
Digital Object Identifier (DOI) 10.1007/s00530-003-0079-2
Multimedia Systems 9: 78–93 (2003) Multimedia Systems

© Springer-Verlag 2003

Periodic broadcast and patching services – implementation, measurement
and analysis in an internet streaming video testbed

Michael K. Bradshaw1, Bing Wang1, Subhabrata Sen3,�, Lixin Gao2, Jim Kurose1, Prashant Shenoy1, Don Towsley1

1 Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA;
e-mail: {bradshaw,bing,kurose,shenoy,towsley}@cs.umass.edu

2 Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA; e-mail: lgao@ecs.umass.edu
3 AT&T Labs-Research, 180 Park Avenue, Florham Park, NJ 07928, USA; e-mail: sen@research.att.com

Abstract. Multimedia streaming applications can consume a
significant amount of server and network resources. Periodic
broadcast and patching are two approaches that use multi-
cast transmission and client buffering in innovative ways to
reduce server and network load, while at the same time al-
lowing asynchronous access to multimedia streams by a large
number of clients. Current research in this area has focussed
primarily on the algorithmic aspects of these approaches, with
evaluation performed via analysis or simulation. In this pa-
per, we describe the design and implementation of a flexible
streaming video server and client test bed that implements
both periodic broadcast and patching, and explore the issues
that arise when implementing these algorithms using labora-
tory and internet-based test beds. We present measurements
detailing the overheads associated with the various server com-
ponents (signaling, transmission schedule computation, data
retrieval and transmission), the interactions between the vari-
ous components of the architecture, and the overall end-to-end
performance. We also discuss the importance of an appropri-
ate server application-level caching policy for reducing the
needed disk bandwidth at the server. We conclude with a dis-
cussion of the insights gained from our implementation and
experimental evaluation.

Key words: Patching – Periodic broadcast – Server

1 Introduction

The emergence of the Internet as a pervasive communication
medium has fueled a dramatic convergence of voice, video
and data on this new digital information infrastructure.A broad
range of multimedia applications, including entertainment and
information services, distance learning, corporate telecasts,
and narrowcasts will be enabled by the ability to stream con-
tinuous media data from servers to clients across a high-speed
network.

Several challenges must still be met before high quality
multimedia streaming becomes a widespread reality. Many of

� The work of this author was conducted while he was at the Uni-
versity of Massachusetts.

these challenges result from the significant loads that video
applications place on both server and network resources. In
order to address these problems, new families of algorithms
have been devised. Periodic broadcast and patching [1–7],
described in more detail in Sect. 2, are two approaches that
have received considerable recent attention. These approaches
exploit the use of multiple multicast sessions to reduce net-
work and server resource use over the case of multiple uni-
cast transmissions, while at the same time satisfying the asyn-
chronous requests of individual clients and providing a guaran-
teed bound on playback startup latency. Research on periodic
broadcast and patching has been primarily algorithmic in na-
ture, with performance studied either analytically or through
simulation. In either case, simplifying assumptions are neces-
sarily made (e.g., abstracting out control/signaling overhead,
operating system issues such as the interaction between disk
and CPU scheduling, multicast join/leave times, and more)
to evaluate performance. While there are a number of existing
production (e.g., Darwin, RealServer, Windows Media Server,
Oracle Video Server) and experimental video server efforts
[8–18], all of them use traditional unicast or multicast stream-
ing.

In this paper we report on the implementation, measure-
ment, and analysis of a working video server test bed im-
plementing both periodic broadcast and patching algorithms.
Our testbed consists of three seperate network configurations,
a 100 Mbps switched Ethernet LAN, and high speed WAN,
and a lossy WAN, connecting a Linux-based, application-level
video server with a collection of both Linux- and Windows-
based clients. The goals of our work are to develop a proof-of-
concept prototype, and to use this prototyping effort to expose
and develop solutions to the underlying system issues that arise
when putting periodic broadcast and patching algorithms into
practice.

Our experimental evaluation presents measurements de-
tailing the overheads associated with the various server com-
ponents (signaling, transmission schedule computation, data
retrieval and transmission), the interactions between the var-
ious components of the architecture, and the overall end-to-
end performance. We find that our server is able to support
the real-time, bandwidth-intensive data delivery requirements
imposed by periodic broadcast and patching. Under periodic
broadcast, our server can easily process a client request rate of

M.K. Bradshaw et al.: Periodic broadcast and patching services 79

600 requests per minute (returning periodic broadcast sched-
ule information to each client), while at the same time stream-
ing video segments over multiple multicast groups and missing
no more than a few (less than 1%) data transmission deadlines.
Under patching, our server can come close to fully loading a
100 Mbps network with patched-in clients, again while miss-
ing very few data transmission deadlines. Our measurements
also show that in a loaded LAN environment, an initial client
startup delay of less than 1.5 s is sufficient to handle signal-
ing delays and absorb data jitter induced at either the client
or the server. WAN experiments over the Internet show that
the end-to-end performance varies dramatically under various
network connectivities. When connectivity is good, the perfor-
mance is similar to LAN conditions. Experiments under poor
connectivity indicate the need of packet recovery schemes spe-
cific for periodic broadcast and patching, and indicate that the
manner in which a server places data on the network has im-
pact on loss parameters. Our evaluations also show that we
can dramatically reduce the demands placed on the underly-
ing server operating system by using a Least Frequently Used
(LFU) video-data-cache replacement policy. More generally,
our results highlight the importance of combining theoretical
work with implementation and empirical evaluation to fully
understand systems issues.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses periodic broadcast and patching algorithms.
Section 3 lists the design guidelines that we used during the
design phase of the server. Section 4 describes the client and
server architecture, as well as the interactions between them.
Our experimental configuration and the performance metrics
of interest are discussed in Sect. 5, followed by our measure-
ments, analysis and evaluation in Sect. 6. Finally, Sect. 7 re-
flects on the important lessons learned and concludes the pa-
per.

2 Algorithmic background

In this section, we present background material on the mul-
timedia transmission algorithms. Many Internet multimedia
applications have asynchronous clients that may request play-
back of the same video stream at different times. Economi-
cally viable high-volume video services will require effective
techniques to minimize the incremental cost of serving a new
client, while also limiting client start-up latency and the like-
lihood of rejecting requests due to resource constraints. For
popular video streams, server and network resources can be
significantly reduced by allowing multiple clients to receive
all, or part of, a single multicast transmission [19,2–4,20,6,
21].

For example, the server could batch requests that arrive
close together in time [19], and multicast the stream to the set
of batched clients. A drawback of batching, however, is that
client playback latency increases with an increasing amount
of client request aggregation. Several recently proposed tech-
niques, such as periodic broadcast and patching [1–6,22,7,
23],

overcome this drawback by exploiting client buffer space
and the existence of sufficient client network bandwidth to lis-
ten to multiple simultaneous transmissions. These capabilities
can be used to reduce server and network resource require-

ments, while still guaranteeing a bounded playback startup
latency.

Periodic broadcast schemes [19,2–4,6] exploit the fact that
clients play back a video sequentially, allowing data for a
later portion of the video to be received later than that for
an earlier portion. A period broadcast server divides a video
object into multiple segments, and continuously broadcasts
these segments over a set of multicast addresses. To limit play-
back startup latency, earlier portions of the video are broadcast
more frequently than later ones. Clients simultaneously listen
to multiple addresses, storing future segments for later play-
back.

In patching (closely related techniques are “stream tap-
ping” and “stream merging”) [1,24,5,7], the patching server
streams the entire video sequentially to the very first client.
Client-side work-ahead buffering is used to allow a later-
arriving client to receive (part of) its future playback data
by listening to an existing ongoing transmission of the same
video; the server need only additionally transmit those earlier
frames that were missed by the later-arriving client. As a re-
sult, server and network resources can be saved. Unlike batch-
ing, patching allows a client to begin playback immediately
by receiving the initial video frames directly from the server.
Similar to periodic broadcast, patching exploits client buffer
space to store future video frames. Unlike periodic broadcast,
a patching server transmits video data on-demand, when a new
client arrives.

Our overview of periodic broadcast and patching has been
necessarily brief. We note here that our goal in this paper is not
to propose a new periodic broadcast or patching algorithm, but
rather to explore the issues that arise when these algorithms
are put into practice. In our test bed, we implement the peri-
odic broadcast algorithm from Gao et al. [4] and the patching
algorithm from Gao and Towsley [24] as representative algo-
rithms. For a detailed description of these and other periodic
broadcast and patching approaches, the reader is referred to
the references cited above.

3 Architectural guidelines

Before describing the server and client architecture in the fol-
lowing section, it is valuable to consider several important
principles embodied in the design and implementation of our
server test bed:

• Separation of control and data functionality. Both
server and client implementations separate control and
data functionality. Since the control and data paths impose
significantly different demands on the underlying system,
this separation allows us to independently optimize each
component. A clean separation of control and data paths
also allows us to experiment with different server archi-
tectures. From an operational standpoint, we shall see that
this separation also allows one component to be isolated
from effects of a workload overload on the other.

• Standards-based architecture. Our server and client im-
plementations are based on existing streaming media stan-
dards such as RTP [25,26], RTSP [27], and SDP [28]. The
advantages of a standards-based architecture are two-fold.
First, it allows us explore how various streaming media

80 M.K. Bradshaw et al.: Periodic broadcast and patching services

Fig. 1. Server and client architecture and interaction

techniques such as periodic broadcast and patching can be
implemented in the context of these standards. Secondly,
it helps us identify potential limitations of these standards
in supporting such techniques.

• Support for IP Multicast. Our server and client imple-
mentations are designed to take advantage of IP multicast.
The use of IP multicast facilitates more efficient use of
server and network resources. Of particular interest to us
in this paper are practical considerations that arise in the
use of IP multicast (e.g., multiplexing a finite number of
multicast channels among users, client join/leave latencies
and techniques to hide such latencies). We note that while
many-to-many inter-domain multicast has been slow to be
deployed, one-to-many intra-domain multicast (as would
be used in an enterprise or cable/DSL-based last-hop net-
work network video server) is much simpler to deploy and
manage [29].

• Use of off-the-shelf components. Our server and client
are designed to run on vanilla operating systems such as
Linux and Windows. This allows us to easily set up mul-
tiple clients and server. However, we do not benefit from
the numerous special-purpose resource management tech-
niques (e.g., rate-based scheduling) that have been pro-
posed recently.

4 Server and client architecture

In this section we describe the server and client architecture,
as well as the control signaling that occurs between them as
shown in Fig. 1. We begin with the server.

4.1 Server architecture

The server consists of two main modules, a Server Control
Engine (SCE) and a Server Data Engine (SDE). The primary
role of the SCE is to handle control interactions between the
server and its clients. The primary role of the SDE is to retrieve
video data from disk (or an in-memory cache), and transmit
the data into the network.

For each client request, the SCE computes two schedules.

• The transmission schedule specifies when “segments” of
each video are to be retrieved from disk (or the in-memory
cache) and transmitted into the network. A “segment” of

video contains a continuous portion of data from a given
video; the start/stop times of a video’s segments depend on
the transmission algorithm (periodic broadcast or patch-
ing) used, and (for the case of patching) the requests be-
ing generated by clients. The SCE passes the transmission
schedule to the SDE, which then retrieves and transmits
RTP [25,26] encapsulated data according to this schedule.
There is only one transmission schedule per video, even
when multiple clients are receiving a given video.

• The reception schedule specifies the order in which the
end-client receives this data. The reception schedule, for-
matted as an SDP [28] message, is sent to the client in an
RTSP [27] response; the client then uses this schedule to
receive data on the specified multicast or unicast address.

As noted above, the two main server components are the
server control engine (SCE) and the server data engine (SDE).
Let us consider each of these in turn.

4.1.1 Server Control Engine (SCE)

The SCE is implemented as a multi-threaded single-process
system. A single SCE listener thread listens on a well-known
port for incoming client requests, and places an incoming re-
quest on a message queue. A pool of free scheduler threads
wait to serve requests on the message queue. Once a scheduler
thread receives an incoming request, it is responsible for all
subsequent control interaction with the client, including the
generation of the transmission and reception schedules, and
the sending of the reception schedule to the client.

Because of our use of periodic broadcast and patching,
scheduling requires different information than is typically
used in video servers. The scheduler thread must be aware
of which videos are currently being transmitted and the par-
ticular broadcast algorithm being used. If a requested video is
already playing, the scheduling thread may need to augment
the SDE’s transmission schedule for that video to accommo-
date the new client. For example, if a client requests a video
that is being broadcast via patching, the scheduler thread must
determine whether a unicast data patch should be sent to the
client (as well as the specific data that is to be sent), or whether
a new multicast transmission of that video should be initiated.
In either case, the scheduler thread will need to make the nec-
essary changes to the transmission schedule, and inform the
SDE of the new schedule.After sending the reception schedule
to the client, a scheduler thread waits for a new client request.

The example above suggests that the transmission sched-
ule data structure must be carefully designed in order to be
sufficiently general to express a transmission schedule for dif-
ferent video delivery schemes (e.g., batching, patching, and
periodic broadcast). As illustrated in Fig. 2, a data structure
(Media) is maintained for each media stream currently being
transmitted. This data structure contains stream-specific infor-
mation such as the file location, length in frames, and type of
the stream. It also contains a list of structures, with each ele-
ment corresponding to a multicast or unicast address on which
some part of the video is to be transmitted. Since portions of
the video can be transmitted simultaneously on multiple ad-
dresses, a list of addresses is needed. Each channel structure
contains the type of transmission (multicast or unicast), the

M.K. Bradshaw et al.: Periodic broadcast and patching services 81

Stream
Information

Channel K
Address K

Channel 1
Address 1

Pause 0

Work Request 2

Work Request 3

Frames 0−1350

Work Request 1

Pause 0

Start t Repeat 0
Frames 0−100 Frames 100−1350

Start t Repeat 0

Start t Repeat 4

Pause 15 sec.

1 2

3

Media

Fig. 2. Data structure organization

address with which it is associated and a linked list of struc-
tures known as “work requests.” The work request list contains
information that determines what data will be transmitted on
that address, and when. We note that an important advantage of
specifying the transmission schedule at the frame level is that
it facilitates uniform handling of different video file formats,
e.g., MPEG, AVI, etc., at the SCE.

Let us illustrate the representation of a transmission sched-
ule via a simple example. Suppose the server needs to deliver
a 45 s (1350 frame) video according to the following trans-
mission schedule: (i) initiate transmission of the frames 0–100
on a network address at time t1; (ii) initiate transmission of
frames 100–1350 on the same address at some later time t2.
The work request list associated with channel 1 in Fig. 2 shows
the abstract representation for this schedule. Channel 1 in the
video structure is initialized with the outgoing address of this
stream. The linked list of work requests indicates that at time
t1 the server will transmit frames 0–100 and frames 100–1350
will be transmitted at time t2.

Some algorithms, such as periodic broadcast, require the
repeated transmission of a sequence of frames. If the server
must transmit frames 0 through 1350 on a second connection,
once every minute starting at time t3, for a total of five trans-
missions, it then allocates a new channel (Channel K in Fig. 2).
A single work request is then associated with this channel, for
frames 0–1350. To indicate a 15 s gap after each complete
transmission, the Pause field is set to 15 s. The Repeat field
is set to 4, indicating the video transmission will be repeated
four additional times after the first run.

The final important piece of the SCE is the multicast ad-
dress pool. In addition to determining what video segment to
send and when, the SCE must also select a multicast address
to be used. Rather than searching over all available time slots
on all available multicast addresses, the SCE uses horizon
scheduling [30] to efficiently make this assignment in linear
time.

4.1.2 Server Data Engine (SDE)

Recall that the SDE is responsible for retrieving video data
from memory (either disk or an in-memory cache), and then
transmitting this data into the network.

The SDE is a multi-threaded, single-process entity. It
maintains two threads for each video that is currently being
transmitted.A disk thread (DT) handles retrieval of the video’s

data from disk into main memory; a separate network thread
(NT) transmits the data from main memory to the network
according to the server transmission schedule. A global buffer
cache manager is responsible for allocating equal-sized free
memory blocks to each DT. Each individual DT, in turn, is
responsible for managing its cache of video data. Currently,
each DT is allocated a set number of free memory blocks.
We’ll see later that the DT’s cache management policy plays
an important role in determining system performance.

Both the DT and NT operate in rounds. Let the disk round-
length be denoted by δ and the network round-length be de-
noted by τ . In each δ-round, the disk thread wakes up, uses the
server transmission schedule to determine which parts of the
video are to be retrieved in that round, issues asynchronous
read requests for retrieving that data into main memory, and
then sleeps until the next round. In each τ -round, the network
thread wakes up, determines the data that are to be transmit-
ted on each address in that round, transmits that data from the
main memory buffer cache, and goes to sleep. Coarse-grained
locks on the NT and DT threads (as opposed to finer-grained
locks on the in-memory data blocks) are used to ensure that
threads for a given video do not concurrently access individual
data blocks.

The separation of disk retrieval and network transmission
activities is motivated by the very different nature of the disk
and network subsystems. To prevent starvation due to long or
variable disk access times, data is prefetched from disk and
staged in main memory. To reduce the impact of disk over-
heads, the DT issues asynchronous read requests for large
chunks of data at a time. Therefore the disk round, δ, is rela-
tively large, and is currently set to 1 s. Note that δ is a lower
bound on the startup delay a client must experience before re-
ceiving a new stream. For the network, it is desirable to avoid
injecting bursts of traffic. The network round length, τ , is thus
typically much smaller than δ to allow the NT to transmit
data more “smoothly” into the network. Because Linux is a
non-real-time operating system, it is possible that a sleeping
thread is executed significantly later than its scheduled invo-
cation time. Thus, when a thread completes its activities for a
round, it checks if its start time for the next round has passed,
and if so, immediately starts its assigned activity for the next
round rather than going to sleep. Our experimental results
show that although the SDE runs on top of Linux, without
real-time scheduling support, the SDE seldom suffers from
timing irregularities that result in missed data transmission
deadlines.

4.2 Client architecture

The client consists of the client control engine (CCE) and data
engine (CDE). The CCE obtains user requests using a GUI
interface and communicates them to the server using RTSP
messages. The client data engine receives data from multi-
ple video segments according to the reception schedule, and
reorders received out-of-playback-order data, thus presenting
the abstraction of a logically sequential stream to the decoder
software. A clean separation of functionality between the end-
client (which is responsible for signaling and receipt of data)
and the video player (which is responsible for decoding and
display) allows a great deal of flexibility, and enables our client

82 M.K. Bradshaw et al.: Periodic broadcast and patching services

Table 1. Sample videos for the experiments

Video Format Length(min) Frame rate Bandwidth (Mbps) File size (MB) # of RTP pkts
Blade1 MPEG-1 12 30 1.99 180.1 155146
Blade2 MPEG-1 15 30 3 337 296706
Demo MPEG-2 2.7 30 2 40.6 35138
Tommy MPEG-1 20 30 0.3 45.3 44803

software to interoperate with several widely used players, in-
cluding mpeg2decode [31], Real and Windows Media players.

5 Experimental configuration and performance metrics

In this section, we discuss our experimental configuration in
more detail, describing the videos used in our test bed, the
client/server machines and the network connecting them, and
the periodic broadcast and patching algorithms that are used
in transmitting data. We also define the performance metrics
of interest.

The videos used in the experiments are listed in Table 1.
Each video is RTP packetized with additional headers added
as specified in Hoffman et al. [25]. In all experiments, the
server transmits each stream at the playback rate on separate
addresses. That is, if a video is to be played at 30 frames per
second (fps), the server transmits the video at 30 fps. Due to a
lack of space, we do not report experiments performed to tune
the values of δ and τ . The experiments show that improper set-
ting of δ and τ lowers the server performance and that settings
of δ = 1 s and τ = 33 ms lead to good server performance.
We use these values throughout the evaluation reported here.

For the local experimental measurements described in this
paper, we use three separate 400 MHz machines, each with a
Pentium II processor, 400 MB RAM, and running a Linux OS.
Each machine is connected to a switch via 100 Mbps Ethernet.
Each of these three machines serves a specific role: server, a
workload generator, and a client. We also do experiments over
the Internet with a host at the University of Maryland (UMD)
and a host at the University of Southern California (USC).
The machines used in both UMD and USC are running Linux
with at least 128 MB RAM and Pentium CPUs. The machine
in UMD has a 10 Mbps interface to the network while the
machine in USC has a a 100 Mbps network.

For experiments involving multiple videos, we use multi-
ple copies of the same video (chosen from Table 1), with each
copy placed in a separate file on disk. The server and the un-
derlying operating system treat each copy as a distinct video,
and the server transmits each video using a selected broad-
cast scheme. This approach allows us to explore the system
overheads under a homogeneous video population.

The workload generator is a separate machine that gener-
ates a background load of client requests in a Poisson manner,
choosing one of the multiple videos being transmitted from the
server with equal probability. The server sends the requested
video to the workload generator. The latter does not play out
the video data from the server. Instead, it logs the timing in-
formation for the request to be serviced. Once the background
load reaches a steady state, we use a client, running on the third
machine, to request the full stream and monitor the statistics
on the received video data.

t0

���
���
���
���

��
��
��
��

�����
�����
�����
�����

������
������
������
������

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

������������ ������������
���������� ����������
��

��
��
��
��
��
��
��
��
��
��
��
��

������

����������

��
��
��
��

������
����������

������������

l 2l L-7l4l

Idle Channel

video stream

seg. 1

seg. 3
seg. 4

seg. 2

client arrival

Fig. 3. GDB segmenting scheme for periodic broadcast

As noted in Sect. 2, we implemented the representative al-
gorithms described below from the families of periodic broad-
cast and patching algorithms. In both cases, we assume that
the client has enough buffer to store the entire video.

• Periodic broadcast: for this we use the GDB segmen-
tation scheme [4]. Throughout the experimental section,
we use l-GDB to indicate a GDB scheme where the ini-
tial segment is l s long. The subsequent segments are of
size 2i−1l, where 1 < i < �log2 L�. The length of the

last segment is set to L − ∑�log2 L�
i=1 2i−1l. An example

is shown in Fig. 3. Each segment is repeatedly transmit-
ted on a separate multicast address. Clients retrieve each
segments of the video by joining the appropriate multicast
group. Figure 3 shades the segments retrieved by a client
that arrives at time t0. In this example, segments 3 and 4
will be buffered at the client before playout. Note that the
length of the first segment determines the maximum client
startup delay under ideal system and network conditions.
A smaller value of l reduces this delay, but may increase
the number of segments and hence the transmission band-
width requirements. For the results reported, we use three
values of l: 3 s, 10 s, and 30 s. The segment lengths of the
resulting segmentation schemes for the 900 s video Blade2
are reported in Table 2. In each case the actual length of
the last segment is less than the length specified by GDB
(shown in brackets) for that segment, due to the finite video
length. Note that segment i will be transmitted once every
2i−1l s. For example in 30-GDB the first 30 s of the video
are sent out every 30 s, the next 60 s of the video are sent
out every 60 s and so on until the last 450.9 s of the video,
which are sent out every 480 s.

• Patching. For patching, we consider the threshold-
based Controlled Multicast scheme proposed in Gao and
Towsley [24]. The first request for the video is served
with the initiation of a complete transmission using mul-
ticast. Subsequent requests that arrive within a threshold
T time units of the last initiated multicast transmission of
the video will share that stream and obtain only a prefix
of the video from the server using unicast. A request ar-

M.K. Bradshaw et al.: Periodic broadcast and patching services 83

Table 2. Attributes for three different GDB segmentations for the
3 Mbps, 15 min MPEG-1 Blade2 video

Scheme Segs. Segment lengths (s)
3-GDB 9 3, 6, 12, 24, 48, 96, 192, 384, 134.5(768)
10-GDB 7 10, 20, 40, 80, 160, 320, 270.9(640)
30-GDB 5 30, 60, 120, 240, 450.9(480)

riving beyond T time units is served by initiating a new
complete transmission for the video. When the client ar-
rival rate for a video is Poisson with parameter λ and the
length of the video is L s, the threshold is chosen to be
(
√

2Lλ + 1 − 1)/λ s to minimize the average transmis-
sion bandwidth required to serve a client [24].

In our evaluations in the following section, we focus on
a number of different performance measures. On the server
side, we consider the following metrics:

• System Read Load (SRL). This is the volume of video
data requested per unit time by the server from the under-
lying operating system. A read request is initiated only if a
required data block is not present in the application-level
cache. SRL therefore presents a measure of the workload
associated with the data path that is imposed on the under-
lying system by the video server. The system will satisfy
the request from the kernel buffer cache if possible, and
otherwise fetch the block from disk.

• Server Network Throughput (SNT). The SNT is the vol-
ume of video data transmitted per unit time by the appli-
cation, and measures the load imposed on the network
protocol stack, network interface card and the outgoing
network connection. In the absence of any application-
level buffered video data, SRL is equal to the SNT.

• Deadline Conformance Percentage (DCP). Given a
transmission schedule, the DCP is the percentage of frames
that the server was able to transmit to the network by their
respective scheduled deadlines.

On the client side, we consider the following performance
metrics:

• Client Frame Interarrival Time (CFIT). Suppose ri is
the time that the last packet of frame i reaches the client.
The difference between ri+1 and ri is the client frame
inter-arrival time. For a smooth transmission, the frame
inter-arrival time should be constant. The variability of
CFITs reflects the delay jitter caused by both the server
and the network.

• Reception Schedule Latency (RSL). The Reception
Schedule Latency is the time from when the client requests
the video to when it receives the reception schedule.

6 Performance measurement and evaluation

This section presents our experimental measurements and
analysis of these results. We first examine the server’s need
for application-level caching and explore the effects of differ-
ent caching policies on performance. Next, we present bench-
marking results for the signaling and data throughput in the
absence of disk and network constraints. Performance results

0

20

40

60

80

100

0 1 2 3 4 5

T
hr

ou
gh

pu
t (

M
bi

ts
)

Number of Videos

Offered Load
No cache

Fig. 4. System throughput under periodic broadcast

regarding the end-to-end (server-client) data path in local and
WAN networks are reported. Finally, we discuss how our
threading structure provides isolation of server control and
data engines (SCE and SDE), and how naive scheduling of
videos using periodic broadcast schemes can lead to bursty
traffic.

6.1 Caching implications for periodic broadcast and
patching

We begin our study by considering the load imposed on the
underlying system (disk subsystem and OS level-caching) by
periodic broadcast and patching. We note that the underlying
disk/file access and caching policies are those implemented in
the standard Linux release and thus are not optimized for video
access. From an architectural standpoint, our application-level
cache sits above these standard OS components and can be
thought of as tailoring such standard services for video access.

Figure 4 plots the offered load (data rate required to trans-
mit the requested number of videos) and the achieved system
throughput (labeled “no cache”), as a function of the number
of videos the server attempts to transmit using 30-GDB seg-
mentation. Distinct file copies of the Blade2 video were used.
We find that the system throughput matches the offered load
up to three videos, suggesting that the underlying operating
system is able to keep up with imposed load. As the number
of videos (and therefore the offered load) increases further,
the achieved throughput, in the absence of application-level
caching, decreases, indicating that the underlying operating
system is in an overloaded regime. We will see shortly that
our application-level cache can delay the onset of such over-
load behavior.

Today’s servers typically possess significant amounts of
high speed memory. We next investigate the use of an
application-level cache and application-specific caching poli-
cies for reducing the demand on the underlying server operat-
ing system and its disks. While existing work has considered
video caching [32–36], none of them examine the effects of
caching on the underlying system using periodic broadcast and
patching. Our application locks an amount of main memory
for application-level caching for each video being transmit-
ted. A per-video caching policy is used, and the server makes
read requests to the underlying systems only if a block is not
present in the application-level cache. We consider Least Re-

84 M.K. Bradshaw et al.: Periodic broadcast and patching services

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30

F
ra

ct
io

na
l O

cc
ur

an
ce

System Read Load (Mbps)

no buffer

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30

F
ra

ct
io

na
l O

cc
ur

en
ce

System Read Load (Mbps)

16 MB buffer

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30

F
ra

ct
io

na
l O

cc
ur

an
ce

System Read Load (Mbps)

48 MB buffer

a no cache b 16 MB cache c 48 MB cache

Fig. 5. Distribution of server read loads for patching for a range of per video cache sizes

cently Used (LRU) cache replacement as a baseline policy.
LRU is widely quoted in literature and many conventional
operating systems implement this policy in their underlying
kernel buffer caches. We also explore the Least Frequently
Used (LFU) cache replacement policy, where blocks of video
data are cached depending on the frequency of their use. LFU
caching possesses the following interesting property for pe-
riodic broadcast and patching (the proof of which is in Ap-
pendix A):

Theorem. LFU per-video cache replacement policy for (i)
threshold-based controlled multicast patching, under a Pois-
son arrival process, and (ii) any member of the periodic broad-
cast family of algorithms, using any arrival process.

6.1.1 Periodic broadcast

Let us now explore the impact of an application-level cache
on performance. We first consider two GDB segmentation
schemes: 3-GDB and 10-GDB. Figure 6 plots the read load
for a single video as a function of the application-level buffer
cache size available for that video. We consider both actual
measurements from our test bed and analytical computations
of LRU and LFU performance for the same cache size. The
small deviations between the analytic and experimental values
are due to the large application-level memory blocks (100 kb)
used for these experiments. This graph demonstrates how
caching reduces the server read load (SRL). As expected, the
SRL is a non increasing function of increasing buffer size. In
addition, increases in buffer size produce diminishing returns
in SRL reduction.

The SRL for periodic broadcast exhibits some interesting
characteristics under LRU caching. In order for caching gains
to be realized, the buffer must be large enough for an entire seg-
ment to be cached. If the allocated buffer is less than the length
of a segment, LRU will result in the replacement of blocks in
increasing order of the nearest time in the future that a block
is required next - effectively, a block will be requested from
the underlying system each time it has to be transmitted. This
explains the step-like behavior in Fig. 6. A step change corre-
sponds to a point where LRU has sufficient buffer to cache an
additional segment. Hence the steps are 3 Mbps (equal to the
bandwidth for any segment) in height. This is followed by a
horizontal portion where the additional buffer is not sufficient
to fully cache the next segment.

We next consider the impact of an increase in the length
of the first segment of a periodic broadcast scheme on the

5

10

15

20

25

30

10 20 30 40 50 60 70

S
er

ve
r

R
ea

d
Lo

ad
(M

bp
s)

per video buffer (MB)

3-GDB:LRU:Analytic
Experimental

10-GDB:LRU:Analytic
Experimental

3-GDB:LFU:Analytic
Experimental

10-GDB:LFU:Analytic
Experimental

Fig. 6. Caching effects on periodic broadcast: plots the experimen-
tal and analytic values of the read overhead under LRU and LFU
replacement policies

SRL. By increasing the length of the first segment, one can
trade off an increase in client playback startup latency for a
decrease in the required server network throughput (SNT). For
instance, 10-GDB has a longer first segment but a smaller SNT
than 3-GDB. When SRL is the performance metric of interest,
however, we find that decreasing the first segment length can
sometimes result in a lower SRL For example, with 27 MB of
buffer, under application-level LRU caching, 10-GDB induces
a read load of 19.27 Mbps, while 3-GDB results in a SRL of
18.88 Mbps (Fig. 6). On the other hand, for other buffer sizes,
10-GDB results in a larger SRL than 3-GDB. These results
suggest that the use of additional caching (rather than adjusting
the initial segment length) is the most “sure-fire” approach for
reducing the read load.

Figure 6 also shows that LFU produces a significant reduc-
tion in the SRL over LRU, across a range of buffer sizes. For
example, under 10-GDB, with a 32 MB buffer, the SRL drops
from 16.27 Mbps under LRU to 10.14 Mbps under LFU, a
reduction of 38%. Under LFU, every additional unit of cache
contributes to caching gains. This explains why the SRL for
LFU decreases more smoothly than for LRU.

The above study illustrates that application-level caching
can be very effective in reducing the read load imposed on the
system. For example, with just 8 MB of per video cache, and

M.K. Bradshaw et al.: Periodic broadcast and patching services 85

in the presence of LFU caching for each video, we find that
the offered load and achieved throughput remain the same, as
the number of videos increases from one to five in the setup
for Fig. 4. In the remainder of the paper we shall therefore re-
port results using LFU caching, implemented using techniques
from Lee et al. [37].

6.1.2 Patching

We next explore the impact of application-level caching on
patching. We consider an aggregate arrival rate of five clients
per minute, requesting one of three distinct file copies of
Blade2 with equal probability. Figure 5 shows the measured
distribution of SRL for one instance of the Blade2 video, over
a five hour run with three different buffer sizes using LFU
caching.

In the absence of cache, the expected SRL is 18.7 Mbps.
The resultant SRL reduces to 17 Mbps in the presence of a
16 MB per video cache and to 11 Mbps for a 48 MB cache.
The graphs illustrate that for a given buffer size, the instanta-
neous read load can be much higher than the mean, and that
LFU caching with even a modest amount of buffer can sub-
stantially reduce both the expected SRL, as well as lower the
peak instantaneous SRL.

6.1.3 Choosing between periodic broadcast and patching

It has been shown [38] that there exists a request arrival rate
above which periodic broadcast results in lower network band-
width usage and below which patching results in lower net-
work bandwidth usage. This result also holds when SRL is the
performance metric of interest, in the absence of application-
level caching. Here we examine the effect that LFU caching
has on this crossover point, in the context of the SRL. Figure 7
plots the values of the SRL, obtained from analysis, for patch-
ing and 10-GDB periodic broadcast across a range of request
arrival rates, for different per-video LFU cache sizes. In the
absence of a cache, the crossover point between patching and
periodic broadcast occurs at an arrival rate of 0.046 requests
per second (2.8 per minute). At this point the SRL imposed by
both schemes is equal to 25 Mbps. With increasing buffer size,
the crossover point for the two schemes shifts to lower arrival
rates. These studies demonstrate that the caching scheme and
cache buffer size both impact the crossover point and need to
be factored in its computation.

6.2 Component benchmarks

We now turn our attention to the performance of individual
components in the server. In particular, we consider the time
needed to complete a signaling operation (serve a client’s re-
quest to view a video) at the server, and the times needed for a
network thread and a disk thread to execute during a τ -round
and δ-round, respectively (see Sect. 3.1).

In order to make these measurements, the server is con-
figured as follows. As before, there are five scheduler threads
that handle client requests to view a video. To remove the
(unknown) effects of an unknown amount of OS-internal disk

0

5

10

15

20

25

30

35

40

45

50

0 0.05 0.1 0.15 0.2

S
er

ve
r

R
ea

d
Lo

ad
(M

bp
s)

Arrivals / second

10-GDB: no cache

10-GDB: 16 MB

10-GDB: 32 MB

patch: no cache

patch: 16 MB

patch: 32 MB

Fig. 7. Server read load for patching and 10-GDB for video Blade2
with LFU caching

block caching, all video data is pre-loaded and locked into
our application-level video cache. In configuration 1 (see Ta-
ble 3), three copies of the demo video (see Table 1) are placed
into memory, with each video divided into eight equal-length
segments (note that this is only another version of periodic
broadcast). Each video segment is then transmitted over a sep-
arate multicast group, resulting in a total of 24 segments being
transmitted, each over its own multicast address. In configu-
ration 2 (see Table 3), one copy of the demo video is divided
into 24 segments and locked into memory. Again, each video
segment is then transmitted over a separate multicast group.
In both configurations, the server transmitts a total of 48 Mbps
per second.

6.2.1 Signaling costs

Let us first consider the average time between the receipt of
a client’s request by a server scheduler thread until its gen-
eration and transmission of a client reception schedule to the
client. This includes the time needed to compute the client’s
reception schedule and update the server transmission sched-
ule. In configuration I, the workload generator varied client
request rates between 1 and 1670 clients per minute. We ob-
served that the time needed to complete the signaling remained
nearly constant at 8 ms with negligible queuing delay (where
“queing delay” refers to the time between the servers receipt of
the client’s request and the initiation of handling of that mes-
sage by a scheduler thread). Beyond 1670 clients per minute,
the server was no longer able to accept client TCP signaling
connections within TCP’s timeout period, and the connections
were consequently refused by the OS.

We next measure the average signaling delay and queing
delay under configuration II. Figure 8 shows these results.
As the client request rate increases, the average signaling de-
lay (the time needed to process the client request once the
client request has begun being processed) needed to process
the request increases. We also see that the average queing
delay remains negligible until the request rate becomes 600
per minute. Beyond this rate, the server is no longer able to
respond to requests and connection timeouts occur. It is inter-
esting to note that the signaling delay increases as the client
request rate increases. We conjecture that this results from
an increased chance of the scheduler thread being interrupted
during processing.

86 M.K. Bradshaw et al.: Periodic broadcast and patching services

Table 3. Timing measurements in the server data engine

Configuration # Addresses # Videos Bandwidth per Video NT completion time DT completion time
I 8 3 16 Mbps 1.60 ms/30 ms 6.16 ms/1 s
II 24 1 48 Mbps 5.08 ms/30 ms 8.39 ms/1 s

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500 600 700

M
ill

is
ec

on
ds

Requests per minute

signaling delay
queueing delay

Fig. 8. Signaling delay and Queueing delay for Clients in Configu-
ration II

6.2.2 Cost of delivering data

We now discuss the amount of time needed by the disk thread
(DT) and the network thread (NT). The disk thread runs once
per second. It performs three actions: determine what data the
NT will send out in the next second, check the cache for the
data needed, and request any missing data from disk. Since
all of the data is in memory, our benchmarks do not include
any time needed to make requests to the disk. The network
thread executes 30 times a second. During each execution it
determines what data needs to be sent on the network and
sends the data into the network. For the two configurations,
the amount of time needed by the DT and NT is shown in
Table 3. In general, we find that the amount of time needed for
each of these threads depends on the amount of data being sent
out. Perhaps most interesting is that the deadline conformance
percentage (DCP) for these experiments was over 99%, an
observation that we will return to in Sect. 6.5.

6.3 End–end performance in a local network

We next evaluate the server and client performance under pe-
riodic broadcast and patching schemes in a local network.
This network is isolated from the rest of the department net-
work with the network support of 100 Mbps. We use three
copies of Blade2. Each copy is treated as a distinct video by
all components of the videos server and the underlying oper-
ating system. The total size of the videos (1011 MB) being
delivered is significantly larger than the size of the server’s
main memory (400 MB) making it impossible to cache the
videos completely in main memory, and ensuring that the disk
subsystem will be exercised in the experiment. The workload
generator creates requests for each of the three videos with
equal probability. After the server load reaches a steady state,
our measurement client requests one video every 40 minutes.
Our measurements focus on the server and client performance

of the video requested by the measurement client. Through-
out this set of experiments, each video is allocated a 16MB
application-level cache. Parameters specific to periodic broad-
cast and patching are described separately in the following
subsections.

6.3.1 Periodic broadcast

Our aim in this experiment is to evaluate the end-end perfor-
mance of periodic broadcast. We use three GDB schemes at
the server: 3-GDB, 10-GDB, and 30-GDB.As described in Ta-
ble 2, the number of segments corresponding to three copies
of Blade2 for the three schemes are 27, 21, and 15, respec-
tively. In any GDB scheme, the amount of data sent out from
the server into the network (SNT) does not depend upon the
client arrival rate. However a high arrival rate incurs more sig-
naling and processing overheads at the server. The workload
generator sends out requests at a low rate, 1 per minute, and a
relatively high rate, 600 per minute.

We first investigate the server performance. Since the
server reports a processor utilization of 15% (almost all of
it in system time), deadline conformance percentage (DCP)
proves to be a good indicator of stress observed at the server.
We find that the DCP at the server under the various GDB
schemes and arrival rate is always over 99% for the differ-
ent scenarios. More streams and higher arrival rates do not
necessarily lead to noticeably poorer DCP.

We next examine the performance observed at the client.
We find that the client does not have any problem receiving
multiple streams simultaneously. Across these experiments,
reception schedule latency (RSL) ranges from 15–40 ms. We
use the client frame inter-arrival time (CFIT) to measure the
quality of transmission observed by the client. Figure 9 plots
the histogram of CFIT under 3-GDB, 10-GDB, and 30-GDB,
respectively, when the request rate is 600 requests per minute.
Each plot shows the result of one run. Other runs under the
same configuration display similar behavior. For each GDB
scheme examined, the CFITs under the arrival rates of 1 re-
quest per minute are very similar to those plotted in Fig. 9, con-
firming that even the high arrival of 600 requests per minute
does not cause performance degradation at the server.

In Fig. 9, the histogram of CFITs under 3-GDB and 10-
GDB are both unimodal in the range of 20–50 ms with the
peak at 38–33 ms, respectively. The variance and coefficient
of variation for 3-GDB are 28.63 and 0.16, while the variance
and coefficient of variation for 10-GDB are 12.01 and 0.10.
The CFIT from 3-GDB has higher variation than CFIT from
10-GDB. The histogram of CFITs under 30-GDB is bimodal,
with two peaks at 31 ms and 41 ms, respectively. These can
be explained as follows. For a scheduled transmission of one
frame per 33 ms, the frame Inter-arrival times at the client
are expected to be 40 ms or 30 ms (if no jitter is generated
over the server and the network) due to the 10 ms granularity

M.K. Bradshaw et al.: Periodic broadcast and patching services 87

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60

F
ra

ct
io

n

Frame interarrival time (ms)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60

F
ra

ct
io

n

Frame interarrival time (ms)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60

F
ra

ct
io

n

Frame interarrival time (ms)

a 3-GDB b 10-GDB c 30-GDB

Fig. 9. Client Frame Interarrival Time (CFIT) histogram under 3-GDB, 10-GDB, and 30-GDB at 600 requests per minute

of scheduling in Linux. If the server can keep up with the
schedule, the percentage of 40 ms and 30 ms inter-arrival times
are expected to be 67% and 33%, respectively. The CFIT in
30-GDB is close to this expectation while the CFIT in 10-
GDB and 3-GDB deviate from this expectation. This is due
to heavier traffic over the network in the later two schemes.
The total network loads in 3-GDB (73.59 Mbps) and 10-GDB
(57.81 Mbps) are 1.66 and 1.30 times of the network load in
30-GDB (44.43 Mbps), respectively. Similar behavior is also
observed in the end–end patching experiment described next.
Finally, our experiments show that if the client starts playback
around 80 ms after receiving the first frame, it is able to receive
all the frames before the playback time. This implies that a very
small amount of waiting time after receiving the first frame
can guarantee continuous playback in periodic broadcast in
our test bed.

6.3.2 Patching

Our aim in this experiment is to explore the end–end perfor-
mance for threshold-based patching. The aggregate request
rates of the workload generator are chosen to be 1 and 5 re-
quests per minute (for higher arrival rates the 100 Mbps net-
work link becomes a bottleneck).

The average network load for an arrival rate of 5 per minute
is 55.27 Mbps, which is 2.65 times of the network load for
arrival rate of 1 per minute (20.85 Mbps). As with periodic
broadcast, we find that the DCP remains steady at 99.9% for
the two arrival rates, which demonstrates that the server has no
difficulty in handling this range of request rates. On the client
side, reception schedule latency is around 15 to 20 ms. The
CFIT histograms (not shown here due to space constraints)
are bimodal, similar to the 30-GDB result in Fig. 9 Another
important observation is: if the client starts playback 1.5 s
after sending the request, it is able to receive all the frames
before the playback time. This 1.5 s includes the latency for
the first frame of the video to come in and some delay after that
to accommodate the packets that arrive later than the sched-
uled playback time. We conclude that the network becomes
the bottleneck in 100 Mbps switched Ethernet LAN settings
for patching since the server is able to send near to the band-
width of the link without experiencing poor quality video at
the client.

6.4 End–end performance over the Internet

We next evaluate the server and client performance under pe-
riodic broadcast and patching schemes over the Internet. We
executed experiments between our site (UMass) and one site
at the University of Maryland (UMD) and another at the Uni-
versity of Southern California (USC). Our preliminary ex-
periment with the two sites shows that the route between
UMass and UMD is very well provisioned, while the route
from UMass to USC is lossy. We believe that experiments
with these two sites can reflect different aspects of the perfor-
mance of periodic broadcast and patching schemes over the
wide area network.

As the bandwidth to UMD is constrained by a 10 Mbps
network interface, we choose the low bandwidth CBR video,
Tommy, for the experiments. As shown in Table 1, this movie
is 300 Kbps, 20 minutes long and 30 frames per second. The
video is packetized according to Hoffman et al. [25]. For this
low bandwidth video, 87.5% of the frames are contained in
one packet and 94.2% of the frames require no more than two
packets. Therefore, we expect the frame loss ratio to closely
match the packet loss ratio, which is confirmed by our exper-
iments.

Ideally, we would like to evaluate the end-end performance
using multicast. Unfortunately, the sites for our WAN exper-
iment did not have multicast connectivity at the time of the
experiments. Given this, we use unicast to simulate multi-
cast/broadcast. That is, we place the workload generator and
the measurement client on the same machine called the client
machine. All requests come from the client machine and the
server transmits all the streams to the client machine. In this
way, periodic broadcast and patching can be used since streams
for different requests can be shared. In our experiments, as de-
scribed later, the average traffic to the client machine is slightly
over 2 Mps. The CPU usage on the client machine is minimal
(less than 1%). We therefore believe that the artifact created
by running client workload generator and the measurement
client on the same machine is negligible.

The workload generator creates requests for the video ac-
cording to a Poisson distribution at the rate of two requests
per minute. The arrival process is fixed for all of the exper-
iments for ease of comparison. After the server load reaches
a steady state, our measurement client starts to send requests
to the server with two consecutive requests spaced at least
30 minutes apart. We choose 10-GDB as an example of peri-
odic broadcast scheme. The video is divided into 7 segments
with the length of 10, 20, 40, 80, 160, 320, 570 s. The network

88 M.K. Bradshaw et al.: Periodic broadcast and patching services

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

F
ra

ct
io

n

load(Mbps)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 1.5 2 2.5 3 3.5 4 4.5
F

ra
ct

io
n

load(Mbps)

a 10-GDB b patching

Fig. 10. Histogram of network bandwidth required for periodic broadcast and patching under the chosen requests arrival process

bandwidth required for periodic broadcast is independent of
the arrival process. The optimal threshold for patching is four
minutes for this arrival process [24]. Fig. 10a and 10b illus-
trate the histogram of network bandwidths required by 10-
GDB and patching under the chosen arrival process. The aver-
age network bandwidth required by 10-GDB and patching are
2.09 Mbps and 2.32 Mbps, respectively. The network band-
width required by 10-GDB ranged between 1.6 to 2.4 Mbps
and the majority of the bandwidth requirement is from 2 to
2.2 Mbps. The network bandwidth required by patching falls
in a larger range (1–4 Mbps) and the majority of the bandwidth
falls between 1.5–3 Mbps. Finally, if all of the videos are deliv-
ered using individual unicast, the average network bandwidth
for this arrival process is 12 Mbps, five times greater than that
required by 10-GDB and patching.

Throughout this set of experiments, the video is allocated
a 64 MB application-level cache. At the server side, the dead-
line conformance is over 99.99% and the signaling latency
for the requests is less than 10 ms. We therefore focus on the
reception quality of the video at the client side. Our emphasis
here is to examine the performance of periodic broadcast and
patching over networks with varied connectivities and the ef-
fect of packet loss and network jitter on the reception of the
client. More systematic performance evaluations will be the
focus of future work. We carry out bi-directional experiments
between UMass and UMD. That is, we examine where the
server is placed at UMass and the client at UMD and where
the server is located at UMD and the client at UMass. The
experiments with our host in USC is unidirectional; video is
transmitted from UMass to USC. We next describe the ex-
periments in details. All the times are given in East Standard
time.

6.4.1 Experiments between UMass and UMD

Table 4 summarizes some of the experiments carried out be-
tween UMass and UMD. We observe that the packet loss ratio
between the two sites is less than 1% for both 10-GDB and

Table 4. Some experiment results between UMass and UMD under
both 10-GDB and patching

Time (2002) Server-client Scheme Pkt. Loss RS lat.
(%) (ms)

2/21 14:25 Th UMD-UMass 10-GDB 0.2 77
2/21 15:20 Th UMD-UMass 10-GDB 0.005 87
2/22 13:10 F UMD-UMass patching 0.02 112
2/22 15:30 F UMD-UMass patching 0.07 69
2/25 14:10 M UMass-UMD 10-GDB 0.8 126
2/25 14:40 M UMass-UMD 10-GDB 0.2 96
2/26 20:00 Tu UMass-UMD patching 0.02 120

patching. In the table, the RS latency ranges from 70–120 ms.
Fig. 11a shows the histogram of the RS latencies for all of the
requests for an experiment from UMass to UMD using patch-
ing. The RS latency lies in the range of 100 to 400 ms. The
RS latency seen by most of the requests is less than 300 ms.
The behavior of RS latency under 10-GDB is similar.

We observe that, throughout the experiments, the
CFIT (Client Frame Interarrival Time) forms a bell shape, with
most of the mass in the range of 20 to 60 ms. This is different
from the observation under the same settings in LAN, where
the CFIT has strong peaks at 30 and 40ms . The spread in the
client frame interarrival times reflects the jitter introduced by
the network. However, we observe that, for patching, an extra
waiting time of less than 50 ms after receiving the first frame of
the video can guarantee that all frames arrive before the play-
back time. It usually takes 1–2 s for the client to receive the
first frame of the video after sending the request. Therefore,
about 2 s of waiting time is sufficient to guarantee continuous
playback.

6.4.2 Experiments from UMass to USC

Table 5 summarizes some of the experiments from UMass
to USC. The fourth column records the average packet loss

M.K. Bradshaw et al.: Periodic broadcast and patching services 89

Table 5. Some experiment results from UMass to USC under both 10-GDB and patching

Time (2002) Server-client Scheme Pkt. loss RS lat. (ms)
3/04 10:10 M UMass-USC 10-GDB 21.1% (5.6%, 8.4%, 13.3%, 15.1%, 17.7%, 22%, 23.4%) 91
3/04 10:40 M UMass-USC 10-GDB 20.9% (8%, 11.2%, 12.3%, 14.3%, 17%, 21%, 24%) 91
3/07 1:50pm Th UMass-USC 10-GDB 18.6% (8.2%, 11.6%, 10%, 12.9%, 16.1%, 18.7%, 21%) 124
3/07 2:20pm Th UMass-USC 10-GDB 18.3% (7.2%, 11.2%, 9.3%, 11.9%, 16.8%, 18.3%, 20.7%) 136
2/28 15:30 Th UMass-USC patching 7.3% (15.1%, 6.4%,) 111
2/28 16:00 Th UMass-USC patching 5.4% (10.7%, 5.4%) 111
3/06 16:00 W UMass-USC patching 5.0% 168
3/06 16:30 W UMass-USC patching 4.0% (6.6%, 3.4%) 110

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

50 100 150 200 250 300 350 400

F
ra

ct
io

n

RS latency(ms)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 500 1000 1500 2000 2500 3000 3500

F
ra

ct
io

n

RS latency(ms)

a one run of patching from UMass to UMD b one run of patching from UMass to USC

Fig. 11. Histogram of RS latencies of one run from UMass to UMD and from UMass to USC using patching scheme

ratio over the whole video. If the client is scheduled to receive
multiple streams, the loss of each received stream is recorded
in the parentheses, in increasing order of their positions in
the video. We observe that the packet loss ratio over the whole
video here is much higher than that between UMass and UMD.
The majority of the losses are single loss. We also notice that
the packet loss ratio is not uniform across the streams. In 10-
GDB, the packet loss ratio of the earlier segments (e.g., the
first and second segment) is less than that of the later segments.
In patching, the packet loss ratio of the patch is higher than
that of the complete stream.

We conjecture that the differences of the packet loss ratio is
an artifact of how the streams are placed on the network. Pack-
ets are not sent out in a continuous stream. Instead, the server
network thread wakes up every τ ms (33 ms for our experi-
ments), and sends out all of the packets which are scheduled
for delivery before the next round occurs. In our system the
scheduled packets of a stream are placed on the network before
meeting the needs of the next stream. This conjecture holds
as the streams which are processed first, the early segments of
10-GDB or the previously scheduled streams in patching, are
the streams that show less loss. Further exploration of ways to
reverse these effects are topics in further work.

In the table, the RS latencies lie in the range of 90 to 170
ms. However, the RS latency for all the requests varies dra-
matically during one run. Fig. 11b shows the histogram of the
RS latencies for all the requests in an experiment using patch-
ing from UMass to USC. The graph shows that the majority
of the RS latencies is less that 500 ms. However, some re-

quests experience a RS latency as long as three seconds. The
behavior of RS latency under 10-GDB is similar. We do not
see longer CFITs here than those between UMass and UMD.
On the other hand, the CFIT only shows the interarrival time
of consecutive frames that actually reach the client. For patch-
ing, the extra waiting time after receiving the first frame of the
video to ensure that frames arrive by the playback time varies
from several milliseconds to over 200 ms.

6.5 Control and data engine interaction

In this section, we examine some of the implications of hav-
ing the control and data engine run as separate entities. From
Sect. 6.3 we see that for a deadline conformance percentage
> 99%, the clients receive good service. Furthermore, we ob-
serve in Sect. 6.2.2 that all DCP values remained > 99% for
all levels client request rates. To understand why this occurs
we need to look at what is happening for each active thread in
the server. The disk thread needs very little computation time
each second and has a negligible effect on the processor. Using
the measurements observed for configuration II in Sect. 6.2.2
(see Table 3), we can calculate the amount of time that the
network thread needs each second. We find that the NT needs
5.08 ms per round and there are 30 rounds in a second. There-
fore, the NT needs (30/s) ∗ (5.08 ms) = 152.4 ms/s to perform
its task. In general the amount of time that the NT will need
each second is 3 ms per Mbps of the data transmitted. The only
other active entities are the five scheduler threads. This means

90 M.K. Bradshaw et al.: Periodic broadcast and patching services

20

40

60

80

0 1000 2000 3000S
er

ve
r

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

bp
s)

time (sec)

timeseries

20

40

60

80

0 1000 2000 3000S
er

ve
r

N
et

w
or

k
T

hr
ou

gh
pu

t (
M

bp
s)

time (sec)

timeseries

a 3-GDB synchronized b 3-GDB non-synchronized

Fig. 12. Synchronization between transmission schedules could lead to bursty behavior

there are total of six active threads in the server, excluding the
DT. Assuming a simple processor sharing model we see that
each thread will receive 166 ms of processor time each second.
This should allow the NT thread to essentially run in isolation
from the scheduler threads. To test this hypothesis, we re-ran
configuration II with 20 scheduler threads and used a high re-
quest rate. While the server was able to service more clients,
the resulting DCP was only 4.26%. This indicates that with-
out some form of guarantee for processor time, the number of
active threads needs to be chosen carefully.

6.6 Scheduling among videos

When supporting three videos (copies Blade2) using periodic
broadcast, we observe that the server generated bursty network
traffic (see Fig. 12a). In particular, bursts of traffic were found
to occur every 768 s. This can be explained as follows. The l-
GDB algorithm periodically repeats each segment of the video
at a certain rate. Due to the fact that the last segment is smaller
than the repetition rate, the server will transmit the last segment
for a short amount of time; the address remains idle until the
next repetition. If several videos are transmitted with this last
address synchronized, the server will generate a burst in net-
work traffic. To avoid the bursty behavior, we examined what
happened when the schedules were started separately at an in-
terval of three minutes apart. Figure 12b, shows three 3-GDB
broadcasts, staggered to prevent them from synchronizing the
retrieval of the last segment, and find that the sustained bursts
disappear. Scheduling to avoid synchronization removes the
necessity of provisioning high peak server network through-
put. This example illustrates the benefit of using techniques
for smoothing out the offered load, especially for high loads.

7 Conclusions

The high transmission bandwidth requirements of streaming
video, coupled with the best-effort service provided by today’s
IP networks makes it a challenging problem to provision net-
work resources for delivering such media to remote clients. In
this paper, we have presented the design and implementation

of an experimental streaming media test bed for investigat-
ing scalable streaming solutions like periodic broadcast and
patching. The test bed consists of a distributed video server and
client software running on top of off-the-shelf PCs executing
commercial Linux and Windows operating systems.

Experimental evaluations indicate that the server is able
to support the real-time, bandwidth intensive data delivery re-
quirements imposed by schemes like periodic broadcast and
patching, vindicating many of the key design principles in-
corporated in the architecture. Under periodic broadcast, our
server can easily process a client request rate of 600 requests
per minute (returning periodic broadcast schedule informa-
tion to each client), while at the same time streaming video
segments over multiple multicast groups and missing few
data transmission deadlines. Under patching, our server again
comes close to fully loading a 100 Mbps network connection
with patched-in clients, while missing few data transmission
deadlines. Our measurements also show that in a loaded LAN
environment, an initial client startup delay of less than 1.5 s. is
sufficient to handle startup signaling and absorb data jitter in-
duced by the non real time operating systems at either the client
or the server, as well as any network jitter. Our experiments
over the Internet shows that the end-end performance varies
dramatically under various network connectivities. When con-
nectivity is good, the performance is similar to LAN condi-
tions. Experiments under poor connectivity indicate the need
of packet recovery schemes specific for periodic broadcast and
patching. Radical differences in packet loss between streams,
pushes further examination into the manner in which streams
are placed on the network.

Our evaluations show that application-level data caching
can dramatically reduce the bandwidth demands placed on the
underlying server operating system even when using a simple
Least Recently Used (LRU) cache replacement policy, and
that substantial additional performance gains can be realized
under a Least Frequently Used (LFU) Replacement Policy.
Furthermore, we have shown that LFU is an optimal cache
replacement policy for for periodic broadcast and patching
schemes.

Our test bed allows us to collect benchmarking measure-
ments for individual components in the server. Using this data,
we can determine bottlenecks and search farther for lessons

M.K. Bradshaw et al.: Periodic broadcast and patching services 91

on how the individual components interact to effect the quality
of service that the end client sees.

Building on our experience and the insights we have
gained, we are developing a network proxy server test bed
for exploring proxy-based techniques for efficient deliver high
quality streaming video over best-effort IP networks.

A Optimality proofs of LFU

Theorem 1. LFU per-video cache replacement policy for (i)
threshold-based controlled multicast patching, under a Pois-
son arrival process, and (ii) any member of the periodic broad-
cast family of algorithms, using any arrival process, minimizes
the average server read load into the underlying operating
system.

Proof. We prove this from a well known result in the OS com-
munity [39]:

An optimal page-replacement algorithm that has the
lowest page-fault is: Replace the page that will not be
used for the longest period of time.

If the access frequency is known beforehand, LFU satisfies
the property that the data that will not be used for the longest
period of time are replaced first. Hence, it is an optimal policy.
We next show that the expected access frequency in periodic
broadcast and threshold-based patching can be predetermined.

In periodic broadcast, each segment is broadcast periodi-
cally irrelevant to the request rate of the clients. Therefore, if
the length of segment i is si, then the access frequency of the
segment from the memory is 1/si. The smaller the segment,
the more frequent it is accessed.

In threshold-based patching under a Poisson arrival pro-
cess, let T be the threshold and λ be the arrival rate. We con-
sider the interval between two complete streams. The video
block after the threshold is required once. For video block
[x, x + δ], x < T , where δ is small enough, this block is re-
quired 1+λ(T −x) times. The smaller the x, the more frequent
it is being required. Therefore, LFU minimized the miss rate
hence the read overload on the system in both periodic broad-
cast and threshold-based patching.

In effect, the more frequently accessed segments (blocks)
are not replaced but kept cached by using LFU. It should be
noted that for segmentation schemes such as GDB where the
length of the segments are in an increasing order, a prefix of
the video ends up cached. In threshold-based patching, since
the earlier video blocks have higher access frequency, it also
turns out that a prefix of the video is cached.

Acknowledgements. The authors thank Abhinav Garg and Ellen
Zhang for their respective contributions to the development of this
testbed. This research was supported in part by the National Sci-
ence Foundation under Grants ANI-9977635, ANI-9805185, ANI
9973092, EIA-0080119, NCR-9508274,ANIR-9977555, andANIR-
9875513, and by a gift from Intel Corporation. Any opinions, find-
ings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of
the funding agencies.

References

1. Carter S, Long D (1997) Improving video-on-demand server
efficiency through stream tapping. Proceedings International
Conference on Computer Communications and Networks

2. Eager D, Ferris M, Vernon M (1999) Optimized regional
caching for on-demand data delivery. Proceedings Multimedia
Computing and Networking (MMCN)

3. Eager D, Vernon M (1998) Dynamic skyscraper broadcasts for
video-on-demand. Proceedings 4th International Workshop on
Multimedia Information Systems

4. Gao L, Kurose J, Towsley D (1998) Efficient schemes for broad-
casting popular videos. Proceedings International Workshop on
Network and Operating System Support for Digital Audio and
Video

5. Hua K, CaiY, Sheu S (1998) Patching:A multicast technique for
true video-on-demand services. Proceedings ACM Multimedia

6. Hua K, Sheu S (1997) Skyscraper broadcasting: A new broad-
casting scheme for metropolitan video-on-demand systems.
Proceedings ACM SIGCOMM

7. Sen S, Gao L, Rexford J, Towsley D (1999) Optimal patch-
ing schemes for efficient multimedia streaming. Proceedings
International Conference on NOSSDAV

8. Almeroth K, Ammar M (1999) An alternative paradigm for
scalable on-demand applications: Evaluating and deploying the
interactive multimedia jukebox. IEEE Trans Knowl Data Eng
11(4):658–672

9. Anderson D, Osawa Y, Govindan R (1992) A file system for
continuous media. ACM Trans Comput Syst Nov:311–337

10. Buddhikot M, Chen X, Wu D, Parulkar G (1998) Enhance-
ments to 4.4 bsd unix for efficient networked multimedia in
project mars. Proceedings IEEE International Conference on
Multimedia Computing and Systems (ICMCS’98), Austin, TX,
326–337

11. Bolosky WJ, Fitzgerald RP, Douceur JR (1997) Distributed
schedule management in the tiger video fileserver. Proceedings
Sixteenth ACM Symposium on Operating Systems Principles
(SOSP’97), Saint-Malo, France, 212–223

12. Buddhikot M, Parulkar G, Cox J (1994) Design of a large
scale multimedia storage server. J Comput Netw ISDN Syst
Dec:504—524

13. Cen S, Pu C, Staehli R, Cowan C, Walpole J (1995) Demon-
strating the effect of software feedback on a distributed real-time
mpeg video audio player. Proceedings ACM Multimedia

14. Chang S-F, EleftheriadisA,Anastassiou D (1996) Development
of Columbia’s video on demand testbed. Image Commun J,
Special Issue on Video on Demand and Interactive TV

15. Haskin R (1998) Tiger shark–a scalable file system for multime-
dia. IBM Journal of Research and Development 42(2):185–197

16. Martin C, Narayan PS, Ozden B, Rastogi R, Silberschatz A
(1996) The Fellini multimedia storage server. In: Multimedia
Information Storage and Management, Chung SM (ed), Kluwer

17. Tobagi FA, Pang J, Baird R, Gang M (1993) Streaming raid –
a disk array management system for video files. Proceedings
ACM Multimedia ’93, Anaheim, CA, 393–400

18. Vernick M, Venkatramini C, Chiueh T (1996) Adventures in
building the stony brook video server. Proceedings ACM Mul-
timedia’96

19. Aggarwal C, Wolf J, Yu P (1996) On optimal batching policies
for video-on-demand storage servers. Proc. IEEE International
Conference on Multimedia Computing and Systems

20. Golubchik L, Lui J, Muntz R (1996) Adaptive piggybacking:
A novel technique for data sharing in video-on-demand storage
servers. ACM Multimedia Systems Journal 4(3):140–155

92 M.K. Bradshaw et al.: Periodic broadcast and patching services

21. Paris J-F, Carter S, Long D (1998) A low bandwidth broadcast-
ing protocol for video on demand. Proceedings 7th International
Conference on Computer Communications and Networks

22. Sen S, Gao L, Towsley D (2001) Frame-based periodic broad-
cast and fundamental resource tradeoffs. Proceedings IEEE
International Performance, Computing, and Communications
Conference

23. Wang B, Sen S,Adler M,Towsley D (2002) Optimal proxy cache
allocation for efficient streaming media distribution. Proceed-
ings IEEE INFOCOM

24. Gao L, Towsley D (1999) Supplying instantaneous video-on-
demand services using controlled multicast. Proceedings IEEE
International Conference on Multimedia Computing and Sys-
tems

25. Hoffman D, Fernando G, Goyal V, Civanlar M (1998) Rtp
payload format for mpeg1/mpeg2 video, request for comments
2250, January

26. Schulzrinne H, Casner S, Frederick R, Jacobson V (1996) RTP:
A transport protocol for real-time applications, request for com-
ments 1889, January.
ftp://ftp.isi.edu/in-notes/rfc1889.txt

27. Schulzrinne H, Rao A, Lanphier R (1998) Real time streaming
protocol (RTSP), request for comments 2326, April.
ftp://ftp.isi.edu/in-notes/rfc2326.txt

28. Handley M, Jacobson V (1998) SDP: Session description pro-
tocol, request for comments 2327, April

29. Diot C, Levine B, Lyles B, Kassan H, Balsiefien D (2000) De-
ployment issues for the ip multicast service and architecture.
IEEE Netw 14(1):78–88

30. Turner J (1999) Terabit burst switching. J High Speed Netw
31. M. S. S. Group. Public domain MPEG2 encoder/decoder soft-

ware. ftp://mm-ftp.cs.berkeley.edu/pub/multimedia/mpeg2/
conformance-bitstreams/video/verifier

32. Acharya S, Smith B (2000) Middleman: A video caching proxy
server. Proceedings International Conference on NOSSDAV

33. Almeida JM, Eager DL, Vernon MK (2001) A hybrid caching
strategy for streaming media files. Proceedings Multimedia
Computing and Networking (MMCN)

34. Eager D, Ferris M, Vernon M (2000) Optimized caching in
systems with heterogeneous client populations. Perform Eval,
Special Issue on Internet Performance Modeling, 163–185

35. Rejaie R, Yu H, Handley M, Estrin D (2000) Multimedia proxy
caching mechanism for quality adaptive streaming applications
in the internet. Proceedings IEEE INFOCOM

36. Sen S, Rexford J, Towsley D (1999) Proxy prefix caching for
multimedia streams. Proceedings IEEE INFOCOM

37. Lee D, Choi J, Kim J-H, Noh SH, Min SL, ChoY, Kim CS (1999)
On the existance of a spectrum of policies that subsumes the
least recently used LRU and least frequently used LFU policies.
SIGMETRICS

38. Gao L, Zhang Z, Towsley D (1999) Catching and selective
catching: Efficient latency reduction techniques for delivering
continuous multimedia streams. Proceedings ACM Multimedia

39. Silberschatz A, Peterson J, Galvin P (1991) Operating System
Concepts, 3rd ed. Addison-Wesley

Michael K. Bradshaw received his BS in
computer science and mathematics from
Centre College in 1999. He is currently
a graduate student at the University of
Massachusetts at Amherst in the Com-
puter Networks Research Group. His re-
search interests include content address-
able networks, application layer networks
and content delivery systems.

Bing Wang received her BS degree and
MS degree in computer science from Nan-
jing University of Science and Technol-
ogy, China, in 1994 and the Chinese
Academy of Sciences, China, in 1997, re-
spectively. She is currently a PhD candi-
date in the Department of Computer Sci-
ence at the University of Massachusetts at
Amherst. Her research interests include In-
ternet technologies and applications, net-
work measurements and modeling.

Subhabrata Sen received a Bachelor of
Engineering degree in Computer Science
(1992) from Jadavpur University, India,
and MS (1997) and PhD (2001) degrees
in Computer Science from the University
of Massachusetts, Amherst. He is a Se-
nior Technical Staff Member at the Inter-
net and Network Systems Research Center
at AT&T Labs – Research, Florham Park,
New Jersey. His research interests include
multimedia proxy services, peer-peer sys-
tems, overlay networks, and Internet traffic
characterization.

Lixin Gao (M ’96 / ACM ’96) is an associate professor of Electri-
cal and Computer Engineering at the University of Massachusetts,
Amherst. She received her PhD degree in computer science from the
University of Massachusetts at Amherst in 1996. Her research inter-
ests include multimedia networking and Internet routing. She was a
visiting researcher at AT&T Research Labs and DIMACS between
May 1999 and January 2000. She is the founding director of the Mul-
timedia Networking and Internet Research Laboratory at Umass and
received an NSF CAREER award in 1999. Dr Gao is on the Editorial
Board of IEEE Transactions on Networking.

Jim Kurose received a BA degree in
physics from Wesleyan University in 1978
and his MS and PhD degrees in computer
science from Columbia University in 1980
and 1984, respectively. He is currently a
professor (and past chairman) in the De-
partment of Computer Science at the Uni-
versity of Massachusetts, where he is also
co-director of the Networking Research
Laboratory. His research interests include
multimedia communication, network pro-
tocols, network and operating system sup-

port for servers, and modeling and performance evaluation.

M.K. Bradshaw et al.: Periodic broadcast and patching services 93

Prashant Shenoy received his BTech in
Computer Science and Engineering from
IIT Bombay, India in 1993, and his MS
and PhD in Computer Sciences from the
University of Texas at Austin in 1994
and 1998, respectively. He is currently
an Assistant Professor in the Department
of Computer Science at the University of
Massachusetts Amherst. His research in-
terests are multimedia file systems, oper-
ating systems, computer networks and dis-
tributed systems. Over the past few years,

he has been the recipient of the National Science Foundation CA-
REER award, the IBM Faculty Development Award, the Lilly Foun-
dation Teaching Fellowship, and the UT Computer Science Best Dis-
sertation Award. He is a member of the ACM and the IEEE.

Don Towsley holds a BA in physics (1971) and a PhD in computer
science (1975) from University of Texas. From 1976 to 1985 he was a
member of the faculty of the Department of Electrical and Computer
Engineering at the University of Massachusetts, Amherst. He is cur-
rently a Distinguished Professor at the University of Massachusetts
in the Department of Computer Science. He has held visiting posi-
tions at IBM T.J. Watson Research Center, Yorktown Heights, NY
(1982–1983); Laboratoire MASI, Paris, France (1989–1990); IN-
RIA, Sophia-Antipolis, France (1996); and AT&T Labs - Research,
Florham Park, NJ (1997). His research interests include networks,
multimedia systems, and performance evaluation. He currently serves
on the editorial board of Performance Evaluation and the Journal
of the ACM, and has previously served on several editorial boards,
including those of the IEEE Transactions on Communications and
IEEE/ACM Transactions on Networking.

