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Abstract—Faulty components in a network need to be localized passive measurement, we propose a novel approach that
and repaired to sustain the health of the network. In this yses active measurement to resolve ambiguity in passive
paper, we propose a novel approach that carefully combines oaqrement, and uses passive measurement to guide active
active and passive measurements to localize faults in wireless ' . - . ;
sensor networks. More specifically, we formulate a problem of me'asurement to reduce teStmg_ cost (i.e., cost '”C,‘%”ed rom
optimal sequential testing guided by end-to-end daThis problem —active measurement, see Section Ill). More specifically, we
determines an optimal testing sequence of network components formulate a problem obptimal sequential testing guided by
based on end-to-end data in sensor networks to minimize testing end-to-end dataThis problem determines an optimal testing

cost. We prove that this problem is NP-hard and propose a gequence of network components that minimizes the total
greedy algorithm to solve it. Extensive simulation shows that

in most settings our algorithm only requires testing a very small tes'tlng cost: it picks the first component to be te,Sted_ (t.hrough
set of network components to localize and repaiall faults'in the ~ active measurement), based on the test result (i.e., it is faulty
network. Our approach is superior to using active and passive or not faulty) and the end-to-end data, it determines the next
measurements in isolation. It also outperforms the state-of-the- component to be tested. This sequential testing continues until
art approaches that localize and repair all faults in a network. the identified faulty components have explained all end-to-end
faulty behaviors. Since these identified faults may not have
included all faults in the network, we identify all faults by
solving the optimal sequential testing problem in iterations.
Wireless sensor networks have been deployed for a wiltean iteration, based on end-to-end data in this iteration, we
range of applications. A deployed sensor network may suffeslve the optimal sequential testing problem to identify a set
from many network-related faults, e.g., failure or lossy nodes faulty components. We then repair all the identified faulty
or links [1], [2]. These faults affect the normal operatiomomponents and start the next iteration. The iteration repeats
of the network, and hence should be detected, localized amdtil all end-to-end behaviors are normal. At this tinad,
corrected/repaired. Existing studies on sensor network fafdulty components have been identified and repaired.
localization use active or passive measurement (see Section lI)We prove the problem of optimal sequential testing is NP-
Active measurement incurs additional monitoring traffic (hard, and develop a greedy algorithm to solve it. We evaluate
node needs to monitor itself or its neighbors, and transntite performance of our algorithm through extensive simulation
the monitoring results locally or to a centralized server). lIh sensor networks of static and dynamic topologies. Our
hence consumes precious energy of sensor nodes, and gimulation results show that we only need a few iterations
reduce the lifetime of the network. On the other hand, it hasd testing a very small subset of components to localize all
the advantage that it can exactly pinpoint the faults. Passieilts in a network. These results demonstrate the benefits of
measurement uses existing end-to-end data inside the netwot. approach: it is superior to using active measurement alone
It introduces no additional traffic into the network, and hencsince it selectively tests a very small subset of components; it
is an attractive approach for energy-stringent sensor networisssuperior to fault inference using passive measurement since
On the other hand, it poses the challenge of fawniiérence it localizesall faulty components while fault inference may
since a faulty end-to-end behavior only indicates that sorsaffer from a large number of false positives and negatives [3],
components are faulty and does not dictate exactly whifh, [5].
components are faulty. Accurate inference from end-to-endOur approach also outperforms two state-of-the-art ap-
data (i.e., locating all faults with low false positives) is noproaches [6], [7] that identify and repair all faults in a
always possible because end-to-end measurement can hmtevork. These two approaches also run in iterations. The
inherent ambiguity (see Section llI). exhaustive inspection approach [6] differs from our approach
Motivated by the complementary strengths of active and that in each iteration, it inferen parallel (rather than in
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sequence) a set of potential faulty components from end-fault localization that solely relies on active measurement,
end measurement, and tests each identified component ard, a node may not report its status or its neighbors’ status
repairs the faulty ones at the end of the iteration. It has kmnestly, or an intermediate node may manipulate the for-
test all identified components because some of them maywarded messages or aggregates. Passive measurement using
false positives. Hence the number of tests is at least equalktdsting end-to-end data in sensor networks does not suffer
the total number of faulty components, while our approadihom the above drawbacks. Hartl et al. use traditional network
requires much less number of tests. The approach in [dmography techniques to infer node loss rates [3], and Mao
infers the best component to be tested in each iteration, atdal. use a factor graph decoding method to infer link loss
repairs the component if necessary. Since it only tests a singi¢es [4]. Both techniques, however, heavily rely on a data
component in an iteration, it may lead to a large numbeggregation procedure (that is used to guarantee correlation
of iterations to localize and correct all faults. To reduce themong packets). Furthermore, their assumption of a fixed
number of iterations, the authors also consider identifyirtgee limits their applicability. Nguyen et al. propose lossy
multiple faultsin parallel in an iteration, which is in a similar link inference schemes that use uncorrelated packets and take
spirit as exhaustive inspection [6] and suffers from the samecount of dynamic network topologies [5]. Their schemes,
drawbacks. however, may lead to a large number of false positives and
The rest of the paper is organized as follows. Section hiegatives in certain circumstances. Broadly speaking, fault
reviews related work. Section Ill presents the problem setference from end-to-end data falls into network tomography,
ting. Section IV describes our approach. Section V presems., inferring internal properties through end-to-end measure-
evaluation results. Finally, Section VI concludes the paper amknt. A rich collection of network tomography technigues has
presents future work. been developed in the past (see [14] for a review). Most of
these techniques are developed for wired networks and cannot
be applied directly to wireless sensor networks. This is because
We consider localizing and correcting network-related faultaost of them rely on correlated packets (through multicast or
in a deployed sensor network. Most existing studies use eittstriped unicast packets) and require static topology. In wireless
active or passive measurement for this purpose. sensor networks, however, end-to-end data are not correlated
Active measurement provides accurate view of the netwoalkad topology may change over time.
at the price of introducing additional monitoring traffic into the Our approach differs from existing studies on sensor net-
network. Zhao et al. design a residual energy scan for a sensork fault localization in that it carefully combines active
network that depicts the remaining energy inside the neteasurement and end-to-end data. The study in [2] also uses
work [8]. From the scan, a network operator can discover arezzd-to-end data together with active measurement: it uses
with low residual energy and take corrective actions. The saraed-to-end data to detect faults, which in turn trigger active
authors also propose an architecture that computes aggregateasurement and root-cause analysis. It, however, does not
for sensor network monitoring [9]. This approach continuousiytilize end-to-end data to guide selective active measurement
collects aggregates (sum, average, count) of network proper{ies reduce testing cost) as in our study. Two existing stud-
(e.g., loss rates, energy level), triggers scan of the netwaes [6], [7] combine end-to-end measurement and active testing
when observing sudden changes in the aggregates, and furtbadentify and correct all faults in a network. Our approach
debugs the problem through detailed dumps of node statestperforms these two approaches (see Sections | and V).
To limit the scope of the monitoring traffic to a local area, Last, sequential testing has been studied in the fields of
Hsin et al. propose a distributed monitoring architecture whemeachine troubleshooting, medical diagnosis and computer
each node monitors its neighbors by periodically sending thetacision making (e.g., [15], [16], [17]). Our sequential testing
probes [10]. More recently, Tolle et al. design a sensor netwgokoblem differs from that in other fields in two important
management system (SNMS) that allows a network operatmpects: (i) our sequential tests are on individual components
to query the network for health information [1]. Whitehouséinstead of multiple components) with the guidance of end-to-
et al. propose Marionette, which extends SNMS by providirend data that provide insights into multiple components; and
users the ability to call functions, and read or write variablgs) we detect multiple faults instead of a single fault that is
in embedded applications [11]. Ramanathan et al. propasften assumed in other fields.
Sympathy, a tool for detecting and debugging failures in
sensor networks [2]. Sympathy carefully selects metrics that )
enable efficient failure detection and includes an algorithm thAt ASsumptions
analyzes root causes. Rost and Balakrishnan design a healt@onsider a sensor network where sensed data are sent
monitoring system, Memento, that delivers state summarigseriodically) from sources to a sink. As in [2], we assume
and detects node failures [12]. Last, Gruenwald et al. propabe amount of end-to-end data can be used to detect faults
a remote management system for a wide area sensor netwiarkhe network: insufficient amount of data indicates faults,
that contains multiple and heterogenous networks [13].  while sufficient amount of data indicates that the network is
Active measurement consumes precious resources of tperating normally. The status of a component (i.e., whether
senor network. Furthermore, malicious behaviors can mislefadilty or not) can be tested through active measurement, e.g.,
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Fig. 1. An example network topology.

by monitoring the component locally, or looking into the inter- (a) topology (b) decision tree

nal states of relevant components (e.g., using [11]). This test

incurs atesting costlt is due to the extra energy consumptiorfig. 2. An example of sequential testing. In (@), is the sink,n3 andn.
(for monitoring and transferring the monitoring result |oca||)¢re the sources, and end-to-end data indicate that both paths are lossy.
or to the sink) or personnel time when a personnel is involved.

A fault in a sensor network can be of various forms. In the ] .
rest of the paper, for ease of exposition, we only consigegnsor networks since measurement studies have shown that

faults in the form of lossy links (we briefly discuss Ioss}'”k loss rz_;ltes in sensor networks are _elther large or small,
nodes in Section 11I-C). In particular, our goal is to locat@ut rarely in between [20], [3] We next illustrate when the
persistentlylossy links that are used in routing (we do nofPove assumption holds. Consider a patth dinks. Assume
consider transient lossy links since they are not caused $90d links have reception rate at leastwhile bad links have
persistent faults that need to be localized and corrected). V§&eption rate no more thaf, 0 < § < a < 1. Then the
say link{ is lossyor bad if its reception rate (defined as one?P0ve assumption holds whert > 3. This is because when
minus the link loss rate) lies below a threshadid,Otherwise, the path contains no bad links, the path reception rate is at
we say! is not lossyor good The threshold depends on thd€ast o’ otherwise, it is no more thag. Therefore, when
application, and is known beforehand. We assume the losse§ at> 3 there exists a threshold (any number(j o)) so
different links are independent of each other (as shown in [5{f}at the path contains at least one bad link if and only if its
Furthermore, if a link is good (or bad) on one path, then it jeception rate is below this threshéld=or convenience, we

good (or bad) on all paths that use the link. say pathP is lossyor bad if its reception rate is below the
eshold,tp (in other words, it contains at least one lossy

The routing path from a source to the sink can be static T
k); otherwise, it isnot lossyor good

dynamic (e.g., due to a dynamic routing technique [18]). Fig. ik ) o0 i i
shows an example topology, where souregsand s; use a When only I_<n0W|ng p_robablllstlc path |nf0r_n_1at|on, we
single path; source, uses two paths dynamically. We considefi€fine source-sink reception rat@s the probability that a
two settings: (1) we knoveompletepath information, i.e., we packet is sent from a source to the sink successfully. It can
know the path used by a source at any point of time; and (2) §& estimated from end-to-end data: wherpackets are sent
only know probabilistic path information, i.e., we only know TOmM @ source to the sink, and packets arrive successfully,

the set of paths that are used by a source and the probabffit}® €stimated asn/n. We again assume that there exists a

to use each path. The first setting applies to static topologid¥€shold so that at least one link used by a source-sink pair

and dynamic topologies where up-to-date path information |%.lossyif and only ?f the source-sink rece_ption _rate is _below

available (e.g., obtained through a path reporting service [16]S threshold. Again, we say a source-sink pair (or simply a

or from information embedded in data packets [18]). THRair) islossyor badif its reception rate is below the threshold;

second setting applies to dynamic topologies where it is t9g1€rwise, it isnot 'OSSYOf ggod _

costly to obtain complete path information (e.g., it might The above assumptions imply that all the links on a good

consume too much energy). path/pair are good, and a bad path/pair contains at least one
When knowing complete path information, we defipath bad link. Therefore, the potential bad links are the ones that

reception rateas the probability that a packet traverses a pafi¢ Used by bad paths/pairs, excluding those used by good

successfully. It can be estimated from end-to-end data: whigths/pairs.

n packets are transmitted along a path andpackets are

received successfully, it is estimated 'agn. As mentioned  *Several other studies reveal links that have intermediate loss rates [18],
carer, we assume the amount of end-to-end dara idicafdl 22 S e ype of I ca e s regaie fmact o
whether a fault exists along a path. In particular, we assumgstocol used in the sensor network avoids using stich links, and hence most
for path P, there exists a thresholdp, so that it contains links used in the routes have either large or small loss rates.

at least one bad linkf and only if its reception rate is ﬁrszt'lsf’tgri‘git?r?éawaeng%”(ghgec';s""i?]e[tg]f)’r ;ﬁg*}haerfhcrﬁzzsi'ggemgg igath by
below ¢p. This assumption holds when good and bad lin Ids. An extreme case 'in”which the ’above condition holds is whenO,
differ significantly. It is a reasonable assumption for wireles., a bad link is a failure link.



B. Sequential testing guided by end-to-end data testing cost of a link is the testing cost of this link times

. the probability that this link is tested. More conveniently, the
Using end-to-end data, we have narrowed down the poteniighected total testing cost can be calculated from the binary

lossy links to the set of links that are used by bad paths/paifcision tree: it is the sum of the expected testing costs over
excluding those used by good paths/pairs (since all the linkg AND nodes, where the expected testing cost of an AND
on a good path/pair are good). Pinpointing which potentighqe js the testing cost for the link tested at this AND node
lossy links arg indeed lossy requires tes.tlng |nd_|V|duaI_ I'nkﬁmes the probability that this AND node is reached in the
We now motivate the need of sequential testing using e Anoptimal solution to the sequential testing problem is
example in Fig. 2(a). This example shows two paths,= e that leads to the minimum expected total testing cost.
(ng,n2,m1,m0) and Py = (n4,n2,m1,n0). SUPPOSE €Nd-10- ~ \ye next use an example to illustrate sequential testing.
end data indicate that both paths are bad. When determiniag ' »y) plots a binary decision tree (not necessarily the
whlch I!nks are lossy, we face the following ambiguities. F'rsbptimal one) for the example in Fig. 2(a). The root of the
since links/, and /, are used by both paths, they cannQfee contains all lossy paths and potential lossy links. The
be differentiated solely from end-tp—end data. Second, SINERt link tested isly. If 1, is bad, sequential testing stops
both paths are lossy, the lossy links can be the comm@f,ce hoth lossy paths have been explained) and identifies
links (i.e., [; and/orl,), both leaf links (i.e./; andls), or @ e |ossy link,l,. Otherwise, the set of potential bad links
combination of the above two scenarios. The above amb'gufgyreduced tdly, I3, 14, and the next link tested i&. If I, is
can b_e resolved through.test_ing individual links. An advanta%%d, sequential testing stops and identifies one lossy fink,
of do!ng sequentlal testing is that "’,‘S W_e revea! the Status@{herwise, sequential testing stops and concludes that links
one link, this knowledge may provide information on otheg.,q; are lossy. The expected total testing cost of this decision
links, and hence inform later decisions. _ _ _ tree isc; + (1 — p1)ey since there are two AND nodes in the
We next formulate the problem of sequential testing guidegbcision tree; the expected testing cost of the AND node that
by end-to-end data. For simplicity, the formulation belowests/; is ¢;, while the expected testing cost of the AND node
assumes complete path information (the scenario where gt testsly is (1 — p1)co (sincels is only tested wherd, is
know probabilistic path information only differs in that weggod, which happens with the probability bf- p:).
use source-sink pairs instead of paths). A sequential testing\ote that we may not have identified all lossy links when
problem takes the following input: (i) a set of bad pathghe above sequential testing stops. For instance, in the scenario
Py,..., Py, that are identified from end-to-end data; (ii) qyhere both; and!; are lossy, it stops after finding link to
set of potential bad linksy, ..., Iy, which are the links pe |ossy. To identify all lossy links, we run sequential testing
used by bad paths but not used by good paths; (iii) & Sgtiterations; at the end of an iteration, we repair all lossy
of probabilities, p:, ..., py, wherep; € (0,1) denotes the |inks (using tools such as [2] to find out the root causes and
probability that link/; is lossy, and a set of COSts,, ..., i, remove the root causes) that have been found in the iteration.
wherec; > 0 denotes the testing cost for lirl; and (iv) & The jteration continues until all end-to-end behaviors are good.
routing dependency matrik = (ri;)ax v Wherer;; = 1if  The reason why we do not intend to find all lossy links in one
link I; is used by pathP; andr;; = 0 otherwise. iteration is that end-to-end data in a later iteration may reveal
A solution to the sequential testing problem is to determingk status at no additional testing cost. For instance, in the
the next link to test depending on the previous link that ighove example, if; is lossy and the next iteration shows no
tested, its corresponding test result (i.e., it is lossy or n@fssy links, then we know that the rest of the links are good
lossy), and end-to-end data, so that all bad paths are explaipgghout any additional test.
(i.e., each bad path contains at least one link that has beeur sequential testing problem differs from existing stud-
tested and found to be lossy). More conveniently, we caés [6], [5], [24] in important ways. The goal of existing studies
describe a solution to the sequential testing problem usiRgto find the most likely set of lossy links that explains the
a binary AND/OR decision tree. In the tree, an OR nodgulty end-to-end behaviors, while our goal is to minimize
represents the set of lossy paths to be explained and thsting cost. Therefore, we may purposely test a link that is
potential lossy links to explain them, an AND node represenigely to be good as long as it can reduce testing cost. Our
testing a link, and a leaf node represents an empty set of loggproach and the ones in existing studies can run in iterations
paths to be explained (i.e., all lossy paths have been explainggiil all lossy links are located and repaired. As we shall
and a set of bad links that has been identified to explain thee (Section V), our approach requires a similar number of
lossy paths. Each AND node has two branches, leading to twgrations and a much lower testing cost.
OR nodes based on whether the link tested is lossy or not. If _
the link is lossy, the AND node branches left and the arc fg- Discussion
marked with “B”; otherwise, the AND node branches right The above sequential testing formulation considers lossy
and the arc is marked with “G”. links. By simply replacing links with nodes, it applies to a
Theexpected total testing cosf a solution to the sequential scenario where faults are lossy nodes (similarly, by replacing
testing problem is the sum of the expected testing costs ovlieks with nodes, our scheme in Section IV applies to a lossy-
all links (in the input of the problem), where the expectedode scenario). Furthermore, by taking account of correlation



between a node and its adjacent links (e.g., all the linksst of testingl,, is (1 — ¢)™~!. Summing up the expected

adjacent to a lossy node can be lossy), the formulation ceosts of all links tested in the leftmost branch, we have (1).
be extended to a scenario where faults include both losBgr treeT”, let C| be the expected cost for testing the leftmost
links and nodes. Further investigation of this scenario is ldftanch. Letl denote the subtree that is connected to the right

as future work. branch of the AND node that inspeé{di.e., whenl; is good),
The goal of our sequential testing problem is to minimizé=1,...,m’. Let C! denote the expected cost Bf. Then
testing cost. In practice, minimizing the total number of , -
iterations to locate and repair all faulty components can also Co = 1+(1-g+-+1-9" (2)
be an important goal. Our formulation can be extended to Cl < e(l—e)i7t@Mt 1) (3)

incorporate this goal as follows. We can use a cost to represent ) .

the number of iterations required to locate and repair all faulfyere (2) is for the same reason as we explained for (1), the
components, and minimize a weighted sum of this cost and tRgauality in (3) is becausg; is at most a balanced binary
testing cost. Or we can formulate a constrained optimizatidi¢€ Of heightM —i —1, with the maximum testing cost of
problem that minimizes total testing cost under a constraif" * — 1). SinceC’ = 37", C}, we have

on the number of iterations, or minimizes the required number , r_
of iterations under a constraint on total testing cost. Further ¢ (1=t 1-gm T
exploration of these problems is left as future work. + @M 1)+

o ym'=1oM-m' _
IV. SEQUENTIAL TESTING SCHEME + ell—¢ (2 ) “)

In this section, we first prove that the sequential testirfgrom the assumption that is an optimal decision tree, we
problem formulated in Section Il is NP-hard. We then develdpave C' < C’. From (1) and (4), we can always find an
a greedy algorithm to solve it. e close to 0 so that < C” can only be satisfied when
m < m’'. Therefore,Py,...,P,, iS a minimum set cover
for P. In summary, we have proved that a special instance

Theorem 1:Optimal sequential testing guided by end-toef the optimal sequential testing problem embodies a NP-hard
end data is NP-hard. problem (minimum set cover problem). Therefore, the optimal

Proof: We prove the problem is NP-hard by showing thagequential testing problem is NP-hard. |
a special instance of this problem contains a NP-hard problem
(minimum set cover problem). Suppose that the testing co&s Greedy Algorithm

for all the links arel, the probability that a link is lossy is  gince the sequential testing problem is NP-hard, we develop
1—¢, € € (0,1), ande is close to 0. Le® denote the set of bad 5 heuristic scheme to solve it. Observe that, during sequential
paths, i.e.? = {P,..., Py}. Let P; denote the set of bad testing, as we reveal the status of one link, this knowledge may
paths that use link;, i.e., P; = {P; | rij = 1},i =1,..., M. render testing some other links unnecessary. For instance, in
It is clear thatP; C P. Supposel is an optimal decision the example in Fig. 2(a), after knowing thatis lossy, testing
tree with the expected cost @&f. Without loss of generality, |inks l»,l; and I, becomes unnecessary; after knowing that
assume that the links tested in the leftmost branch’ adre I, andl, are good, testing; andl, becomes unnecessary.

A. Complexity of the sequential testing problem

L., lm. Thatis, the first link tested i; if it is lossy, the Therefore, revealing the status of a link may lead to cost
second link tested i&, and so on. In the following, we prove sayings (from the links that do not need to be tested due to this
that Py, ..., Pn, is a minimum set cover fop. knowledge). This saving subtracted by the testing cost of this

First, we havelJ;Z, P; = P. This is because the leftmostjink is the gain from testing this link. Our scheme is greedy
branch terminates with a leaf node, where all bad paths haMenature: each time it tests the link that provides the highest
been explained. Since the set of bad paths that the leftmggin among all the potential bad links that need to be tested.
branch explains it Ji_, Pi, we havelJ;_, P; = P. We next — gefore presenting our scheme, we first describe two types
prove thatP,, ..., P, is @ minimum set cover foP. SUPPOSe of |inks whose status can be determined without testing.
that the links te;ted in the Ieftmo;t branch are replaced Q¥ refer to them ason-responsibleand responsiblelinks,
l1;- -5 1. Let this new tree bd” with the expected cost of regpectively. A non-responsible link is a link that we determine
C’. Itis clear that J;" , P; = P, whereP; is the set of bad as good without testing (we may discover that it is bad in a
paths that use link;. We only need to show that' > m. |ater iteration), i.e., it is used by none of the bad paths to
For treeT’, we have be explained (hence testing it does not provide any further

m—1 information in explaining bad paths). A responsible link is a
Czl+(l-g++{-0 @ link that we determine as bad without test, i.e., there exists
This is becaus€’ is no less than the total testing cost in that least one bad path that can only be explained by this link
leftmost branch of". In the leftmost branch, the expected codbeing lossy. In the example in Fig. 2(a), after knowing that
for testingl; is 1, the expected cost of testirlg is (1 —¢) ; is lossy, we identifyls,l3 andls as non-responsible links;
because its testing cost is 1 and the probability that it is testafier knowing thatl; andl, are good, we identifys and iy
is (1—e¢) (i.e., wheni; is lossy). Similarly, the expected testingas responsible links.



We now describe our scheme in detail. L&tdenote the Algorithm 1 Sequential Testing (Greedy Scheme)

set of potential bad links that needs to be tested. Initifly 1. £, =0
{l1,...,Ix}. Let P denote the set of bad paths that needs: £ = {l1,...,Im}
to be explained. InitiallyP = {Py,..., Py}. A decision in 3 P={P,..., Py}

sequential testing picks a link froif to test, then, based on 4

. for VI, € L s.t.1; is a responsible linklo

the test result, removes a set of links that does not need to lse £ = £\ {/;}

further tested fronC, and removes a set of paths that has beems:
7

explained fromP. This process continues unf? is empty.
We defineP; as the set of bad paths that can be explained bg
link I; being lossy. TherP; is the set of bad paths that uses 9

l;, i.e., P, ={P; | r; = 1}. We next describe how to adjust 10:

L and P after each test. Suppose lirik is tested. Then we 11
removel;, from L (since it does not need to be tested furtherj2
Depending on the test result, we adjustand P as follows.

« If I} is bad, all the bad paths iR, have been explained, 14f

13:

Ly=LyU {lt}

P=P\P;

: end for

. for VI, € L s.t.1; is a non-responsible linko
L£=L\{l}

: end for

: while P # () do

for VI; € £ do

calculate the gain from knowing the statusigfG;

and hence can be removed frgfh After removing Py 16: znid for a
from P, we may discover non-responsible links. We tes_t ﬁ;gkrlnaxl E
identify /; € £ as a non-responsible link ;NP =0, . \ {’; )
i.e., none of the bad paths that needs to be explained uses . .. ok
. I . . 19: if link [, is lossythen
l;. After identifying non-responsible links, we remove
20 Ly =Ly U {lk}
them from L. 1 D_p\P
« If I} is good, after removing, from £, we may discover for_w» \ ,Ckst I is a non-responsible linko
responsible links. We identify; as a responsible link if - i E \ {lj}. i p
there exists a bad pat®; € P that can only be explained . ¢
. . end for
by [; being bad (i.e.,P; usesi; and does not use any clse
other link in £). After identifying responsible links, we 26: for VI, € £ st L is a responsible linklo
remove these links fronf, and remove all the bad paths 7. r _li l-. o P
that use these links fror®, which may further lead to 08 r o ,C\ EJZ{}Z )
- ible link frofy b= &b~ 1k
non-responsible links to be removed frafn . P =P\ P
During sequential testing, each time we pick the linko: end for
that provides the maximum gain for the currefit and 3i1: for Vi; € £ s.t.l; is a non-responsible linko
P. When given£ and P, the gain from testing a link is 32: L=L\{l;}
obtained as follows. For link;, € L, let G% denote the 3a3: end for
cost saving when knowind,, is bad; let G denote the 34: end if
cost saving when knowingd, is good. To obtainG?, we 35 end while

assumel;, is bad and identify a set of non-responsibles: repair all links inZ,
links as described earlier. The? is the sum of the
testing costs of all the non-responsible links thus identified.

Similarly, to obtainGY, we assuméd;, is good and identify

a set of responsible and non-responsible links as descritibe expected gain for each link that needs to be tested, and tests
earlier. ThenGY is the sum of the testing costs of allthe one with the highest gain. The calculation of the gain for
the responsible and non-responsible links thus identifigallink is as described earlier and is presented formally in the
Let G) be the expected gain from knowing the status dfppendix. The algorithm then adjusts P and £, according

link I;. Then Gy, = piGY + (1 — pi)GY — ¢k, wherep, to the test result: lines 20-24 are the adjustment when the
is the probability that;, is bad, and, is the cost of testing,. tested link is bad; lines 26-33 are the adjustment when the
tested link is good. At the end, the algorithm repairs all the
links that are found lossy (i.e., those ih).

We next use an example to illustrate our scheme. The
topology is shown in Fig. 3, where nodg is the sink and
set of bad paths to be explained. Lines 1-3 initialize= (), nodesns,...,n; are the sources. Fig. 3 shows eight links,
L=A{l,...,lp}, andP = {P,..., Py}, respectively. Lines [;,...,ls. The ground truth is that link$,, s, l7 andls are
4-11 identify responsible and non-responsible links, and adjlstd. The cost for testing a link is 1 unit. The probability
Ly, £ andP accordingly before testing any link. Afterwardsthat a link is lossy isp = 0.2. We first assume that we
the algorithm runs in a loop and stops when all lossy patkaow complete path information. In this case, end-to-end data
have been explained (i.6?,is empty). In the loop, it calculatesindicate that all paths are lossy. We denote the bad paths

Our scheme is summarized in Algorithm 1, whefg
denotes the set of lossy links discovered in an iteratiois,the
set of potential bad links that needs to be tested,7ans the



next iteration, we find that onlyP; is lossy. SinceP; uses
three links,l1, I5 andlg, andl; andis; are used by good pairs,
we identify [ as bad. To summarize, our algorithm uses two
iterations and two tests to identify all lossy links.

V. PERFORMANCE EVALUATION

We evaluate the performance of our greedy algorithm
through extensive simulation (using a simulator that we de-
veloped) in a sensor network. This network is deployed in

Fig. 3. An example to illustrate the greedy scheme. a 10 unit x 10 unit square. A single sink is deployed at
the center, and00 other nodes (sources and/or relays) are
uniformly randomly deployed in the square. The transmission

as P, = (I3,l1), P = (lg,lh), Ps = (I5,l1), P = (lg), range of each node is 3 units. At a given point of time, the
Ps = (I7,13), and P = (lg,l2). From the routing matrix, paths from the sources to the sink form a reversed tree. In
for link I;, we obtainP;, the set of bad paths that uge the tree, node:; has a directed link tai, if ny is in the
Then P, = {P1, P, P3}, P = {Ps,Fs}, P3 = {P1}, transmission range of;, andn, forwards data fom;.

Py = {P}, Ps = {Ps}, Ps = {P4}, Pr = {Ps}, and We say a link is bad if its transmission rate lies below
Ps = {Ps}. At the beginning,L, = 0, £ = {l1,...,ls}, 0.8 (i.e., its loss rate is above.2); otherwise, it is good.
andP = {P,...,Ps}. Without any testing, we identifys We use two loss models. In the first model, a good link has
as a responsible link since it is only used By, and P, is transmission rate 0f).99 and a bad link has transmission
lossy. Therefore, we removg from £, removePs = {P,} rate of 0.75 (this model is also used in [4], [5]). In the
from P, and addig to L,. For the rest of the links, we second loss model, a good link has transmission rate uniformly
calculate their gains a&; = 3p+3(1 —p) — 1 = 2, G, = distributed in[«,1] and a bad link has transmission rate
2p+2(1—p)—1=1,G3 =G4 =G5 =3(1—p)—1=1.4, uniformly distributed in[0, 5], « > 0.8 and3 < 0.8. We only
andG7 = Gs = 2(1 — p) — 1 = 0.6. The expected gaid/; describe the results under the second loss model; the results
is obtained as follows. Ii; is bad, thenP;, P, and P; are under the first one are similar.

explained and hence we do not need to test ligks, andis, We assume the losses at a link follow a Bernoulli or Gilbert
leading to a saving of 3; if; is good, theris, [, andl; are bad process. Under Bernoulli process, a packet traversing a link is
without the need of test, leading to a saving3ofTherefore, dropped with a probability that is equal to the link loss rate.
G; = 3p+3(1—p)—1 = 2. The expected gaifis is obtained Under Gilbert process, a link is in a good or bad state. When
as follows. If i3 is bad, then it leads to a saving of O;lf in a good state, the link does not drop any packet; while in a
is good, thenl; must be bad, which makes testihgandl; bad state, the link drops all packets. The transition probabilities
unnecessary (sincg, and P; have been explained lly), and between good and bad states are chosen so that the average
hence the total saving & ThereforeGs = 3(1—p)—1 =1.4. loss rate is what assigned to the link. We only show the results
The gains for other links are obtained in a similar mannainder Bernoulli loss process; the results under Gilbert loss
Since testing; provides the highest gain, we choose to tegirocess are similar (since our algorithm uses average loss rates
l1. The result is that; is lossy. We therefore remove from and hence is not sensitive to the loss process).

L, removeP; = {Py, P>, Ps} from P, and add/; to £,. We We assume all the links have the same testing costs of 1 unit.
then identifyls, [, andls as non-responsible links and removéf a network has been operating for a long time, the probability
them fromL. For the rest of the links (i.el, 7, ls), we again that a link is lossy can be estimated from historical data.
calculate their gains, and select to téssince it provides the Otherwise, the probability is unknown and one may assume
highest gain. The result is thatis good. We therefore removethat all links have the same probability of being lossy (as in
I from L, identify I; andlg as responsible links, and hencg6]). In the following, we assume the latter case, andget
add them tol, and remove the paths that they use fréin denote the probability that a link is lossy. We geto 0.2,

At this time, P is empty, the iteration ends, and all lossy link®.4, 0.6, or 0.8 and find that our scheme is not sensitive to the
have been identified and repaired (end-to-end data in the nelbice ofp. The results below are fgr = 0.2.

iteration will indicate that all paths are good). To summarize, We consider both static and dynamic routing. Under static
our algorithm uses one iteration and two tests to identify aibuting, the paths from the sources to the sink are fixed,
lossy links. and we know the complete path information. Under dynamic

Let us look at the above example again assuming that wauting, the routing tree from the sources to the sink is chosen
only know probabilistic path information. In this case, weandomly from multiple trees at every time unit, and we
consider five source-sink pairs, all identified as bad fromssume a path report service that reports path information
end-to-end data. Denote these bad pairsPas= (I3,l1), periodically to the sink. When this service runs at every time
Py = (l4,l1), Ps = (Is,16,11), Py = (I7,12), andP5 = (Ig,l2). unit, it provides complete path information; when it runs at
The greedy algorithm will test; and thenl,, and identify coarser time scales, it provides probabilistic path information
l1,17,1s as bad links. After these links are repaired, in thand the probability to use a route is estimated from the




frequency that this route is used. For each topology, we vary 5 exinsp —F— 14 oxinsp ——
the percentage of lossy links froi¥ to 30%, and randomly , i o g 2] ey oed 2™
choose lossy links. For simplicity, we assume that once a lossy 2 1/ i
link is repaired, it remains good (although our scheme cén * g o8
handle the case where a repaired link becomes lossy agai@ in R e S
a later iteration). E E o4

We compare our sequential testing scheme with two existiﬁg ! 2 02 ke e K
studies [6], [7] that also localize and repair all faults in a 0

. . . . 0 0.05 0.1 0.5 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3

network (Section | describes them briefly). One approach in [7] Fraction of lossy links Fraction of lossy links

tests a single link in each iteration, which requires a large (a) Number of iterations.
number of iterations to localize and repair all lossy links (the
number of iterations increases linearly with the number of
bad paths, and it can require 30 iterations for oB8ly bad

(b) Normalized testing cost.
Fig. 4. Simulation results under static routing,= 10.

paths; while in all the settings we investigate, the average ° anden oon ~

number of iterations under our scheme is below 6, even for ° greedy seq K- 4 g

over 600 bad paths). To reduce the number of iterations, @] 4 g L
proposes another approach that tests multiple links in paraligl. s 2

This approach is similar in spirit to the exhaustive inspectia@ 2 %

approach [6], and under our setting (i.e., all links have th& N § E3
same probability of being lossy and the same testing cost),

the best heuristic using this approach is essentially the same’ o 005 01 015 02 025 0.3 ® o 005 0.1 0.15 02 025 03
as exhaustive inspection. In the following, we only present the Fraction of lossy links Fraction of lossy links
comparison results of our scheme and exhaustive inspéction (a) Number of iterations. (b) Normalized testing cost.

We also compare our greedy scheme with a baseline sequen-  Fig. 5. Simulation results under static routing,= 5.
tial testing scheme, which differs from the greedy scheme in
that it randomly selects a link (from the remaining potential
lossy links) to test, instead of choosing the one that providissthe sink; the reception rate of a path is estimated from these
the maximum gain. We refer to this baseline schemaadom packets (when using 400 packets, the decision on whether a
sequential testing path is good or bad is correct with probability close to one in
We next report the results under static and dynamic routiogr setting). Each confidence interval below is obtained from
respectively. The performance metrics we use arentimmber 150 simulation runs, using five randomly generated routing
of iterationsrequired to identify all lossy links arbtal testing trees and 30 simulation runs in each tree.
cost Since the testing cost of each link is 1 unit, the total Fig. 4 plots the results whe®3 = 10. The results of
testing cost equals to the number of link that are tested. \Wghaustive inspection, and greedy and random sequential
normalize the total testing cost by the number of lossy linkesting are plotted in the figure. We observe that all three
in the network, and refer to the resulting metricresmalized schemes require only a few iterations to localize all lossy
testing cost links. Under exhaustive inspection, the normalized testing cost
. . is at least 1 (it is higher than 1 since some identified links
A. Static routing are false positives). Under the two sequential testing schemes,
We build a routing tree as a spanning tree rooted at the sifife normalized testing costs are below 1. Furthermore, the
The leaves of the tree are the sources. Each intermediate nagemalized testing cost under greedy sequential testing is
in the tree has the number of branches uniformly distributefuch lower than that under random sequential testing. It
in [1, B], where B = 10 or 5. A tree generated using =5 around 0.2 for all the settings, indicating that only a small
is “taller” and “thinner” than one generated usifiy= 10. A fraction of links (0.002 to 0.06 when the fraction of lossy link

good link has reception rate uniformly distributed[in95, 1];  changes from 0.01 to 0.30) needs to be tested to localize all
a bad link has reception rate uniformly distributedn0.60]. lossy links.

In this setting, we can find a threshold to determine whether arijg. 5 plots the results whe® = 5. As expected, the
path is good or bad. This is because for a patth difiks, its  nhumber of iterations and the normalized testing cost are larger
reception rate is at leagt95" if it is good and is at mosi.60  than those whetB = 10 for all the three schemes, since end-
otherwise. Sinc®.95" > 0.60 (h <5 whenB =10 andh < to-end data in a “taller” and “thinner” tree posses a larger
7 whenB = 5), we can find a threshold to determine whethegmount of ambiguity in determining the status of individual
this path is good or bad. In particular, we 895" +-0.60)/2 links. In this case, all three schemes still need only a few
as the threshold. In each iteration, a source sefdackets ijterations to localize all lossy links; greedy sequential testing
3 , _ o , _ _still maintains low normalized testing cost (around 0.4 for all
When implementing exhaustive inspection, we use the inference algoritl

h . . . . .
in [24], which is applicable to general topologies and is the same as that in [ﬁe sett!ngs), Wh'le both eXha_USt'Ve 'n_SpeCt'On and random
for a tree topology (the algorithm in [6] only considers trees). sequential testing have normalized testing costs above 1.
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Fig. 6. Simulation results under dynamic routing when knowing completég. 7. Simulation results under dynamic routing when knowing probabilistic
path information,B = 5. path information,B = 5.
B. Dynamic routing B = 5), we can find a threshold to determine whether the

source-sink pair is good or bad. In particular, we choose the
Under dynamic routing, we assume the routing tree from thigreshold to be in the middle ofl + 0.6)/2 and 0.99". In

sources to the sink is chosen randomly with equal probabiligach iteration, a source sergi¥) packets to the sink; and the
from two trees at every time unit. This is motivated from thgath report service sends path reports (it runs every 20 time
measurement results that for each source, a small numbeygfs) to the sink for each source. Fig. 7 plots the results when
paths carry most traffic in a sensor network under dynamjg — 5 (the results whemB = 10 are slightly better, figure
routing [5]. The two routing trees have the same set @nitted). Again, all three schemes require a few iterations, and
leaves (which are the sources), and differ in the structure @eedy sequential testing incurs much lower testing costs than
intermediate nodes (we form the second tree by randonfe other two schemes. Observe that the testing costs under
changing the parents of the nodes in the first tree). Agaif)j three schemes are much larger than those when knowing
an intermediate node has the number of branches uniforn@kymmete path information. This is due to a larger amount
distributed in[1, B], B = 10 or 5. In all the topologies we of ambiguity when not knowing the exact path information.
generated, above 94% and 91% of the sources use two pajgler greedy sequential testing, the number of links tested is

when B = 10 and 5, respectively, the rest of the sourcegjose to the number of lossy links (the normalized testing cost
use one path. For a source that uses two paths, the pat@jose to 1).

lengths are the same. Again, each confidence interval below
is obtained from 150 simulation runs, over five randomly VI. CONCLUSIONS AND FUTURE WORK

generated topologies and 30 simulation runs in each topology|n this paper, we formulated an optimal sequential testing
When knowing complete path information, the settings fgiroblem that carefully combines active and passive measure-
good and bad links are the same as those in the static routipgnts for fault localization in wireless sensor networks. This
In each iteration, a source sengl¥) packets to the sink (if a problem determines an optimal testing sequence of network
source uses two paths, approximatély) packets are sent on components based on end-to-end data to minimize testing cost.
each path). Fig. 6 plots the results wheén= 5 (the results \We proved that this problem is NP-hard and proposed a greedy
when B = 10 are slightly better, figure omitted). Again, allalgorithm to solve it. Extensive simulation demonstrated that
three schemes require a few iterations to localize all lossyir scheme only requires a few iterations and testing a small
links. The normalized testing costs under all three schem&sbset of links to identify all lossy links in a network.
are lower than those under static routing (see Fig. 5). ThisAs future work, we are pursuing in the following directions:
is because the path diversity when using two routing tregg) evaluating the performance of our approach under other
leads to less ambiguity than that when using a single routiggenarios, e.qg., for heterogeneous loss probabilities that change
tree. Last, the normalized testing cost under greedy sequengi@r time, and for different faulty component distributions
testing is much lower than that under the other two schemésside the network (e.g., the location of faulty components
It is below 0.3 for all the settings. follows a more clustered distribution instead of uniform ran-
When knowing probabilistic path information, a good linkdom distribution), (2) developing more scalable approaches to
has reception rate uniformly distributed[in99, 1]; a bad link reduce the overhead in obtaining complete path information
has reception rate uniformly distributed [, 0.60]. In this under dynamic topologies, and (3) developing alternative se-
setting, we can find a threshold to determine whether a sourgeential testing algorithms.
sink pair is good or bad. This is because, for a source using
two paths with equal probability, each path bflinks, the
source-sink reception rate is at le@s99” when the source-  Algorithm 2 describes how to calculate gaifi, for link
sink pair is good, and is at moét + 0.6)/2 otherwise. Since [, € £ in the greedy algorithm. Lines 3-7 obtain the cost
0.99" > (1+0.6)/2 (h < 5 when B = 10 andh < 7 when saving when assuming, is bad. Lines 8-17 obtain the cost

APPENDIX



saving when assuming. is good. Last, line 19 obtains the[12] S. Rost and H. Balakrishnan, “Memento: A health monitoring system

gain.

(13]

Algorithm 2 Calculate gain, Gy, for link I, € £

(14]

1: Gt = Gg =0

2L =L,P =P

3P =P\ Py L=L\{ly} (15]

4: for Vi; € £ s.t.1; is a non-responsible linko [16]

5. L=L\{l}

6: Gt = GZ + ¢

7. end for [

8 L=LP=P,L=L\{ly}

9: for VI, € £ s.t.1; is a responsible linklo (18]

100 L=L\{L}

11: P=P\P; [19]

122 Gi=Gl+¢

13: end for [20]

14: for VI, € L s.t.l; is a non-responsible linko

15 L=L\{l} (21]

16 GL=Gl+¢

17: end for

18 L=LP="P 22]

19: Gy = pGY + (1 — p)GY — ¢x,

20: return Gy, [23]
[24]
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