ∈ L
1: Gb

k = Gg
k = 0

2: L′ = L,P ′ = P
3: P = P \ Pk, L = L \ {lk}
4: for ∀li ∈ L s.t. li is a non-responsible linkdo
5: L = L \ {li}
6: Gb

k = Gb
k + ci

7: end for
8: L = L′,P = P ′, L = L \ {lk}
9: for ∀li ∈ L s.t. li is a responsible linkdo

10: L = L \ {li}
11: P = P \ Pi

12: Gg
k = Gg

k + ci

13: end for
14: for ∀li ∈ L s.t. li is a non-responsible linkdo
15: L = L \ {li}
16: Gg

k = Gg
k + ci

17: end for
18: L = L′,P = P ′
19: Gk = pGb

k + (1− p)Gg
k − ck

20: returnGk
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[19] T. Schmid, H. Dubois-Ferriére, and M. Vetterli, “Sensorscope: experi-
ences with a wireless building monitoring,” inProc. of Workshop on
Real-World Wireless Sensor Networks, 2005.

[20] N. Reijers, G. Halkes, and K. Langendoen, “Link layer measurements
in sensor networks,” inMASS, (Fort Lauderdale, FL), October 2004.

[21] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and
S. Wicker, “Complex behavior at scale: an experimental study of low-
power wireless sensor networks,” Tech. Rep. UCLA/CSD-TR 02-0013,
February 2002.

[22] M. Zuniga and B. Krishnamachari, “An analysis of unreliability and
asymmetry in low-power wireless links,”ACM Transactions on Sensor
Networks, vol. 3, June 2007.

[23] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic, “Models
and solutions for radio irregularity in wireless sensor networks,”ACM
Transactions on Sensor Networks, vol. 2, pp. 221–262, May 2006.

[24] H. X. Nguyen and P. Thiran, “The boolean solution to the congested
IP link location problem: Theory and practice,” inProc. of IEEE
INFOCOM, (Alaska, USA), 2007.


