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Wireless sensor networks have been used for many delay-sensitive and safety-critical
applications, e.g., emergency response and plant automation. For such applications, delay
measurement inside the sensor networks is important for real-time monitoring and control
of the networked system, and abnormal delay detection. In this paper, we propose a mea-
surement architecture using distributed air sniffers. This approach provides convenient
delay measurement, and requires no clock synchronization or instrumentation at the sen-
sor nodes. Since using sniffers incurs additional deployment cost, we investigate two
aspects to reduce deployment cost: (1) using inexpensive mote-class sniffers and (2) care-
fully placing the sniffers to minimize the number of sniffers that are needed. Specifically,
we experimentally quantify the capability and fidelity of mote-class sniffers for delay mea-
surement, and show that they provide satisfactory monitoring performance. We further
formulate and solve a sniffer placement problem that minimizes the number of sniffers
while taking account of the workload constraints of the sniffers, and show that the number
of sniffers under our sniffer placement algorithms is only a small fraction of the number of
sensor nodes in the network. Last, we demonstrate the effectiveness of our architecture for
abnormal delay detection using experiments in a testbed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

gies for the networked system need to be designed and
adjusted based on communication delays [32]. It is also

Wireless sensor networks have been used for many de-
lay-sensitive and safety-critical applications, e.g., emer-
gency response, plant automation and control, and health
care. For such applications, measuring delays inside the
wireless sensor networks is important for a number of rea-
sons. It is important for real-time control: control strate-
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important for detecting abnormal delays (e.g., large delays
caused by congestion or malfunctioning nodes) so that
they can be corrected to maintain the normal operation
of the network.

When nodes in a network have synchronized clocks,
obtaining the delay from one node to another is straight-
forward: the sender places a timestamp when sending a
packet, the receiver places a timestamp when receiving
the packet, and the difference of the two timestamps is
one instance of the delay. Existing clock synchronization
approaches are however slow to converge and may lead
to a large number of message exchanges (see Section 2.1).
When the clocks of the sensor nodes are not synchronized,
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one way for delay measurement is by instrumenting
sensor nodes [30]. This approach, however, may not be fea-
sible and consumes scarce resources of the sensor nodes
(see Section 2.1).

In this paper, we propose an architecture that uses air
sniffers for delay measurement in wireless sensor net-
works. The sniffers are placed at distributed locations, each
passively listening to packet transmissions in its neighbor-
hood and recording the time when hearing a transmission.
We demonstrate that this architecture provides a conve-
nient way to monitor delays and detect abnormal delays
inside a wireless sensor network. It has the advantages that
it does not require clock synchronization or instrumenting
the sensor nodes to measure delays, and hence does not
consume scarce resources of the sensor nodes.

Using sniffers, however, incurs additional deployment
cost. This additional cost can be justified for mission-criti-
cal sensor networks (e.g., emergency response, plant auto-
mation and control). In addition, we investigate two
aspects to reduce the additional deployment cost: (1) using
inexpensive mote-class sniffers and (2) carefully placing
the sniffers to minimize the number of sniffers that are
needed. Mote-class sniffers, however, are simple embed-
ded devices with stringent resources. Therefore, it is
important to understand their capabilities and the accu-
racy of their monitoring results. Through a combination
of experimental and analytical study, we quantify the sus-
tainable workload and fidelity of mote-class sniffers. We
find that a sniffer can monitor traffic at the rate of 60 pack-
ets per second with little buffer overflow and the per-hop
delay measurements from a sniffer are accurate (the errors
are up to 300 us). Therefore, mote-class sniffers are suit-
able for many monitoring purposes. For sniffer deploy-
ment, we formulate and solve a sniffer placement
problem that minimizes the number of sniffers while tak-
ing account of the workload constraints of the sniffers.
Using extensive simulation, we show that the number of
required sniffers under our sniffer placement algorithms
is only a small fraction of the number of sensor nodes in
the network. Last, we demonstrate the effectiveness of
our architecture for abnormal delay detection through
experiments in a testbed.

The rest of the paper is organized as follows. Section 2
describes the proposed delay measurement architecture
using sniffers. Section 3 quantifies the capability and fidel-
ity of mote-class sniffers. Section 4 formulates and solves
the sniffer placement problem. Section 5 demonstrates
the effectiveness of our architecture for abnormal delay
detection. Finally, Section 6 reviews related work, and Sec-
tion 7 concludes this paper.

2. Delay monitoring

Consider a static sensor network that is used to support
a delay-sensitive and mission-critical application. Hence it
is important to monitor delays and detect abnormal delays
in real-time inside the network. We next first describe
existing approaches for delay measurement, and then de-
tail our proposed approach.

2.1. Existing approaches

One approach to monitor delays inside a wireless net-
work is through clock synchronization. Once the clocks of
the nodes are synchronized, a sender places a timestamp
when transmitting a packet, and a receiver can obtain the
delay from the sender as simply the difference from when
the packet is received and when the packet is transmitted
(which is the timestamp carried by the packet). Despite
many efforts (see survey [25] and the references therein),
clock synchronization, however, remains a challenging
task in large-scale sensor networks. Existing clock synchro-
nization approaches are slow to converge and may require
a large number of message exchanges. For instance, for a
20-node network, the-state-of-the-art clock synchroniza-
tion algorithms FTSP and GTSP [16,26] take roughly
30 min until the algorithms converge and need to re-syn-
chronize to reach the desired precision. During the syn-
chronization period, each node needs to send at least one
message, leading to a large number of message exchanges
in a large-scale network. One way to eliminate the need of
clock synchronization is using half of the RTT between two
nodes as the one-way delay. This approach, however, re-
quires the sensor nodes to measure RTTs. Furthermore, it
may lead to inaccurate estimates due to asymmetric com-
munications in sensor networks [12,33,18].

When the clocks of the sensor nodes are not synchro-
nized, one way for delay measurement is by instrumenting
the nodes [30]. More specifically, consider the delay on a
network hop from sensor node A to B. This delay contains
two components: the delay at A and the radio propagation
delay for sending a packet from A to B. Since the second
component is negligible, the delay is approximately the de-
lay at A, which can be obtained by instrumenting A to re-
cord two timestamps, one is when A starts to transmit a
packet (or receives a packet when it is an intermediate
node) and the other is when A receives a signal that this
packet is actually sent out into the air. This approach, how-
ever, requires modifying the source code for each sensor
node. It is infeasible when source code is not available. In
addition, requiring sensor nodes to monitor delays and de-
tect abnormal delays consumes scarce resources (including
CPU, memory, network bandwidth, and energy) of the sen-
sor nodes, which may affect the intended functionality of
the sensor network. (In fact, this approach is only used in
an offline manner in [30].)

2.2. Proposed approach

In our proposed architecture, a set of sniffers are de-
ployed at distributed locations inside the sensor network
(we discuss where to place sniffers in detail in Section 4).
Each sniffer has two network interfaces (as in [9,19]).
One interface operates on the same channel as that of the
sensor nodes, and is used to listen to packet transmissions
from nearby sensor nodes. The other interface operates on
a non-interfering channel, and is used to communicate
with other sniffers and a server (e.g., for reporting abnor-
mal delays). The reason for using a non-interfering channel
is that packet transmissions using this channel do not
interfere with the traffic inside the sensor network. Fig. 1
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Fig. 1. Measurement architecture using sniffers for a wireless sensor
network. The white and shaded nodes represent sensor nodes and sniffers
respectively.

illustrates this architecture, where the white nodes repre-
sent sensor nodes, and the shaded nodes represent sniffers.
In the figure, two sensor nodes are connected by an edge if
they can transmit to each other; a sniffer is connected to a
sensor node (using a dashed line) if the sniffer can hear the
transmission from that node.

We next describe methodologies for per-hop delay
monitoring and abnormal delay detection using the above
architecture. Consider an arbitrary network hop from node
A to B. Our description considers two cases: (1) A is an
intermediate node: it receives packets from an upstream
node and then forwards them to B and (2) A is a source:
it does not receive any incoming packet; instead, it gener-
ates packets and forwards them to B.

2.2.1. Delay monitoring using air sniffers

When A is an intermediate node, obtaining packet
transmission delay from A to B using sniffers is straightfor-
ward. Suppose an upstream node sends a packet to A, and a
sniffer overhears this transmission and records the recep-
tion time as t. Once receiving the packet, A forwards it to
B, and the sniffer overhears this transmission and records
the reception time as t. Then the transmission delay of
the packet from A to B is d=t' — t. This is because when
ignoring radio propagation delay (which is negligible since
the transmission range in a sensor network is tens or hun-
dreds of meters while the radio propagation speed is
approximately 3 x 10® meters per second), A receives the
packet at t and B receives the packet at t'. Since t is also
the time point when A starts to transmit the packet to B
(A starts to forward the packet immediately after receiving
it), t' — t represents the delay from sending the packet from
A to B. Note that, in the above method, since d is deter-
mined by the relative difference of t' and ¢, the sniffer’s
clock does not need to be set to the correct wall clock time
to obtain accurate measurement of d.

When A is a source and no packets are transmitted to A,
using sniffers does not obtain the absolute delay from A to
B. However, we can easily obtain relative delays from A to
B, which can be used to obtain delay variance (which is
important for realtime control [32]) and detect abnormal
delays (as we shall see in Section 2.2.2). More specifically,
consider a common scenario where sources transmit pack-
ets periodically and embed an application-level sequence

number to each packet!. In such a scenario, for a packet
with sequence number i, the packet sending time at A, t;, is
iT + to, Where ty is a constant and 7 is the period of the trans-
mission at the source. Since a sniffer does not know ty, it
does not know t;. However, when the sniffer overhears the
packet transmitted from A to B at time ¢, it can treat
t; — it as a relative delay for this packet (we assume the snif-
fer knows the period, 7, and obtains the sequence number, i,
from the overheard packet). The quantity, t; — i7, is a relative
delay because (1) it ignores the constant tp and (2) it and ¢t;
are according to the clocks of A and B, respectively, which
are not synchronized (and hence may have clock skew and
offset). While obtaining relative delays from A to B, the snif-
fer can adjust the delays by removing clock skew and offset
in an online manner (e.g., using the technique in [31]). For
the ith packet, let d; be the adjusted delay after removing
clock skew and offset in t; — it. Then d; is the absolute delay
of the ith packet from A to B shifted by a constant. The above
method assumes periodic transmission from the source and
the period 7 is known by the sniffers. If this is not the case,
the sniffer needs to know the interval between two packet
transmissions (which can be obtained from the application,
e.g., by adding transmission time of a packet in the payload).
Let 7; denote the interval between sending the ith and (i + 1)
th packet. Then the relative delay for the ith packet is
t— Z}erj, which can be adjusted to remove clock skew
and offset as described earlier.

As per-hop delays (absolute or relative delays) are being
obtained, depending on the requirements of the applica-
tion, a sniffer may (selectively) transmit the delays to other
sniffers and/or to a server using the non-interfering inter-
face. Or it may only obtain statistics of the delays, and
transmit these statistics. Two basic statistics, mean and
standard deviation, can be obtained using the following
method at little computation and storage overhead [13].
Consider a sequence of delays, {d;}\_,, where d; is the ith
delay measurement. Let ft and 6 denote respectively the
current estimates of the mean and standard deviation.
They are updated when a new delay measurement is ob-
tained. Define S, = > d;, and W, = "1, (d; — fv)°. After
obtaining the latest delay observation, d,, S, and W, are
updated as:

Sn = Sn—l + dm
Wp =W, +((n—1)dy — Sp1)?/(n(n = 1)).

Then the mean and standard deviation are updated as
[t="Sy/n,and 62 = W,/(n—1).

2.2.2. Abnormal delay detection

Abnormal delay detection can be modeled as a change-
point detection problem: when the distribution of the de-
lays changes (we assume the original delays are normal),
we say the delays become abnormal. When A is an inter-
mediate node, as shown earlier, a sniffer obtains a se-
quence of absolute delays from A to B, and can apply an
online change-point detection algorithm to these delays

! We claim this as a common scenario since in many monitoring
applications, sources transmit packets periodically, and use sequence
numbers to differentiate the packets.
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Fig. 2. Experimental settings: (a) setting to measure sustainable workload, (b) setting to evaluate the fidelity of delay measurements. In the figure, M; and
M, are sniffers, BGrx, BGgrx, N1, N, and N3 are motes, PC; and PC, are computers, and LA is a logical analyzer.

to detect a change point. When A is a source, a sniffer ob-
tains a sequence of relative adjusted delays from A to B.
Since these delays only differ from the absolute delays by
a constant, the sniffer can still apply an online change-
point detection algorithm to these delays to detect a
change point. Many techniques have been developed for
online change-point detection [3,4]. Different online detec-
tion techniques may prove effective for different abnormal
scenarios. We illustrate how we detect abnormal delays
that are caused by congestion in Section 5.

2.3. Summary

In summary, our proposed architecture uses existing
traffic inside the sensor network for delay measurement.
It is simple, requiring no clock synchronization or instru-
mentation at the sensor nodes. The sniffers placed for de-
lay measurement can also be used for other purposes. For
instance, they can monitor sensor nodes and discover
abnormal nodal behaviors [19,6]. They can also be used
for intrusion detection [27]. We only focus on monitoring
delays in this paper.

Deploying the proposed monitoring architecture incurs
additional deployment cost. This cost can be justified in
mission-critical networks (e.g., sensor networks used for
emergency response, plant automation and control). Fur-
thermore, the cost can be reduced by using inexpensive
mote-class sniffers and carefully placing the sniffers to min-
imize the number of sniffers that are needed, two aspects
that we will investigate in Sections 3 and 4, respectively.

3. Capability and fidelity of mote-class sniffers

We experimentally evaluate the capability and fidelity
of mote-class sniffers for delay monitoring. In particular,
the sniffers we use are TelosB motes that use CC2420 wire-
less transceivers (IEEE 802.15.4), and run on TinyOS 2.1.0.
We first evaluate their sustainable workload, and then
evaluate the accuracy of their delay measurements.

3.1. Sustainable workload measurements

Fig. 2(a) shows the experimental setting for measuring
sustainable workload at the sniffers. It consists of a trans-

mitter, BGry, a receiver, BGrx, two sniffers, M; and M,,
and two PCs. Each sniffer passively listens to packet trans-
missions in its neighborhood, and once overhearing a pack-
et, records the current time as a payload in the packet and
passes the packet over USB into a data log stored at the
connected PC.? Using two sniffers allows us to validate
whether the measurements by the sniffers are consistent
(to avoid measurement errors caused by hardware or soft-
ware inconsistencies of the sniffers).

Our goal is to measure the workload that can be sus-
tained by the sniffers. For this purpose, we let BGrx trans-
mit packets to BGrx following a Poisson process with a
rate increasing from 5 packets to 60 packets per second,
and measure the corresponding loss rate at the sniffers.
The losses at the sniffer are mainly due to receiver buffer
overflow since there is a single traffic source in our testbed
and the testbed is in an isolated lab with little other
sources of interference. The receiver buffer uses FIFO
(first-in-first-out) scheduling. Table 1 records the number
of lost packets in each experiment (the loss count for the
two sniffers is the same.). We observe very few losses even
when the average sending rate is 60 packets per second,
indicating that the sniffer is reliable for capturing the traf-
fic received at this rate.

To gain additional insights, we use a queuing model to
approximate the number of losses at the sniffer. Our mea-
surements show that the processing time of a packet at the
sniffer is close to a constant of 4.4 ms.> Because the arrival
process follows a Poisson distribution, the processing time at
the sniffer is constant, and the buffer at the sniffer can hold
up to three packets (the buffer size is 128 bytes and each
packet is 38 bytes), we model the sniffer as an M/D/1/3
queue. We then obtain the probability of buffer overflow
from the queuing model [5]. The analytical results from

2 The sniffer cannot use internal flash memory to store the data log
because it takes roughly 20 ms to commit a packet to flash, while the inter-
arrival time of packets at the sniffer can be smaller than 20 ms.

3 The processing time of a packet at the sniffer is the duration from when
a packet arrives at the buffer to when the packet is removed from the
buffer. It is the difference of two timestamps: the first is taken when the
CC2420 wireless chip sets the SFD (start of frame delimiter) pin high, and
the second timestamp is taken when the receive event is triggered by the
CC2420 driver code.
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Table 1

Sustainable workload measurement results. The results at M; and M, are
the same. The measured inter-sending time does not coincide exactly with
the value we set due to random delays at the sender.

Inter-sending Number of  Lost packets Lost packets

time (ms) packets (measurement) (analysis)
16.2 23,278 11 10.84
16.2 27,303 9 12.72
25.9 12,289 2 0.7
30.8 41,498 4 1.1
30.9 10,402 0 0.27
40.7 30,820 2 0.24
51.3 26,053 3 0.08
99.25 12,515 0 0

197.9 6280 0 0

the model match well with the experimental results for var-
ious sending rates as shown in Table 1.

3.2. Fidelity of delay measurement

We evaluate the accuracy of delay measurements from
the sniffers by comparing them with high-fidelity mea-
surements from a logic analyzer. Fig. 2(b) shows the exper-
imental setting. Node N; sends a packet to N5 through N,
every second using Collection Tree Protocol (CTP) [11].
Using the methodology in Section 2.2.1, sniffers M; and
M, listen to packet transmissions in their neighborhood,
and obtain the delays on the two hops, (Ni,N,) and
(N2,N3), from the overheard traffic, and transmit this infor-
mation via USB to PC; and PC,, respectively, in an online
fashion. The logic analyzer, a 34-channel Intronix LA1034
device, is connected to nodes N;, N, and N3 via probes
(specifically, it is connected to the MCU pin 2.6 of the
MSP430 microprocessor of each node as in [2]). It records
timing information to obtain accurate per-hop delays as
follows. Consider a packet sent from N; to Ns. N; raises
the pin to a logical high when it begins to transmit, and
lowers it to a logical low when it finishes transmitting;
N, raises the pin when the application layer has finished
receiving the packet, and lowers it when completing for-
warding; N3 also raises the pin when the application layer
finishes receiving the packet, and lowers it when the pack-
et information is committed to flash memory. Fig. 3 shows
the logical pattern for these pins, where t; and t; represent
respectively the time when a packet is being sent from N;

— 1

N] H - 0

e ; — 1

N, 5 ’ 0

e : — 1

N3 ; I — 0
1 I |

Fig. 3. MCU pin logical timing pattern for the two-hop network as shown
in Fig. 2(b).

at the application level and when it is done transmitting; t,
and t, represent respectively the time when N, finishes
receiving the packet at the application level and finishes
forwarding; t; and t} represent respectively the time when
N5 finishes receiving the packet at the application level and
finishes committing to the flash memory. All the timing
events are transmitted to a PC that is connected to the log-
ical analyzer via USB. Using the recorded timestamps, we
can easily obtain per-hop delays. They are the amount of
time for the sender to transmit a packet and the receiver
to receive it. More specifically, we use (t; — t;) as the delay
on the first hop, and use (t3 — t3) as the delay on the second
hop.

The logic analyzer has sampling rate of 10 MHz, provid-
ing 100 ns accuracy, much finer than the granularity of
30.5 ps that are obtained using 32 kHz clocks at the snif-
fers. We therefore use the delay measurements from the
logical analyzer as the ground truth to evaluate the delay
measurements from the sniffers. In addition to the traffic
on network hops (Ni,N;) and (N,,N3), node BGrx sends
packets to BGgyx following a Poisson process, referred to
as background traffic (used to simulate traffic from a set
of sensor nodes as in [2]), which is captured by the sniffers
as well. By varying the rate of background traffic from 5 to
60 packets per second, we evaluate the accuracy of delay
measurements by the sniffers under different workloads.

Let measurement error be the difference of delay mea-
surement from a sniffer and the logical analyzer. We next
present measurement results from M; when there is no
background traffic (the results when there is background
traffic and the results from M, are similar). Fig. 4 plots
the distribution of the measurement errors on the first
hop. From the figure, we see that the difference is indeed
close to a constant (the distribution is concentrated in a
narrow range of around 190 ps, from -7.89ms to
—7.7 ms). Fig. 4(b) plots the distribution of the measure-
ment error on the second hop. We observe that the errors
are up to 300 ps, indicating that the delay measurements
from the sniffer are very accurate. We also observe that
the errors are biased towards being positive (i.e., the delays
measured by the sniffer are typically larger than the corre-
sponding delays from the logical analyzer). This is because
the sniffer needs to process each captured packet (e.g.,
adding timestamp, placing it into a USB packet, and trans-
mitting it to the PC), which incurs additional delay. When
this delay occurs after receiving the first hop transmission,
the mote may not be able to finish before the second hop
transmission arrives. In this case, the delay is artificially in-
creased because the microprocessor is busy.

4. Sniffer placement

In the previous section, we have shown that simple
inexpensive mote-class sniffers can provide satisfactory
delay measurement. We can further reduce the deploy-
ment cost of our proposed monitoring architecture by min-
imizing the number of sniffers that are needed. In the
following, we first formulate and solve a sniffer placement
problem, and then explore the number of needed sniffers
using extensive simulation.
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Fig. 4. Distribution of the delay measurement errors from sniffer M;.

4.1. Problem formulation

The sniffer placement problem determines the locations
of the sniffers that (i) the pair of sensor nodes of each net-
work hop is monitored by at least one sniffer, (ii) each snif-
fer monitors at most w pairs of nodes, and (iii) the total
number of sniffers is minimized. The first constraint en-
sures that the delays of all network hops are monitored®.
A sniffer needs to monitor the two nodes on a network
hop simultaneously to obtain delay measurements. The sec-
ond constraint takes account of the workload of the sniffers,
referred to as sniffer workload constraint. If a sniffer over-
hears the transmission from more than w pairs of nodes, it
only processes the packets from w pairs. The last constraint
minimizes the number of sniffers that are needed to mini-
mize deployment cost.

4.2. Sniffer placement algorithms

We solve the sniffer placement problem in two steps.
First, we propose a pre-processing algorithm that deter-
mines candidate sniffer locations. Second, for the given
set of candidate sniffer locations, we select a subset of loca-
tions and place a sniffer at each of these locations.

4.2.1. Determining candidate locations

We consider both regular and irregular radio ranges
[34]. In both cases, let [; denote the location (i.e., the coor-
dinate) of sensor node n;. Let R; and r; denote the coverage
region and transmission range of v; respectively. We assume
any node in the coverage region, R;, can hear the transmis-
sion of n;. When the radio range is regular, R; is a circular
area centered at [; with the radius of r;. Otherwise, we as-
sume that R; is a polygon [34] and the average distance
from I; to the vertices of the polygon is r;.

Regular Radio Range. Let L denote the set of candidate
sniffer locations. Initially, L is empty. We then consider
each network hop. Suppose the two nodes of a network
hop are n; and n;, that is, n; transmits to n; and/or n; trans-
mits to n;. We then add candidate sniffer locations to L
depending on the relationship of R; and R;. If R; C R;, we

4 When the route in the sensor network changes dynamically [28], the
union of network hops in all the routes are monitored.

add the location of n;, I, as a candidate location (we may
use any location in R; as a candidate location; for simplic-
ity, we use [;). Similarly, if R; C R;, we add J; as a candidate
location. If neither of the above holds, then the boundaries
of their coverage regions, R; and R;, must intersect at two
points, and we add these two intersection points to
L. Algorithm 1 summarizes this algorithm. The following
theorem shows that the above algorithm for determining
candidate locations is sufficient.

Algorithm 1. Determine Candidate Sniffer Locations

—
1]
=

—ry

or Vn;, nj, i # j that are on a network hop do
if R; C R; then
L=Lu{l}
else if R; C R; then
L=LU{l)
else
The boundaries of R; and R; intersect at two
points, denoted as p; and p,
9: L=LuU{p1p2}
10: end if
11: end if

NI RN

Theorem 1. For any optimal solution S*, there exists a corre-
sponding subset S C L so that |S*| =S| and S covers all node
pairs on the network hops.

Proof. We prove the above theorem by showing that
Vs € S§*, there exists a location [ € L so that the set of sensor
node pairs monitored by s can be monitored by a sniffer
located at I. Without loss of generality, suppose the set of
sensor node pairs that are monitored by s is X = {(n;,n;)}.
For ease of exposition, let Y denote the set of sensor nodes
that are in X. That is, Y= {n;3n;, (n;n;) € X or (n;,n;) € X}.
Since s monitors all the node pairs in X, s must be in the
intersection region of R; and R;, V(n;n;) € X. Let B denote
the boundary of this intersection region. We next consider
two cases. In the first case, there exist i, j such that
(n;,n;) € X and one intersection point of the boundaries of
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R; and R;, denoted as I, is on B. Then | can monitor all the
pairs in X, and | € L by Algorithm 1. In the second case,
we cannot find i, j such that (n;,n;) € X and one intersection
point of the boundaries of R; and R; is on B. Then there must
exist one sensor node n; so that n; €Y and R; C R;,Vn; €Y,
j#1i. In this case, by Algorithm 1, a sniffer located at the
location of n;, [; € L, can monitor all the pairs in X. Summa-
rizing the above two cases, we have proved our claim. O

Irregular Radio Range. When the radio range is irregu-
lar, we assume the coverage region of a node is a polygon,
which can be obtained based on Received Signal Strength
(RSS) measurements in different directions of the node
[34]. Our algorithm for determining candidate monitor
locations is similar to Algorithm 1. The only difference is
that since R; and R; are polygons, when they intersect, they
may intersect at multiple points (more than two) or an
infinite number of points (i.e., their intersection forms an
edge). For the former case, we include the multiple points
into L; for the latter case, we include the two end points of
the edge into L. Therefore, the total number of candidate
monitor positions is finite. We can again show that the
above algorithm is sufficient; the proof is similar to that
for Theorem 1 and is omitted in the interest of space.

4.2.2. Placing sniffers

For a given a set of candidate sniffer locations, we place
a candidate sniffer at each candidate location to construct a
candidate sniffer set, S.. Consider all the network hops. The
pair of nodes on each network hop needs to be monitored.
We transform the node pair monitoring problem to a node
monitoring problem by constructing a virtual graph. The
vertices of the virtual graph are VU S, where V is the set
of virtual nodes, each corresponding to a node pair that
needs to be monitored. A virtual node is connected to a
candidate sniffer using a virtual edge if the candidate sniffer
can monitor the pair of sensor nodes that corresponds to
the virtual node. In this way, monitoring the set of node
pairs is equivalent to monitoring the set of virtual nodes
in the virtual graph. Fig. 5 shows an example of the virtual
graph, where the white dashed nodes and shaded nodes
represent respectively the virtual nodes and candidate
sniffer locations, and the dashed lines represent the virtual
edges. It is the virtual graph for the example in Fig. 1.

Choosing sniffers from the set of candidate sniffers and
determining the assignment function for each sniffer
(i.e., determining the set of virtual nodes to be monitored
by a sniffer) can be solved using the two algorithms that
are developed for node monitoring in [6]. Both algorithms
run in iterations. Initially, the set of sniffers, S, is empty. In

Fig. 5. Illustration of virtual graph.

each iteration, the algorithms add a sniffer from the candi-
date sniffer set, S, into S. The iteration continues until all
virtual nodes are monitored. These two algorithms differ
in that one is based on a max-flow formulation, and the
other uses a simple heuristic, referred to as Max-flow and
Max-degree sniffer placement algorithms, respectively.
For completeness, the two algorithms are described briefly
in the Appendix.

4.3. Performance evaluation

We consider 100 sensor nodes deployed in a
500 m x 500 m area using uniform random, grid uniform
or non-uniform deployment. In uniform random deploy-
ment, the sensor nodes are deployed uniformly at random
in the area. In grid uniform deployment, one sensor node is
uniformly randomly placed in each grid (of 50 m x 50 m),
and hence the node distribution is more even than that
in uniform random deployment. In non-uniform deploy-
ment, the entire region is divided into four sub-regions,
the top left and bottom right regions have much higher
node density than the other two regions (the two denser
regions have 35 sensor nodes while the other two regions
have 15 sensor nodes). Furthermore, we also place a region
head in the center of each region. The region heads are con-
nected to each other; the nodes in a region are uniformly
deployed, and connected to their region head. We assume
all nodes transmit sensed data to a sink in the center of the
area. The routing is either static or dynamic. Under static
routing, the routes from the sensors to the sink form a
routing tree. The number of branches in the tree is uni-
formly distributed in [1,B], where B=10 or 5. Under dy-
namic routing, the routes are chosen dynamically from
two routing trees. Therefore, all the routes in the two rout-
ing trees need to be monitored.

The radio range of a sensor node is regular or irregular.
Under regular radio range, the coverage region of a sensor
node is circular, and all the sensor nodes have the same
transmission range, which is varied from 100 to 200 m
(corresponding to the transmission range of mote-class
sensor nodes; we choose the minimum transmission range
of 100 m because the network is disconnected when using
a lower value). Under irregular radio range, the coverage
region is a polygon with 7 to 16 vertices, and all the sensor
nodes have the same average transmission range, which is
varied from 100 to 200 m. A sniffer is allowed to monitor at
most w pairs of sensor nodes. Assuming that each sensor
node needs to transmit sensed data every one second or
two seconds, we set w=30 or 60 correspondingly based
on the measurement results in Section 3. The performance
metric we use is the number of sniffers needed. For each set-
ting, we make 10 independent runs using randomly gener-
ated seeds. The results below are averaged over 10 runs;
the 95% confidence intervals are tight and hence omitted.

We find that the performances of the Max-flow and
Max-degree based algorithms are similar. Furthermore,
the results under different deployments, regular or
irregular radio range are similar. We next only present
the results of the Max-flow based algorithm with
irregular radio range under uniform random deployment.
Figs. 6(a and b) plot the number of needed sniffers under
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static and dynamic routings, respectively when B =5 (the
number of needed sniffers under B=10 is slightly less).
In both figures, we observe that the number of needed
sniffers decreases as the transmission range increases. This
is because as the transmission range increases, more
virtual nodes can be monitored by a sniffer, confirmed by
higher workloads at the sniffers from our results. The
number of needed sniffers is slightly less when w = 60 than
that when w=30. In both cases, the number of needed
sniffers is small (varying from 5 to 14 for the various
transmission ranges), indicating a small overhead in
deploying the sniffers.

5. Abnormal delay detection

In this section, we put everything together and demon-
strate experimentally how to detect abnormal delays using
our proposed monitoring architecture. Our testbed consists
of eight TelosB motes, as illustrated in Fig. 7. All the motes
use B-MAC [17], the default MAC protocol in TinyOS. Due
to limited space (the testbed is deployed in an office), we
separate the sensor nodes in a few meters, as marked in
Fig. 7. Correspondingly, the power level at each mote is
set to a low level (it is set to 3, i.e.,, —25 dBm). Node ng is
the sink. The transmission range of each mote is in tens
of meters. Using the sniffer placement algorithm in Sec-
tion 4, we only need a single sniffer to overhear packet
transmissions from all the nodes in the testbed. For conve-
nience, we place the single sniffer, s, in the middle of the
testbed.

Abnormal delays in a sensor network can be due to
many reasons. We focus on abnormal delays caused by
congestion in the network. In particular, we consider two
scenarios: (1) parallel sources, where nodes n; and ns are
sources, both sending packets via nodes n,, n3, and n4 to
the sink and (2) tandem sources, where n; and n, are
sources, n; sends its packets via nodes n,, ns, and n4 to
the sink, and n, sends its packets via nodes n; and n4 to
the sink. In both scenarios, we emulate the occurrence of
abnormal delays as follows. At the beginning, the transmis-
sions of the two sources are not synchronized. Then after a
certain time point, they are synchronized by sending a syn-
chronization signal from node ng to the two sources, which

Number of sniffers needed

00 120 140 160 180 200
Transmission range (m)

(a) Static routing.
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Fig. 7. Testbed setting: node no is the sink, node s is a sniffer

leads to congestion and hence abnormal delays. In both
scenarios, a source sends a packet every two seconds; each
packet carries an application-level sequence number. For
ease of experiments, we fix the route from a source to
the sink.

For each source, the sniffer obtains per-hop delays (the
first-hop delays are relative delays), and maintains the cur-
rent estimates of the mean and standard deviation of the
delays. Let 1 and 6 denote respectively the current esti-
mates of the mean and standard deviation of the delays
on a hop. They are updated using the method in Sec-
tion 2.2.1 that incurs little storage and computation over-
head. We explore two change-point detection methods.
The first method raises an alarm after observing two con-
secutive delays that are larger than jt+ 36 (we use two
consecutive large delays instead of a single one to reduce
false alarms). The second method is a non-parametric
CUSUM method [4]. In particular, we define d; =d; —a,
where d; denotes the ith delay observation, and a is chosen
so that d; is negative (with high probability) before a
change point (we use a = jt + 36). Let

Yi=Wii+d), ¥=0,

where (x)* = max(x,0). This method updates y; after each
delay observation and raises an alarm when y; > h, where
h >0 is a threshold, and we use h = 1.256.

To systematically evaluate the performance of our
abnormal-delay detection methods, in both scenarios
(i.e., parallel and tandem sources), for each source, we con-
struct multiple sequences of delay observations on each
hop as follows. We first run experiments when the two
sources are not synchronized, and obtain a sequence of
10,000 delays on each hop, which represents normal de-

>( llllllllll N
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(b) Dynamic routing.

Fig. 6. Number of needed sniffers versus transmission range under Maxflow based algorithm for irregular radio range and uniform random deployment,

B=5.
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lays. We then run experiments when the two sources are
synchronized to obtain a sequence of 10,000 delays on
each hop, which represents abnormal delays. Afterwards,
we construct delay sequences using samples from the nor-
mal and abnormal delay observations. In particular, each
sequence contains 250 normal delay observations (chosen
from the normal delay observation sequence, starting from
a random position) followed by 500 abnormal delay obser-
vations (chosen similarly from the abnormal delay obser-
vation sequence).

For each hop, we construct 1000 delay sequences as
above. For a delay sequence, our change-point detection
methods stop and raise an alarm after detecting that the
delay has become abnormal. For each delay sequence, the
result of a change-point detection method falls into one
of the following three categories: it is successful if the
detection is within the range of abnormal delays; it is a
false alarm if the detection is within the range of normal
delays; and it is a false negative if no alarm is raised at
the end of the delay sequence. We define detection ratio
(DR) of a change-point detection method as the number
of delay sequences with successful detection over the total
number of delay sequences (i.e., 1000 in our setting). Sim-
ilarly, we define false positive ratio (FPR) and false negative
ratio (FNR). Our performance metrics are DR, FPR, FNR and
detection delay (DD), i.e., the delay (in terms of the number
of delay observations) from the change point to when an
alarm is raised.

Table 2 shows the evaluation results for source n; in the
two scenarios (the results for another source have similar
trend). We observe the two change-point detection meth-
ods are both effective. For both methods, the sniffer suc-
cessfully detects that the hop delays become abnormal:
for all the hops, the detection ratios are close to 1 (above
98.3%), the false positive ratio is close to 0 (less than
0.1%), and the false negative ratio is close to O (less than
1.7%). Furthermore, the detection delay is short: it ranges
from 7 to 38 delay observations.

6. Related work

Existing studies propose placing dedicated sniffers in
sensor networks for code debugging [9], performance
monitoring [19], development support [10], network man-
agement [22], and sensor node health monitoring [6]. Our
study differs from them in that we use monitors for delay

Table 2

monitoring and abnormal delay detection. The sniffer
placement problem in our study is related to [6]. Specifi-
cally, the Max-flow and Max-degree based algorithms for
placing sniffers in the virtual graph are from [6].

Passive monitoring through dedicated sniffers has been
used in other types of wireless networks. For instance, it
has been successfully used in single-hop infrastructure-
based wireless LANs (e.g. [1,29,14,15,7,23]), wireless mesh
networks [24] and wireless ad hoc networks [27]. Their fo-
cuses are on network management, monitoring, character-
ization and intrusion detection. None of them is on per-hop
delay monitoring or abnormal delay detection as in our
study. In addition, they do not consider how to place
sniffers.

We quantify the capability and fidelity of mote-class
sniffers for delay monitoring. This differs from existing
studies that investigate the accuracy and fidelity of IEEE
802.11 sniffers [21,20]. Our study also covers a broader
scope than the study in [2] that focuses on characterizing
per-hop and end-to-end delays in a sensor network.

7. Conclusion

In this paper, we proposed an architecture that uses dis-
tributed sniffers for delay monitoring and abnormal delay
detection in wireless sensor networks. To reduce deploy-
ment cost, we suggested using inexpensive mote-class
sniffers and minimizing the number of sniffers that are
needed. Specifically, we experimentally demonstrated that
mote-class sniffers can provide satisfactory delay monitor-
ing performance. Furthermore, we formulated and solved a
sniffer placement problem to minimize the number of snif-
fers while taking account of the workload constraints of
the sniffers. Extensive simulation results showed that the
number of required sniffers under our sniffer placement
algorithms is only a small fraction of the number of sensor
nodes in the network. Last, we demonstrated the effective-
ness of our architecture for abnormal delay detection
through experiments in a testbed.
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Appendix A. Algorithms to place sniffers

The Max-flow based sniffer placement algorithm is as
follows. First, we construct a bipartite graph, where one
set in the graph is the candidate sniffer set, S, and the
other set is the virtual node set, V. A node s € S. is con-
nected to a node v € Vif s can monitor v(i.e., s can overhear
the transmission of the pair of sensor nodes corresponding
to v). The capacity of edge (s, ) is 1. We further add a super
source and a super sink. The super source is connected to
each candidate sniffer with the capacity of w. This limits
that a sniffer monitors at most w virtual nodes. Each sensor
node is connected to the super sink with the capacity of 1.
Let f denote the maximum integral flow of this graph. Then
it is easy to see that all the virtual nodes are monitored if
and only if f=|V|. Furthermore, the assignment function
can be easily obtained from the max-flow solution: if the
amount of flow from sniffer s to virtual node v is positive,
i.e., f{s,v) > 0, we assign s to monitor v. The Max-flow based
sniffer placement algorithm has approximation ratio of
In|V|, where |V| is the number of virtual nodes [6].

The main idea of the Max-degree based sniffer place-
ment algorithm is as follows. In each iteration, it adds
the sniffer that has the maximum degree in the virtual
graph into the sniffer set. The intuition is that a candidate
sniffer with a larger degree can monitor more virtual
nodes, and hence may reduce the number of sniffers
needed. More specifically, suppose s has the maximum de-
gree. The algorithm adds s to the sniffer set, and assign s to
monitor a set of virtual nodes that s can monitor, denoted
as N(s). If more than w virtual nodes are in N(s), it assigns
the w virtual nodes with the lowest degrees to s (the intu-
ition is that virtual nodes with larger degrees may be able
to be monitored by other candidate sniffers). The iteration
continues until all virtual nodes are monitored.
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