
Ad Hoc Networks 13 (2014) 549–559
Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier .com/locate /adhoc
Delay monitoring for wireless sensor networks: An architecture
using air sniffers
1570-8705/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.adhoc.2013.10.008

⇑ Corresponding author. Tel.: +1 860 420 9912.
E-mail addresses: Wei.Zeng@engr.uconn.edu (W. Zeng), jordocote@

gmail.com (J. Cote), Xian.Chen@engr.uconn.edu (X. Chen), Yoo-ah.Kim@
nih.hhs.gov (Y.-A. Kim), weiwei@engr.uconn.edu (W. Wei), kwsuh@
ilstu.edu (K. Suh), bing@engr.uconn.edu (B. Wang), zshi@engr.uconn.edu
(Z.J. Shi).
Wei Zeng a,⇑, Jordan Cote a, Xian Chen a, Yoo-Ah Kim b, Wei Wei a, Kyoungwon Suh c,
Bing Wang a, Zhijie Jerry Shi a

a Computer Science & Engineering Department, University of Connecticut, Storrs, CT, United States
b National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, United States
c School of Information Technology, Illinois State University, Normal, IL, United States
a r t i c l e i n f o

Article history:
Received 11 September 2012
Received in revised form 13 March 2013
Accepted 15 October 2013
Available online 24 October 2013

Keywords:
Delay monitoring
Abnormal delay detection
Wireless sensor networks
Sensor network management
a b s t r a c t

Wireless sensor networks have been used for many delay-sensitive and safety–critical
applications, e.g., emergency response and plant automation. For such applications, delay
measurement inside the sensor networks is important for real-time monitoring and control
of the networked system, and abnormal delay detection. In this paper, we propose a mea-
surement architecture using distributed air sniffers. This approach provides convenient
delay measurement, and requires no clock synchronization or instrumentation at the sen-
sor nodes. Since using sniffers incurs additional deployment cost, we investigate two
aspects to reduce deployment cost: (1) using inexpensive mote-class sniffers and (2) care-
fully placing the sniffers to minimize the number of sniffers that are needed. Specifically,
we experimentally quantify the capability and fidelity of mote-class sniffers for delay mea-
surement, and show that they provide satisfactory monitoring performance. We further
formulate and solve a sniffer placement problem that minimizes the number of sniffers
while taking account of the workload constraints of the sniffers, and show that the number
of sniffers under our sniffer placement algorithms is only a small fraction of the number of
sensor nodes in the network. Last, we demonstrate the effectiveness of our architecture for
abnormal delay detection using experiments in a testbed.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Wireless sensor networks have been used for many de-
lay-sensitive and safety–critical applications, e.g., emer-
gency response, plant automation and control, and health
care. For such applications, measuring delays inside the
wireless sensor networks is important for a number of rea-
sons. It is important for real-time control: control strate-
gies for the networked system need to be designed and
adjusted based on communication delays [32]. It is also
important for detecting abnormal delays (e.g., large delays
caused by congestion or malfunctioning nodes) so that
they can be corrected to maintain the normal operation
of the network.

When nodes in a network have synchronized clocks,
obtaining the delay from one node to another is straight-
forward: the sender places a timestamp when sending a
packet, the receiver places a timestamp when receiving
the packet, and the difference of the two timestamps is
one instance of the delay. Existing clock synchronization
approaches are however slow to converge and may lead
to a large number of message exchanges (see Section 2.1).
When the clocks of the sensor nodes are not synchronized,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2013.10.008&domain=pdf
http://dx.doi.org/10.1016/j.adhoc.2013.10.008
mailto:Wei.Zeng@engr.uconn.edu
mailto:jordocote@ gmail.com
mailto:jordocote@ gmail.com
mailto:Xian.Chen@engr.uconn.edu
mailto:Yoo-ah.Kim@ nih.hhs.gov
mailto:Yoo-ah.Kim@ nih.hhs.gov
mailto:weiwei@engr.uconn.edu
mailto:kwsuh@ ilstu.edu
mailto:kwsuh@ ilstu.edu
mailto:bing@engr.uconn.edu
mailto:zshi@engr.uconn.edu
http://dx.doi.org/10.1016/j.adhoc.2013.10.008
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc

550 W. Zeng et al. / Ad Hoc Networks 13 (2014) 549–559
one way for delay measurement is by instrumenting
sensor nodes [30]. This approach, however, may not be fea-
sible and consumes scarce resources of the sensor nodes
(see Section 2.1).

In this paper, we propose an architecture that uses air
sniffers for delay measurement in wireless sensor net-
works. The sniffers are placed at distributed locations, each
passively listening to packet transmissions in its neighbor-
hood and recording the time when hearing a transmission.
We demonstrate that this architecture provides a conve-
nient way to monitor delays and detect abnormal delays
inside a wireless sensor network. It has the advantages that
it does not require clock synchronization or instrumenting
the sensor nodes to measure delays, and hence does not
consume scarce resources of the sensor nodes.

Using sniffers, however, incurs additional deployment
cost. This additional cost can be justified for mission-criti-
cal sensor networks (e.g., emergency response, plant auto-
mation and control). In addition, we investigate two
aspects to reduce the additional deployment cost: (1) using
inexpensive mote-class sniffers and (2) carefully placing
the sniffers to minimize the number of sniffers that are
needed. Mote-class sniffers, however, are simple embed-
ded devices with stringent resources. Therefore, it is
important to understand their capabilities and the accu-
racy of their monitoring results. Through a combination
of experimental and analytical study, we quantify the sus-
tainable workload and fidelity of mote-class sniffers. We
find that a sniffer can monitor traffic at the rate of 60 pack-
ets per second with little buffer overflow and the per-hop
delay measurements from a sniffer are accurate (the errors
are up to 300 ls). Therefore, mote-class sniffers are suit-
able for many monitoring purposes. For sniffer deploy-
ment, we formulate and solve a sniffer placement
problem that minimizes the number of sniffers while tak-
ing account of the workload constraints of the sniffers.
Using extensive simulation, we show that the number of
required sniffers under our sniffer placement algorithms
is only a small fraction of the number of sensor nodes in
the network. Last, we demonstrate the effectiveness of
our architecture for abnormal delay detection through
experiments in a testbed.

The rest of the paper is organized as follows. Section 2
describes the proposed delay measurement architecture
using sniffers. Section 3 quantifies the capability and fidel-
ity of mote-class sniffers. Section 4 formulates and solves
the sniffer placement problem. Section 5 demonstrates
the effectiveness of our architecture for abnormal delay
detection. Finally, Section 6 reviews related work, and Sec-
tion 7 concludes this paper.
2. Delay monitoring

Consider a static sensor network that is used to support
a delay-sensitive and mission-critical application. Hence it
is important to monitor delays and detect abnormal delays
in real-time inside the network. We next first describe
existing approaches for delay measurement, and then de-
tail our proposed approach.
2.1. Existing approaches

One approach to monitor delays inside a wireless net-
work is through clock synchronization. Once the clocks of
the nodes are synchronized, a sender places a timestamp
when transmitting a packet, and a receiver can obtain the
delay from the sender as simply the difference from when
the packet is received and when the packet is transmitted
(which is the timestamp carried by the packet). Despite
many efforts (see survey [25] and the references therein),
clock synchronization, however, remains a challenging
task in large-scale sensor networks. Existing clock synchro-
nization approaches are slow to converge and may require
a large number of message exchanges. For instance, for a
20-node network, the-state-of-the-art clock synchroniza-
tion algorithms FTSP and GTSP [16,26] take roughly
30 min until the algorithms converge and need to re-syn-
chronize to reach the desired precision. During the syn-
chronization period, each node needs to send at least one
message, leading to a large number of message exchanges
in a large-scale network. One way to eliminate the need of
clock synchronization is using half of the RTT between two
nodes as the one-way delay. This approach, however, re-
quires the sensor nodes to measure RTTs. Furthermore, it
may lead to inaccurate estimates due to asymmetric com-
munications in sensor networks [12,33,18].

When the clocks of the sensor nodes are not synchro-
nized, one way for delay measurement is by instrumenting
the nodes [30]. More specifically, consider the delay on a
network hop from sensor node A to B. This delay contains
two components: the delay at A and the radio propagation
delay for sending a packet from A to B. Since the second
component is negligible, the delay is approximately the de-
lay at A, which can be obtained by instrumenting A to re-
cord two timestamps, one is when A starts to transmit a
packet (or receives a packet when it is an intermediate
node) and the other is when A receives a signal that this
packet is actually sent out into the air. This approach, how-
ever, requires modifying the source code for each sensor
node. It is infeasible when source code is not available. In
addition, requiring sensor nodes to monitor delays and de-
tect abnormal delays consumes scarce resources (including
CPU, memory, network bandwidth, and energy) of the sen-
sor nodes, which may affect the intended functionality of
the sensor network. (In fact, this approach is only used in
an offline manner in [30].)

2.2. Proposed approach

In our proposed architecture, a set of sniffers are de-
ployed at distributed locations inside the sensor network
(we discuss where to place sniffers in detail in Section 4).
Each sniffer has two network interfaces (as in [9,19]).
One interface operates on the same channel as that of the
sensor nodes, and is used to listen to packet transmissions
from nearby sensor nodes. The other interface operates on
a non-interfering channel, and is used to communicate
with other sniffers and a server (e.g., for reporting abnor-
mal delays). The reason for using a non-interfering channel
is that packet transmissions using this channel do not
interfere with the traffic inside the sensor network. Fig. 1

Fig. 1. Measurement architecture using sniffers for a wireless sensor
network. The white and shaded nodes represent sensor nodes and sniffers
respectively.

1 We claim this as a common scenario since in many monitoring
applications, sources transmit packets periodically, and use sequence
numbers to differentiate the packets.

W. Zeng et al. / Ad Hoc Networks 13 (2014) 549–559 551
illustrates this architecture, where the white nodes repre-
sent sensor nodes, and the shaded nodes represent sniffers.
In the figure, two sensor nodes are connected by an edge if
they can transmit to each other; a sniffer is connected to a
sensor node (using a dashed line) if the sniffer can hear the
transmission from that node.

We next describe methodologies for per-hop delay
monitoring and abnormal delay detection using the above
architecture. Consider an arbitrary network hop from node
A to B. Our description considers two cases: (1) A is an
intermediate node: it receives packets from an upstream
node and then forwards them to B and (2) A is a source:
it does not receive any incoming packet; instead, it gener-
ates packets and forwards them to B.

2.2.1. Delay monitoring using air sniffers
When A is an intermediate node, obtaining packet

transmission delay from A to B using sniffers is straightfor-
ward. Suppose an upstream node sends a packet to A, and a
sniffer overhears this transmission and records the recep-
tion time as t. Once receiving the packet, A forwards it to
B, and the sniffer overhears this transmission and records
the reception time as t0. Then the transmission delay of
the packet from A to B is d = t0 � t. This is because when
ignoring radio propagation delay (which is negligible since
the transmission range in a sensor network is tens or hun-
dreds of meters while the radio propagation speed is
approximately 3 � 108 meters per second), A receives the
packet at t and B receives the packet at t0. Since t is also
the time point when A starts to transmit the packet to B
(A starts to forward the packet immediately after receiving
it), t0 � t represents the delay from sending the packet from
A to B. Note that, in the above method, since d is deter-
mined by the relative difference of t0 and t, the sniffer’s
clock does not need to be set to the correct wall clock time
to obtain accurate measurement of d.

When A is a source and no packets are transmitted to A,
using sniffers does not obtain the absolute delay from A to
B. However, we can easily obtain relative delays from A to
B, which can be used to obtain delay variance (which is
important for realtime control [32]) and detect abnormal
delays (as we shall see in Section 2.2.2). More specifically,
consider a common scenario where sources transmit pack-
ets periodically and embed an application-level sequence
number to each packet1. In such a scenario, for a packet
with sequence number i, the packet sending time at A, ti, is
is + t0, where t0 is a constant and s is the period of the trans-
mission at the source. Since a sniffer does not know t0, it
does not know ti. However, when the sniffer overhears the
packet transmitted from A to B at time t0i, it can treat
t0i � is as a relative delay for this packet (we assume the snif-
fer knows the period, s, and obtains the sequence number, i,
from the overheard packet). The quantity, t0i � is, is a relative
delay because (1) it ignores the constant t0 and (2) is and t0i
are according to the clocks of A and B, respectively, which
are not synchronized (and hence may have clock skew and
offset). While obtaining relative delays from A to B, the snif-
fer can adjust the delays by removing clock skew and offset
in an online manner (e.g., using the technique in [31]). For
the ith packet, let di be the adjusted delay after removing
clock skew and offset in t0i � is. Then di is the absolute delay
of the ith packet from A to B shifted by a constant. The above
method assumes periodic transmission from the source and
the period s is known by the sniffers. If this is not the case,
the sniffer needs to know the interval between two packet
transmissions (which can be obtained from the application,
e.g., by adding transmission time of a packet in the payload).
Let si denote the interval between sending the ith and (i + 1)
th packet. Then the relative delay for the ith packet is
t0i �

Pi
j¼1sj, which can be adjusted to remove clock skew

and offset as described earlier.
As per-hop delays (absolute or relative delays) are being

obtained, depending on the requirements of the applica-
tion, a sniffer may (selectively) transmit the delays to other
sniffers and/or to a server using the non-interfering inter-
face. Or it may only obtain statistics of the delays, and
transmit these statistics. Two basic statistics, mean and
standard deviation, can be obtained using the following
method at little computation and storage overhead [13].
Consider a sequence of delays, fdign

i¼1, where di is the ith
delay measurement. Let l̂ and r̂ denote respectively the
current estimates of the mean and standard deviation.
They are updated when a new delay measurement is ob-
tained. Define Sn ¼

Pn
i¼1di, and Wn ¼

Pn
i¼1ðdi � l̂Þ2. After

obtaining the latest delay observation, dn, Sn and Wn are
updated as:

Sn ¼ Sn�1 þ dn;

Wn ¼Wn�1 þ ððn� 1Þdn � Sn�1Þ2=ðnðn� 1ÞÞ:

Then the mean and standard deviation are updated as
l̂ ¼ Sn=n, and r̂2 ¼Wn=ðn� 1Þ.

2.2.2. Abnormal delay detection
Abnormal delay detection can be modeled as a change-

point detection problem: when the distribution of the de-
lays changes (we assume the original delays are normal),
we say the delays become abnormal. When A is an inter-
mediate node, as shown earlier, a sniffer obtains a se-
quence of absolute delays from A to B, and can apply an
online change-point detection algorithm to these delays

(a) (b)

Fig. 2. Experimental settings: (a) setting to measure sustainable workload, (b) setting to evaluate the fidelity of delay measurements. In the figure, M1 and
M2 are sniffers, BGTX, BGRX, N1, N2 and N3 are motes, PC1 and PC2 are computers, and LA is a logical analyzer.

2 The sniffer cannot use internal flash memory to store the data log
because it takes roughly 20 ms to commit a packet to flash, while the inter-
arrival time of packets at the sniffer can be smaller than 20 ms.

3 The processing time of a packet at the sniffer is the duration from when
a packet arrives at the buffer to when the packet is removed from the
buffer. It is the difference of two timestamps: the first is taken when the
CC2420 wireless chip sets the SFD (start of frame delimiter) pin high, and
the second timestamp is taken when the receive event is triggered by the
CC2420 driver code.

552 W. Zeng et al. / Ad Hoc Networks 13 (2014) 549–559
to detect a change point. When A is a source, a sniffer ob-
tains a sequence of relative adjusted delays from A to B.
Since these delays only differ from the absolute delays by
a constant, the sniffer can still apply an online change-
point detection algorithm to these delays to detect a
change point. Many techniques have been developed for
online change-point detection [3,4]. Different online detec-
tion techniques may prove effective for different abnormal
scenarios. We illustrate how we detect abnormal delays
that are caused by congestion in Section 5.

2.3. Summary

In summary, our proposed architecture uses existing
traffic inside the sensor network for delay measurement.
It is simple, requiring no clock synchronization or instru-
mentation at the sensor nodes. The sniffers placed for de-
lay measurement can also be used for other purposes. For
instance, they can monitor sensor nodes and discover
abnormal nodal behaviors [19,6]. They can also be used
for intrusion detection [27]. We only focus on monitoring
delays in this paper.

Deploying the proposed monitoring architecture incurs
additional deployment cost. This cost can be justified in
mission-critical networks (e.g., sensor networks used for
emergency response, plant automation and control). Fur-
thermore, the cost can be reduced by using inexpensive
mote-class sniffers and carefully placing the sniffers to min-
imize the number of sniffers that are needed, two aspects
that we will investigate in Sections 3 and 4, respectively.

3. Capability and fidelity of mote-class sniffers

We experimentally evaluate the capability and fidelity
of mote-class sniffers for delay monitoring. In particular,
the sniffers we use are TelosB motes that use CC2420 wire-
less transceivers (IEEE 802.15.4), and run on TinyOS 2.1.0.
We first evaluate their sustainable workload, and then
evaluate the accuracy of their delay measurements.

3.1. Sustainable workload measurements

Fig. 2(a) shows the experimental setting for measuring
sustainable workload at the sniffers. It consists of a trans-
mitter, BGTX, a receiver, BGRX, two sniffers, M1 and M2,
and two PCs. Each sniffer passively listens to packet trans-
missions in its neighborhood, and once overhearing a pack-
et, records the current time as a payload in the packet and
passes the packet over USB into a data log stored at the
connected PC.2 Using two sniffers allows us to validate
whether the measurements by the sniffers are consistent
(to avoid measurement errors caused by hardware or soft-
ware inconsistencies of the sniffers).

Our goal is to measure the workload that can be sus-
tained by the sniffers. For this purpose, we let BGTX trans-
mit packets to BGRX following a Poisson process with a
rate increasing from 5 packets to 60 packets per second,
and measure the corresponding loss rate at the sniffers.
The losses at the sniffer are mainly due to receiver buffer
overflow since there is a single traffic source in our testbed
and the testbed is in an isolated lab with little other
sources of interference. The receiver buffer uses FIFO
(first-in-first-out) scheduling. Table 1 records the number
of lost packets in each experiment (the loss count for the
two sniffers is the same.). We observe very few losses even
when the average sending rate is 60 packets per second,
indicating that the sniffer is reliable for capturing the traf-
fic received at this rate.

To gain additional insights, we use a queuing model to
approximate the number of losses at the sniffer. Our mea-
surements show that the processing time of a packet at the
sniffer is close to a constant of 4.4 ms.3 Because the arrival
process follows a Poisson distribution, the processing time at
the sniffer is constant, and the buffer at the sniffer can hold
up to three packets (the buffer size is 128 bytes and each
packet is 38 bytes), we model the sniffer as an M/D/1/3
queue. We then obtain the probability of buffer overflow
from the queuing model [5]. The analytical results from

Table 1
Sustainable workload measurement results. The results at M1 and M2 are
the same. The measured inter-sending time does not coincide exactly with
the value we set due to random delays at the sender.

Inter-sending
time (ms)

Number of
packets

Lost packets
(measurement)

Lost packets
(analysis)

16.2 23,278 11 10.84
16.2 27,303 9 12.72
25.9 12,289 2 0.7
30.8 41,498 4 1.1
30.9 10,402 0 0.27
40.7 30,820 2 0.24
51.3 26,053 3 0.08
99.25 12,515 0 0

197.9 6280 0 0

W. Zeng et al. / Ad Hoc Networks 13 (2014) 549–559 553
the model match well with the experimental results for var-
ious sending rates as shown in Table 1.
3.2. Fidelity of delay measurement

We evaluate the accuracy of delay measurements from
the sniffers by comparing them with high-fidelity mea-
surements from a logic analyzer. Fig. 2(b) shows the exper-
imental setting. Node N1 sends a packet to N3 through N2

every second using Collection Tree Protocol (CTP) [11].
Using the methodology in Section 2.2.1, sniffers M1 and
M2 listen to packet transmissions in their neighborhood,
and obtain the delays on the two hops, (N1,N2) and
(N2,N3), from the overheard traffic, and transmit this infor-
mation via USB to PC1 and PC2, respectively, in an online
fashion. The logic analyzer, a 34-channel Intronix LA1034
device, is connected to nodes N1, N2, and N3 via probes
(specifically, it is connected to the MCU pin 2.6 of the
MSP430 microprocessor of each node as in [2]). It records
timing information to obtain accurate per-hop delays as
follows. Consider a packet sent from N1 to N3. N1 raises
the pin to a logical high when it begins to transmit, and
lowers it to a logical low when it finishes transmitting;
N2 raises the pin when the application layer has finished
receiving the packet, and lowers it when completing for-
warding; N3 also raises the pin when the application layer
finishes receiving the packet, and lowers it when the pack-
et information is committed to flash memory. Fig. 3 shows
the logical pattern for these pins, where t1 and t01 represent
respectively the time when a packet is being sent from N1
Fig. 3. MCU pin logical timing pattern for the two-hop network as shown
in Fig. 2(b).
at the application level and when it is done transmitting; t2

and t02 represent respectively the time when N2 finishes
receiving the packet at the application level and finishes
forwarding; t3 and t03 represent respectively the time when
N3 finishes receiving the packet at the application level and
finishes committing to the flash memory. All the timing
events are transmitted to a PC that is connected to the log-
ical analyzer via USB. Using the recorded timestamps, we
can easily obtain per-hop delays. They are the amount of
time for the sender to transmit a packet and the receiver
to receive it. More specifically, we use (t2 � t1) as the delay
on the first hop, and use (t3 � t2) as the delay on the second
hop.

The logic analyzer has sampling rate of 10 MHz, provid-
ing 100 ns accuracy, much finer than the granularity of
30.5 ls that are obtained using 32 kHz clocks at the snif-
fers. We therefore use the delay measurements from the
logical analyzer as the ground truth to evaluate the delay
measurements from the sniffers. In addition to the traffic
on network hops (N1,N2) and (N2,N3), node BGTX sends
packets to BGRX following a Poisson process, referred to
as background traffic (used to simulate traffic from a set
of sensor nodes as in [2]), which is captured by the sniffers
as well. By varying the rate of background traffic from 5 to
60 packets per second, we evaluate the accuracy of delay
measurements by the sniffers under different workloads.

Let measurement error be the difference of delay mea-
surement from a sniffer and the logical analyzer. We next
present measurement results from M1 when there is no
background traffic (the results when there is background
traffic and the results from M2 are similar). Fig. 4 plots
the distribution of the measurement errors on the first
hop. From the figure, we see that the difference is indeed
close to a constant (the distribution is concentrated in a
narrow range of around 190 ls, from �7.89 ms to
�7.7 ms). Fig. 4(b) plots the distribution of the measure-
ment error on the second hop. We observe that the errors
are up to 300 ls, indicating that the delay measurements
from the sniffer are very accurate. We also observe that
the errors are biased towards being positive (i.e., the delays
measured by the sniffer are typically larger than the corre-
sponding delays from the logical analyzer). This is because
the sniffer needs to process each captured packet (e.g.,
adding timestamp, placing it into a USB packet, and trans-
mitting it to the PC), which incurs additional delay. When
this delay occurs after receiving the first hop transmission,
the mote may not be able to finish before the second hop
transmission arrives. In this case, the delay is artificially in-
creased because the microprocessor is busy.
4. Sniffer placement

In the previous section, we have shown that simple
inexpensive mote-class sniffers can provide satisfactory
delay measurement. We can further reduce the deploy-
ment cost of our proposed monitoring architecture by min-
imizing the number of sniffers that are needed. In the
following, we first formulate and solve a sniffer placement
problem, and then explore the number of needed sniffers
using extensive simulation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-7.9 -7.85 -7.8 -7.75 -7.7

pd
f

Delay (ms)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2 -0.1 0 0.1 0.2 0.3 0.4

pd
f

Delay (ms)

M1 - (t3 - t2)M1 - (t2 - t1)

Fig. 4. Distribution of the delay measurement errors from sniffer M1.

554 W. Zeng et al. / Ad Hoc Networks 13 (2014) 549–559
4.1. Problem formulation

The sniffer placement problem determines the locations
of the sniffers that (i) the pair of sensor nodes of each net-
work hop is monitored by at least one sniffer, (ii) each snif-
fer monitors at most w pairs of nodes, and (iii) the total
number of sniffers is minimized. The first constraint en-
sures that the delays of all network hops are monitored4.
A sniffer needs to monitor the two nodes on a network
hop simultaneously to obtain delay measurements. The sec-
ond constraint takes account of the workload of the sniffers,
referred to as sniffer workload constraint. If a sniffer over-
hears the transmission from more than w pairs of nodes, it
only processes the packets from w pairs. The last constraint
minimizes the number of sniffers that are needed to mini-
mize deployment cost.

4.2. Sniffer placement algorithms

We solve the sniffer placement problem in two steps.
First, we propose a pre-processing algorithm that deter-
mines candidate sniffer locations. Second, for the given
set of candidate sniffer locations, we select a subset of loca-
tions and place a sniffer at each of these locations.

4.2.1. Determining candidate locations
We consider both regular and irregular radio ranges

[34]. In both cases, let li denote the location (i.e., the coor-
dinate) of sensor node ni. Let Ri and ri denote the coverage
region and transmission range of vi respectively. We assume
any node in the coverage region, Ri, can hear the transmis-
sion of ni. When the radio range is regular, Ri is a circular
area centered at li with the radius of ri. Otherwise, we as-
sume that Ri is a polygon [34] and the average distance
from li to the vertices of the polygon is ri.

Regular Radio Range. Let L denote the set of candidate
sniffer locations. Initially, L is empty. We then consider
each network hop. Suppose the two nodes of a network
hop are ni and nj, that is, ni transmits to nj and/or nj trans-
mits to ni. We then add candidate sniffer locations to L
depending on the relationship of Ri and Rj. If Ri � Rj, we
4 When the route in the sensor network changes dynamically [28], the
union of network hops in all the routes are monitored.
add the location of ni, li, as a candidate location (we may
use any location in Ri as a candidate location; for simplic-
ity, we use li). Similarly, if Rj � Ri, we add lj as a candidate
location. If neither of the above holds, then the boundaries
of their coverage regions, Ri and Rj, must intersect at two
points, and we add these two intersection points to
L. Algorithm 1 summarizes this algorithm. The following
theorem shows that the above algorithm for determining
candidate locations is sufficient.

Algorithm 1. Determine Candidate Sniffer Locations

1: L = ;
2: for "ni, nj, i – j that are on a network hop do
3: if Ri � Rj then
4: L = L [{li}
5: else if Rj � Ri then
6: L = L [{lj}
7: else
8: The boundaries of Ri and Rj intersect at two

points, denoted as p1 and p2

9: L = L [{p1,p2}
10: end if
11: end if
Theorem 1. For any optimal solution S⁄, there exists a corre-
sponding subset S # L so that jS⁄j = jSj and S covers all node
pairs on the network hops.
Proof. We prove the above theorem by showing that
"s 2 S⁄, there exists a location l 2 L so that the set of sensor
node pairs monitored by s can be monitored by a sniffer
located at l. Without loss of generality, suppose the set of
sensor node pairs that are monitored by s is X = {(ni,nj)}.
For ease of exposition, let Y denote the set of sensor nodes
that are in X. That is, Y = {nij$nj, (ni,nj) 2 X or (nj,ni) 2 X}.
Since s monitors all the node pairs in X, s must be in the
intersection region of Ri and Rj, "(ni,nj) 2 X. Let B denote
the boundary of this intersection region. We next consider
two cases. In the first case, there exist i, j such that
(ni,nj) 2 X and one intersection point of the boundaries of

W. Zeng et al. / Ad Hoc Networks 13 (2014) 549–559 555
Ri and Rj, denoted as l, is on B. Then l can monitor all the
pairs in X, and l 2 L by Algorithm 1. In the second case,
we cannot find i, j such that (ni,nj) 2 X and one intersection
point of the boundaries of Ri and Rj is on B. Then there must
exist one sensor node ni so that ni 2 Y and Ri � Rj,"nj 2 Y,
j – i. In this case, by Algorithm 1, a sniffer located at the
location of ni, li 2 L, can monitor all the pairs in X. Summa-
rizing the above two cases, we have proved our claim. h

Irregular Radio Range. When the radio range is irregu-
lar, we assume the coverage region of a node is a polygon,
which can be obtained based on Received Signal Strength
(RSS) measurements in different directions of the node
[34]. Our algorithm for determining candidate monitor
locations is similar to Algorithm 1. The only difference is
that since Ri and Rj are polygons, when they intersect, they
may intersect at multiple points (more than two) or an
infinite number of points (i.e., their intersection forms an
edge). For the former case, we include the multiple points
into L; for the latter case, we include the two end points of
the edge into L. Therefore, the total number of candidate
monitor positions is finite. We can again show that the
above algorithm is sufficient; the proof is similar to that
for Theorem 1 and is omitted in the interest of space.

4.2.2. Placing sniffers
For a given a set of candidate sniffer locations, we place

a candidate sniffer at each candidate location to construct a
candidate sniffer set, Sc. Consider all the network hops. The
pair of nodes on each network hop needs to be monitored.
We transform the node pair monitoring problem to a node
monitoring problem by constructing a virtual graph. The
vertices of the virtual graph are V [Sc, where V is the set
of virtual nodes, each corresponding to a node pair that
needs to be monitored. A virtual node is connected to a
candidate sniffer using a virtual edge if the candidate sniffer
can monitor the pair of sensor nodes that corresponds to
the virtual node. In this way, monitoring the set of node
pairs is equivalent to monitoring the set of virtual nodes
in the virtual graph. Fig. 5 shows an example of the virtual
graph, where the white dashed nodes and shaded nodes
represent respectively the virtual nodes and candidate
sniffer locations, and the dashed lines represent the virtual
edges. It is the virtual graph for the example in Fig. 1.

Choosing sniffers from the set of candidate sniffers and
determining the assignment function for each sniffer
(i.e., determining the set of virtual nodes to be monitored
by a sniffer) can be solved using the two algorithms that
are developed for node monitoring in [6]. Both algorithms
run in iterations. Initially, the set of sniffers, S, is empty. In
Fig. 5. Illustration of virtual graph.
each iteration, the algorithms add a sniffer from the candi-
date sniffer set, Sc, into S. The iteration continues until all
virtual nodes are monitored. These two algorithms differ
in that one is based on a max-flow formulation, and the
other uses a simple heuristic, referred to as Max-flow and
Max-degree sniffer placement algorithms, respectively.
For completeness, the two algorithms are described briefly
in the Appendix.

4.3. Performance evaluation

We consider 100 sensor nodes deployed in a
500 m � 500 m area using uniform random, grid uniform
or non-uniform deployment. In uniform random deploy-
ment, the sensor nodes are deployed uniformly at random
in the area. In grid uniform deployment, one sensor node is
uniformly randomly placed in each grid (of 50 m � 50 m),
and hence the node distribution is more even than that
in uniform random deployment. In non-uniform deploy-
ment, the entire region is divided into four sub-regions,
the top left and bottom right regions have much higher
node density than the other two regions (the two denser
regions have 35 sensor nodes while the other two regions
have 15 sensor nodes). Furthermore, we also place a region
head in the center of each region. The region heads are con-
nected to each other; the nodes in a region are uniformly
deployed, and connected to their region head. We assume
all nodes transmit sensed data to a sink in the center of the
area. The routing is either static or dynamic. Under static
routing, the routes from the sensors to the sink form a
routing tree. The number of branches in the tree is uni-
formly distributed in [1,B], where B = 10 or 5. Under dy-
namic routing, the routes are chosen dynamically from
two routing trees. Therefore, all the routes in the two rout-
ing trees need to be monitored.

The radio range of a sensor node is regular or irregular.
Under regular radio range, the coverage region of a sensor
node is circular, and all the sensor nodes have the same
transmission range, which is varied from 100 to 200 m
(corresponding to the transmission range of mote-class
sensor nodes; we choose the minimum transmission range
of 100 m because the network is disconnected when using
a lower value). Under irregular radio range, the coverage
region is a polygon with 7 to 16 vertices, and all the sensor
nodes have the same average transmission range, which is
varied from 100 to 200 m. A sniffer is allowed to monitor at
most w pairs of sensor nodes. Assuming that each sensor
node needs to transmit sensed data every one second or
two seconds, we set w = 30 or 60 correspondingly based
on the measurement results in Section 3. The performance
metric we use is the number of sniffers needed. For each set-
ting, we make 10 independent runs using randomly gener-
ated seeds. The results below are averaged over 10 runs;
the 95% confidence intervals are tight and hence omitted.

We find that the performances of the Max-flow and
Max-degree based algorithms are similar. Furthermore,
the results under different deployments, regular or
irregular radio range are similar. We next only present
the results of the Max-flow based algorithm with
irregular radio range under uniform random deployment.
Figs. 6(a and b) plot the number of needed sniffers under

n1n4

n3n2

n0 s

n5

n6

4 m

1 m

Fig. 7. Testbed setting: node n0 is the sink, node s is a sniffer

556 W. Zeng et al. / Ad Hoc Networks 13 (2014) 549–559
static and dynamic routings, respectively when B = 5 (the
number of needed sniffers under B = 10 is slightly less).
In both figures, we observe that the number of needed
sniffers decreases as the transmission range increases. This
is because as the transmission range increases, more
virtual nodes can be monitored by a sniffer, confirmed by
higher workloads at the sniffers from our results. The
number of needed sniffers is slightly less when w = 60 than
that when w = 30. In both cases, the number of needed
sniffers is small (varying from 5 to 14 for the various
transmission ranges), indicating a small overhead in
deploying the sniffers.
5. Abnormal delay detection

In this section, we put everything together and demon-
strate experimentally how to detect abnormal delays using
our proposed monitoring architecture. Our testbed consists
of eight TelosB motes, as illustrated in Fig. 7. All the motes
use B-MAC [17], the default MAC protocol in TinyOS. Due
to limited space (the testbed is deployed in an office), we
separate the sensor nodes in a few meters, as marked in
Fig. 7. Correspondingly, the power level at each mote is
set to a low level (it is set to 3, i.e., �25 dBm). Node n0 is
the sink. The transmission range of each mote is in tens
of meters. Using the sniffer placement algorithm in Sec-
tion 4, we only need a single sniffer to overhear packet
transmissions from all the nodes in the testbed. For conve-
nience, we place the single sniffer, s, in the middle of the
testbed.

Abnormal delays in a sensor network can be due to
many reasons. We focus on abnormal delays caused by
congestion in the network. In particular, we consider two
scenarios: (1) parallel sources, where nodes n1 and n5 are
sources, both sending packets via nodes n2, n3, and n4 to
the sink and (2) tandem sources, where n1 and n2 are
sources, n1 sends its packets via nodes n2, n3, and n4 to
the sink, and n2 sends its packets via nodes n3 and n4 to
the sink. In both scenarios, we emulate the occurrence of
abnormal delays as follows. At the beginning, the transmis-
sions of the two sources are not synchronized. Then after a
certain time point, they are synchronized by sending a syn-
chronization signal from node n6 to the two sources, which
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

 100 120 140 160 180 200

N
um

be
r o

f s
ni

ffe
rs

 n
ee

de
d

Transmission range (m)

w=30
w=60

Fig. 6. Number of needed sniffers versus transmission range under Maxflow ba
B = 5.
leads to congestion and hence abnormal delays. In both
scenarios, a source sends a packet every two seconds; each
packet carries an application-level sequence number. For
ease of experiments, we fix the route from a source to
the sink.

For each source, the sniffer obtains per-hop delays (the
first-hop delays are relative delays), and maintains the cur-
rent estimates of the mean and standard deviation of the
delays. Let l̂ and r̂ denote respectively the current esti-
mates of the mean and standard deviation of the delays
on a hop. They are updated using the method in Sec-
tion 2.2.1 that incurs little storage and computation over-
head. We explore two change-point detection methods.
The first method raises an alarm after observing two con-
secutive delays that are larger than l̂þ 3r̂ (we use two
consecutive large delays instead of a single one to reduce
false alarms). The second method is a non-parametric
CUSUM method [4]. In particular, we define ~di ¼ di � a,
where di denotes the ith delay observation, and a is chosen
so that ~di is negative (with high probability) before a
change point (we use a ¼ l̂þ 3r̂). Let

yi ¼ ðyi�1 þ ~diÞ
þ
; y0 ¼ 0;

where (x)+ = max(x,0). This method updates yi after each
delay observation and raises an alarm when yi P h, where
h > 0 is a threshold, and we use h ¼ 1:25r̂.

To systematically evaluate the performance of our
abnormal-delay detection methods, in both scenarios
(i.e., parallel and tandem sources), for each source, we con-
struct multiple sequences of delay observations on each
hop as follows. We first run experiments when the two
sources are not synchronized, and obtain a sequence of
10,000 delays on each hop, which represents normal de-
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

 100 120 140 160 180 200

N
um

be
r o

f s
ni

ffe
rs

 n
ee

de
d

Transmission range (m)

w=30
w=60

sed algorithm for irregular radio range and uniform random deployment,

W. Zeng et al. / Ad Hoc Networks 13 (2014) 549–559 557
lays. We then run experiments when the two sources are
synchronized to obtain a sequence of 10,000 delays on
each hop, which represents abnormal delays. Afterwards,
we construct delay sequences using samples from the nor-
mal and abnormal delay observations. In particular, each
sequence contains 250 normal delay observations (chosen
from the normal delay observation sequence, starting from
a random position) followed by 500 abnormal delay obser-
vations (chosen similarly from the abnormal delay obser-
vation sequence).

For each hop, we construct 1000 delay sequences as
above. For a delay sequence, our change-point detection
methods stop and raise an alarm after detecting that the
delay has become abnormal. For each delay sequence, the
result of a change-point detection method falls into one
of the following three categories: it is successful if the
detection is within the range of abnormal delays; it is a
false alarm if the detection is within the range of normal
delays; and it is a false negative if no alarm is raised at
the end of the delay sequence. We define detection ratio
(DR) of a change-point detection method as the number
of delay sequences with successful detection over the total
number of delay sequences (i.e., 1000 in our setting). Sim-
ilarly, we define false positive ratio (FPR) and false negative
ratio (FNR). Our performance metrics are DR, FPR, FNR and
detection delay (DD), i.e., the delay (in terms of the number
of delay observations) from the change point to when an
alarm is raised.

Table 2 shows the evaluation results for source n1 in the
two scenarios (the results for another source have similar
trend). We observe the two change-point detection meth-
ods are both effective. For both methods, the sniffer suc-
cessfully detects that the hop delays become abnormal:
for all the hops, the detection ratios are close to 1 (above
98.3%), the false positive ratio is close to 0 (less than
0.1%), and the false negative ratio is close to 0 (less than
1.7%). Furthermore, the detection delay is short: it ranges
from 7 to 38 delay observations.
6. Related work

Existing studies propose placing dedicated sniffers in
sensor networks for code debugging [9], performance
monitoring [19], development support [10], network man-
agement [22], and sensor node health monitoring [6]. Our
study differs from them in that we use monitors for delay
Table 2
Performance evaluation results of two abnormal-delay detection methods: outlier

Tandem sources

DR FPR FNR DD

Outlier-based
Hop1 0.999 0.001 0 7.413
Hop2 1 0 0 23.884
Hop3 0.987 0 0.013 36.263
Hop4 0.999 0 0.001 30.519
CUSUM-based
Hop1 1 0 0 7.524
Hop2 1 0 0 25.504
Hop3 0.983 0 0.017 38.574
Hop4 0.997 0 0.003 32.024
monitoring and abnormal delay detection. The sniffer
placement problem in our study is related to [6]. Specifi-
cally, the Max-flow and Max-degree based algorithms for
placing sniffers in the virtual graph are from [6].

Passive monitoring through dedicated sniffers has been
used in other types of wireless networks. For instance, it
has been successfully used in single-hop infrastructure-
based wireless LANs (e.g. [1,29,14,15,7,23]), wireless mesh
networks [24] and wireless ad hoc networks [27]. Their fo-
cuses are on network management, monitoring, character-
ization and intrusion detection. None of them is on per-hop
delay monitoring or abnormal delay detection as in our
study. In addition, they do not consider how to place
sniffers.

We quantify the capability and fidelity of mote-class
sniffers for delay monitoring. This differs from existing
studies that investigate the accuracy and fidelity of IEEE
802.11 sniffers [21,20]. Our study also covers a broader
scope than the study in [2] that focuses on characterizing
per-hop and end-to-end delays in a sensor network.
7. Conclusion

In this paper, we proposed an architecture that uses dis-
tributed sniffers for delay monitoring and abnormal delay
detection in wireless sensor networks. To reduce deploy-
ment cost, we suggested using inexpensive mote-class
sniffers and minimizing the number of sniffers that are
needed. Specifically, we experimentally demonstrated that
mote-class sniffers can provide satisfactory delay monitor-
ing performance. Furthermore, we formulated and solved a
sniffer placement problem to minimize the number of snif-
fers while taking account of the workload constraints of
the sniffers. Extensive simulation results showed that the
number of required sniffers under our sniffer placement
algorithms is only a small fraction of the number of sensor
nodes in the network. Last, we demonstrated the effective-
ness of our architecture for abnormal delay detection
through experiments in a testbed.
Acknowledgments

Preliminary results of this paper are presented in [30,8].
This work was supported in part by NSF CAREER Awards
0746841 and 0644188. It was additionally supported by
-based and CUSUM-based methods

Parallel sources

DR FPR FNR DD

1 0 0 13.272
1 0 0 16.632
1 0 0 22.416
0.999 0.001 0 25.067

1 0 0 14.314
1 0 0 16.582
0.998 0 0.002 20.772
0.996 0.001 0.003 26.835

558 W. Zeng et al. / Ad Hoc Networks 13 (2014) 549–559
DOE GAANN Program Award P200A090340. We would like
to thank M. Zink for helpful discussions.

Appendix A. Algorithms to place sniffers

The Max-flow based sniffer placement algorithm is as
follows. First, we construct a bipartite graph, where one
set in the graph is the candidate sniffer set, Sc, and the
other set is the virtual node set, V. A node s 2 Sc is con-
nected to a node v 2 V if s can monitor v (i.e., s can overhear
the transmission of the pair of sensor nodes corresponding
to v). The capacity of edge (s,v) is 1. We further add a super
source and a super sink. The super source is connected to
each candidate sniffer with the capacity of w. This limits
that a sniffer monitors at most w virtual nodes. Each sensor
node is connected to the super sink with the capacity of 1.
Let f denote the maximum integral flow of this graph. Then
it is easy to see that all the virtual nodes are monitored if
and only if f = jVj. Furthermore, the assignment function
can be easily obtained from the max-flow solution: if the
amount of flow from sniffer s to virtual node v is positive,
i.e., f(s,v) > 0, we assign s to monitor v. The Max-flow based
sniffer placement algorithm has approximation ratio of
lnjVj, where jVj is the number of virtual nodes [6].

The main idea of the Max-degree based sniffer place-
ment algorithm is as follows. In each iteration, it adds
the sniffer that has the maximum degree in the virtual
graph into the sniffer set. The intuition is that a candidate
sniffer with a larger degree can monitor more virtual
nodes, and hence may reduce the number of sniffers
needed. More specifically, suppose s has the maximum de-
gree. The algorithm adds s to the sniffer set, and assign s to
monitor a set of virtual nodes that s can monitor, denoted
as N(s). If more than w virtual nodes are in N(s), it assigns
the w virtual nodes with the lowest degrees to s (the intu-
ition is that virtual nodes with larger degrees may be able
to be monitored by other candidate sniffers). The iteration
continues until all virtual nodes are monitored.

References

[1] A. Adya, V. Bahl, R. Chandra, L. Qiu, Architecture and techniques for
diagnosing faults in IEEE 802.11 infrastructure networks, in: Proc. of
ACM MobiCom, September 2004.

[2] A. Ageev, D. Macii, D. Petri, Experimental characterization of
communication latencies in wireless sensor networks, in:
Symposium on Electrical Measurements and Instrumentation,
Florence, Italy, April 2008, pp. 258–263.

[3] M. Basseville, I. Nikiforov, Detection of Abrupt Changes: Theory and
Application, Prentice Hall, 1993.

[4] B.E. Brodsky, B.S. Darkhovsky, Nonparametric Methods in Change-
Point Problems, Springer-Verlag, New York, 1993.

[5] O. Brun, J.-M. Garcia, Analytical solution of finite capacity M/D/1
queues, Journal of Applied Probability 37 (4) (2000) 1092–1098.

[6] X. Chen, Y.-A. Kim, B. Wang, W. Wei, Z.J. Shi, Y. Song, Fault-tolerant
monitor placement for out-of-band wireless sensor network
monitoring, Ad Hoc Networks 10 (1) (2012).

[7] Y.-C. Cheng, M. Afanasyev, P. Verkaik, P. Benko, J. Chiang, A.C.
Snoeren, S. Savage, G.M. Voelker, Automating cross-layer diagnosis
of enterprise wireless networks, in: Proc. of ACM SIGCOMM, Kyoto,
Japan, August 2007.

[8] J. Cote, B. Wang, W. Zeng, Z. Shi, Capability and fidelity of moteclass
wireless sniffers, in: IEEE GLOBECOM, December 2010.
[9] F. Dressler, R. Nebel, A. Awad, Distributed passive monitoring in
sensor networks, in: Proc. of IEEE INFOCOM, May 2007. Poster.

[10] M. Dyer, J. Beutel, T. Kalt, P. Oehen, L. Thiele, K. Martin, P. Blum,
Deployment support network – a toolkit for the development of
WSNs, in: European Conference on Wireless Sensor Networks,
January 2007.

[11] R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, A. Woo, TEP 123:
The Collection Tree Protocol, 2006. <http://www.tinyos.net/tinyos-
2.x/doc/html/tep123.html>.

[12] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, S. Wicker,
Complex Behavior at Scale: An Experimental Study of Low-Power
Wireless Sensor Networks. Technical Report UCLA/CSD-TR 02-0013,
February 2002.

[13] D.M. Hawkins, P. Qiu, C.-W. Kang, The change point model for
statistical process control, Journal of Quality Technology 35 (4)
(2003).

[14] A.P. Jardosh, K.N. Ramachandran, K.C. Almeroth, E.M. Belding-Royer,
Understanding congestion in IEEE 802.11b wireless networks, in:
Proc. of ACM SIGCOMM Internet Measurement Conference (IMC),
2005.

[15] R. Mahajan, M. Rodrig, D. Wetherall, J. Zahorjan, Analyzing the MAC-
level behavior of wireless networks in the wild, in: Proc. of ACM
SIGCOMM, Pisa, Italy, September 2006.

[16] M. Maróti, B. Kusy, G. Simon, A. Lédeczi, The flooding time
synchronization protocol, in: Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems, SenSys ’04,
ACM, New York, NY, USA, 2004, pp. 39–49.

[17] J. Polastre, J. Hill, D. Culler, Versatile low power media access for
wireless sensor networks, in: SenSys, 2004.

[18] N. Reijers, G. Halkes, K. Langendoen, Link layer measurements in
sensor networks, in: MASS, Fort Lauderdale, FL, October 2004.

[19] M. Ringwald, K. Romer, A. Vitaletti, Passive inspection of sensor
networks, in: Conference on Distributed Computing in Sensor
Systems, June 2007.

[20] D.C. Salyers, A.D. Striegel, C. Poellabauer, Wireless reliability:
Rethinking 802.11 packet loss. In International Symposium on a
World of Wireless, Mobile and Multimedia Networks, IEEE
Computer Society, Washington, DC, USA, June 2008, pp. 1–4.

[21z] P. Serrano, M. Zink, J. Kurose, Assessing the fidelity of COTS 802.11
sniffers, in: Proc. IEEE INFOCOM, Rio de Janeiro, Brazil, April 2009.

[22] N. Sharma, J. Gummeson, D. Irwin, P. Shenoy, SRCP: Simple remote
control for perpetual high-power sensor networks, in: European
Conference on Wireless Sensor Networks, February 2009.

[23] A. Sheth, C. Doerr, D. Grunwald, R. Han, D.C. Sicker, MOJO: a
distributed physical layer anomaly detection system for 802.11
WLANs, in: Proc. of ACM MobiSys, 2006, pp. 191–204.

[24] D.-H. Shin, S. Bagchi, Optimal monitoring in multi-channel multi-
radio wireless mesh networks, in: Proc. of ACM Mobihoc, 2011.

[25] F. Sivrikaya, B. Yener, Time synchronization in sensor networks: a
survey, IEEE Network 18 (4) (2004).

[26] P. Sommer, R. Wattenhofer, Gradient clock synchronization in
wireless sensor networks, in: Proceedings of the 2009 International
Conference on Information Processing in Sensor Networks, IPSN ’09,
IEEE Computer Society, Washington, DC, USA, pp. 37–48, 2009.

[27] D. Subhadrabandhu, S. Sarkar, F. Anjum, A framework for misuse
detection in ad hoc networks – Part I, IEEE JSAC 24 (2) (2006) 274–
289.

[28] A. Woo, T. Tong, D. Culler, Taming the underlying challenges of
reliable multihop routing in sensor networks, in: SenSys, November
2003.

[29] J. Yeo, M. Youssef, A. Agrawala, A framework for wireless LAN
monitoring and its applications, in: Proc. of ACM Workshop on
Wireless Security (WiSe), 2004.

[30] W. Zeng, X. Chen, Y.-A. Kim, Z. Bu, W. Wei, B. Wang, Z.J. Shi, Delay
monitoring for wireless sensor networks: an architecture using air
sniffers, in: IEEE Military Communications Conference (Milcom),
Boston, MA, October 2009.

[31] L. Zhang, Z. Liu, C. Xia, Clock synchronization algorithms for network
measurements, in: Proc. of IEEE INFOCOM, 2002.

[32] W. Zhang, M.S. Branicky, S.M. Phillips, Stability of networked control
systems, IEEE Control Systems Magazine 21 (2001) 84–99.

[33] J. Zhao, R. Govindan, Understanding packet delivery performance in
dense wireless sensor networks, in: SenSys, 2003.

[34] G. Zhou, T. He, S. Krishnamurthy, J.A. Stankovic, Models and
solutions for radio irregularity in wireless sensor networks, ACM
Transactions on Sensor Networks 2 (2) (2006) 221–262.

http://refhub.elsevier.com/S1570-8705(13)00230-8/h0005
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0005
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0005
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0010
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0010
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0010
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0015
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0015
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0020
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0020
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0020
http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html
http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0025
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0025
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0025
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0030
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0030
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0035
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0035
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0035
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0040
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0040
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0045
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0045
http://refhub.elsevier.com/S1570-8705(13)00230-8/h0045

W. Zeng et al. / Ad Hoc Networks 13 (2014) 549–559 559
Wei Zeng received the bachelor and master
degrees in Computer Science and Engineering
from South China University of Technology,
Guangzhou, China, in 2000 and 2003. Currently
she is a Ph.D. student in the Computer Science
and Engineering Department at the University
of Connecticut, working with Professor Bing
Wang. She is doing researches about network
diagnosis, network measurement and network
management for the wireless sensor networks.
Jordan Cote received his B.S. in Computer
Science from the University of Connecticut in
2009. He began his Ph.D. studies at the same
univiersity, researching wireless sensor net-
work measurement with Professors Bing
Wang and Jerry Shi. His current research
interests include vehicular ad-hoc network
security, cryptographic voting schemes, and
group signatures.
Xian Chen received his B.S. degree in Applied
Mathematics from Beijing University of
Aeronautics and Astronautics, China in 2003,
and M.S. degree in Computer Science from
Beijing JiaoTong University, China in 2006. He
is currently a Ph.D. candidate in Computer
Science Department at the University of Con-
necticut. His research interests are in the
areas of computer networks, fault diagnosis
and performance modeling.
Yoo-Ah Kim received her Ph.D. degree in
Computer Science from the University of
Maryland in 2005. She is currently a research
fellow in National Center for Biotechnology
Information (NCBI) at National Institute of
Health. Before joining to NCBI, she was an
assistant professor in the Department of
Computer Science and Engineering at the
University of Connecticut, Storrs, Connecticut.
Her research interests include design and
analysis of algorithms, bioinformatics, and
parallel and networked systems.
Wei Wei received his B.S. degree in Applied
Mathematics from Beijing University, China in
1992, and M.S. degree in Statistics from Texas
A & M University in 2000. He then received
M.S. degrees in Computer Science and Applied
Mathematics, and a Ph.D. in Computer Science
from the University of Massachusetts,
Amherst in 2004, 2004, and 2006 respectively.
He is currently a Research Assistant Professor
in the Computer Science & Engineering
Department at the University of Connecticut.
His research interests are in the areas of
computer networks, distributed embedded
systems and performance modeling.
Kyoungwon Suh received B.S. and M.S.
degrees in Computer Engineering from Seoul
National University in Korea in 1991 and 1993,
respectively. He continued his studies in the
Department of Computer Science at Rutgers
University in NJ, where he earned a M.S.
degree in 2000. In 2007, he received his Ph.D.
degree in Computer Science from University of
Massachusetts at Amherst. He is currently an
associate professor in Illinois State University,
Normal, IL. His research interests include
mobile hand-held devices, wireless networks,

network measurement and inference, network security, and multimedia
content distribution. He is a member of ACM and IEEE.
Bing Wang received her B.S. degree in Com-
puter Science from Nanjing University of Sci-
ence & Technology, China in 1994, and M.S.
degree in Computer Engineering from Insti-
tute of Computing Technology, Chinese
Academy of Sciences in 1997. She then
received M.S. degrees in Computer Science
and Applied Mathematics, and a Ph.D. in
Computer Science from the University of
Massachusetts, Amherst in 2000, 2004, and
2005 respectively. Afterwards, she joined the
Computer Science & Engineering Department

at the University of Connecticut as an assistant professor. Her research
interests are in Computer Networks, Multimedia, and Distributed Sys-
tems. She received NSF CAREER award in 2008.
Z. Jerry Shi is currently an Assistant Professor
of Computer Science and Engineering at the
University of Connecticut. He received his
Ph.D. degree from Princeton University in
2004 and his M.S. and B.S. degrees from
Tsinghua University, China, in 1996 and 1992,
respectively. He is a member of IEEE and ACM.
Dr. Shi received US National Science Founda-
tion CAREER award in 2006. His current
research interests include underwater sensor
networks, sensor network security, hardware
mechanisms for secure and reliable comput-

ing, side channel attacks and countermeasures, and primitives for cipher
designs.

	Delay monitoring for wireless sensor networks: An architecture using air sniffers
	1 Introduction
	2 Delay monitoring
	2.1 Existing approaches
	2.2 Proposed approach
	2.2.1 Delay monitoring using air sniffers
	2.2.2 Abnormal delay detection

	2.3 Summary

	3 Capability and fidelity of mote-class sniffers
	3.1 Sustainable workload measurements
	3.2 Fidelity of delay measurement

	4 Sniffer placement
	4.1 Problem formulation
	4.2 Sniffer placement algorithms
	4.2.1 Determining candidate locations
	4.2.2 Placing sniffers

	4.3 Performance evaluation

	5 Abnormal delay detection
	6 Related work
	7 Conclusion
	Acknowledgments
	Appendix A Algorithms to place sniffers
	References

