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ABSTRACT
Adaptive Bitrate (ABR) streaming is widely used in commercial
video services. In this paper, we pro�le energy consumption of ABR
streaming on mobile devices. This pro�ling is important, since the
insights can help developing more energy-e�cient ABR stream-
ing pipelines and techniques. We �rst develop component power
models that provide online estimation of the power draw for each
component involved in ABR streaming. Using thesemodels, we then
quantify the power breakdown in ABR streaming for both regular
videos and the emerging 360° panoramic videos. Our measurements
validate the accuracy of the power models and provide a number
of insights. We discuss use cases of the developed power models,
and explore two energy reduction strategies for ABR streaming.
Evaluation demonstrates that these simple strategies can provide
up to 30% energy savings, with little degradation in viewing quality.
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1 INTRODUCTION
Video streaming is one of the most energy hungry applications on
mobile devices. The current de facto video streaming technology
in the industry is Adaptive Bitrate (ABR) streaming, where the
server stores multiple tracks (also referred to as representations
or renditions) of a video, each specifying the same content but
with a di�erent bitrate/quality. A track is further divided into a
series of segments, each containing data for a few seconds’ worth
of playback. The ABR adaptation logic at the client dynamically
determines which quality (i.e., from which track) to fetch for each
segment position in the video.
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While the literature on energy-e�cient video streaming is exten-
sive (see §9), most existing studies focus on single-track streaming.
Little is known about energy consumption of ABR streaming, which
involves multiple tracks and dynamic track changes over time.
Speci�cally, what is the component-wise power breakdown in ABR
streaming? What are the dominant sources of power consumption?
What strategies can be used to reduce energy consumption in ABR
streaming? Such insights into the energy pro�le of ABR streaming
is important as it can help the development of more energy-e�cient
ABR streaming pipelines and techniques.

To answer the above questions, we �rst develop component-wise
power models that allow us to estimate the power draw of each
individual component on the �y using easily accessible information
on commodity phones, without the need of an external power me-
ter. Using these models, we quantify the power breakdown in ABR
streaming. We consider both regular videos and the emerging 360°
panoramic videos (§2), and identify the key di�erences and similar-
ities between these two types of videos. In addition, to demonstrate
the generality of the results, we use two state-of-the-art devices
(LG V20 and Moto G5) and two popular ABR players (ExoPlayer
and YouTube player). Our main contributions are as follows:
• Power models (§3 and §5). To model ABR streaming power draw,
a critical task is modeling per-segment decoding power draw, since
ABR streaming involves playback of segments dynamically cho-
sen from di�erent tracks. Modern phones use a set of specialized
hardware units for video decoding. We propose using the residual
power, i.e., the total power subtracted by the power of the other
components (CPU, screen, network), to represent the aggregate
power draw of this set of hardware units, and develop a method-
ology for measuring per-segment residual power. Based on the
insights from the measurements, we further propose two scalable
methods for obtaining per-segment residual power. In addition, we
develop a CPU power model that can be used for multiple hetero-
geneous processor cores (commonly found on latest smartphones),
and network models that speci�cally consider the characteristics of
video streaming. Extensive validation demonstrates that the ABR
streaming power draw estimated from our models (i.e., summing
up the power draws from the individual component power models)
is highly accurate: the error compared to the measurement from a
power meter is below 8% across all the settings we explore.
• Measurement �ndings (§4 and §6). We conduct extensive mea-
surements using a diverse set of videos to characterize the residual
power. Our �ndings include: (i) the residual power increases with
the frame rate and resolution (the increase is particularly signi�cant
for very high resolutions), while is insensitive to the content, encod-
ing quality and codec under the same frame rate and resolution; and
(ii) the residual power for 360° videos is signi�cantly higher than
that of regular videos due to projection and sensor measurements
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that are required for rendering 360° videos. We further characterize
the component-wise power breakdown of ABR streaming by con-
ducting in-the-wild experiments in both WiFi and LTE networks
under a wide range of network conditions. Our �ndings include: (i)
the residual power only accounts for a small percentage (up to 18%)
of the total power draw for regular videos since the specialized
hardware units are highly e�cient; for 360° videos, the percentage
becomes much larger (up to 41%); (ii) due to the complex behavior
of ABR streaming, the network power draw can be similar under
low to medium network bandwidth settings, despite their signif-
icantly di�erent pro�les, while is much lower when the network
bandwidth is high; (iii) the CPU power draw is stable, insensitive
to various video and network characteristics, and is signi�cantly
larger for 360° videos than that for regular videos due to projection
needed for rendering 360° videos; and (iv) we observe clear device
heterogeneity: one phone has signi�cantly lower network power
draw, while signi�cantly higher residual power for 360° videos than
the other phone.
• Insights in saving energy and other use cases (§7 and §8). Based
on the insights of our measurement study, we explore two simple
energy reduction strategies that can be easily incorporated in ex-
isting ABR systems. We implement both strategies in ExoPlayer
and quantify their energy savings over commercial LTE networks.
Our evaluation demonstrates up to 30% energy savings with little
degradation in viewing quality in various LTE network conditions.
We further discuss other use cases of our developed power models,
ranging from designing new energy-aware ABR schemes to guiding
track design for mobile platforms.

2 METHODOLOGY
Our high-level methodology is to derive component-wise power
models for online power estimation on commodity smartphones, us-
ing information that can be easily obtained via light-weight logging
mechanism on the phones. We consider multiple phones and video
players, and both regular and 360° videos to verify the generality
of the models.

Power measurement. We use a Monsoon power monitor [15]
to measure the real-time power drain of a phone with the sampling
frequency of 1 kHz. The power measurements are used to derive the
power models for individual components involved in ABR stream-
ing by selectively turning on and o� certain components.

Phones. We use 2 smartphones from 2 di�erent vendors, LG
V20 (4 GB RAM) and Moto G5 (3 GB RAM), both with Qualcomm
Snapdragon processor (820 and 430, respectively) and running An-
droid 7.0. The reason for choosing these two phones is that they are
top recommended phones with removable batteries [20], allowing
easy power measurements using the power monitor. The LG V20
represents a high-end phone with faster CPU and larger memory,
and the Moto G5 represents a middle-range phone with slower CPU
and less memory. Both phones have LTE (Snapdragon X12 LTE
modem for the LG phone and X6 LTE modem the Moto phone) and
WiFi (802.11a/b/g, 802.11n) network interfaces.

Baseline power draw. Since our goal is to measure and model
the power draw involved in ABR streaming, it is important to �rst
understand the power consumption in the absence of any video
streaming workload. To that end, we disable all the other apps

and all the components not needed for video streaming (e.g., GPS,
camera, Bluetooth) before running an experiment. In this setting,
the total power draw is 620 mW for the LG phone (the screen
brightness is set to 50% of the full brightness, and the screen power
draw is 440 mW, see §3). For the Moto phone, the corresponding
total power is 862 mW (573 mW for the screen). The total power
draw for each device above represents the power consumption
without ABR streaming; running an ABR streaming app leads to
additional power draws beyond this baseline value (see §6).

Logging. We have crafted C programs and shell scripts to log
the required information needed for our power models, including
the amount of time spent in each frequency for each CPU core
(/sys/devices/system/cpu/cpu[id]/cpufreq/stats/time_in_state),
CPU load (/proc/stat), and signal strength of the WiFi and LTE
network interface cards (dumpsys telephony.registry). The above
information is logged every second, su�cient for our goal of obtain-
ing an accurate component-wise power breakdown, while adding
very little overhead (see below). Our LTE and WiFi power models
require knowing network throughput in short time intervals (100
ms). For simplicity, we log the network tra�c using tcpdump di-
rectly on the phone. While tcpdump can only run on rooted phones,
we emphasize that this is not a limitation since many methods can
be used to capture �ne-granularity network tra�c on phones (e.g.,
a local man-in-the-middle proxy, or a VPN service as used in the
ARO tool [8]). We veri�ed that the logging overhead is low – it leads
to no more than 1% of the total power draw when downloading
data under various network speed in WiFi/LTE networks.

Video Players. Most of the measurement results reported in
the paper use ExoPlayer (version r2.9.2), a popular open-source
media player for Android that is used in more than 10,000 apps [9],
and provides convenient ways to log various playback information
(e.g., the tracks selected, player bu�er level). To further validate our
models, we use another popular player, the YouTube app (version
14.06.56). The track selected for each segment position by this app
is obtained using nerds-stats [53] through an automation tool that
we developed.

Videos. Table 1 lists nine regular videos. The raw footage of
the �rst three videos are publicly available from [10]. We uploaded
these raw videos to YouTube and then download the encoded tracks
using youtube-dl [14]; the other six videos were downloaded from
YouTube directly. Table 2 lists ten 360° videos, all downloaded from
YouTube. They are panoramic videos, i.e., each track contains the
entire 360-degree scenes. We do not consider more e�cient deliv-
ery techniques (e.g., tile-based encoding [40, 56, 59, 62]), since such
approaches are much more complex and have not been deployed
in commercial services. All the regular videos have six tracks, with
resolutions from 144p to 1080p; the 360° videos have an additional
track of resolution 2160p. All the above videos are around 10 min-
utes long, encoded in H.264 codec [12]. The frame rate of each
track is 30 frames per second. All the tracks are Variable Bitrate
(VBR) encoded; the peak rate of a track is 1.0⇥-3.0⇥ of the average
bitrate of the track. All the videos use Fragmented MP4 packaging
format [3]. We only consider this format since it is more e�cient
than MPEG-2 TS [13] and the trend is moving towards this format.
In addition to the above encodings, we further use other encodings
to investigate the impact of frame rate, encoding quality and codec
on residual power (§4).
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Table 1: Average bitrate (in Mbps) and peak bitrate to average bitrate ratio (in parenthesis) of nine regular videos.

Fiction Sports Animation Family Comedy Documentary Action Nature Animal
144p 0.08 (1.3) 0.07 (1.4) 0.09 (1.4) 0.08 (1.5) 0.06 (2.0) 0.05 (2.4) 0.06 (2.0) 0.06 (2.0) 0.06 (2.0)
240p 0.19 (1.2) 0.16 (1.4) 0.20 (1.5) 0.15 (1.8) 0.11 (2.4) 0.09 (2.8) 0.11 (2.4) 0.13 (2.0) 0.18 (1.6)
360p 0.34 (1.4) 0.25 (1.9) 0.35 (1.8) 0.40 (1.7) 0.26 (2.8) 0.23 (2.9) 0.27 (2.4) 0.40 (1.9) 0.36 (2.1)
480p 0.76 (1.3) 0.63 (1.7) 0.77 (1.8) 0.78 (1.6) 0.51 (2.7) 0.45 (2.8) 0.55 (2.3) 0.85 (1.6) 0.73 (1.9)
720p 1.42 (1.4) 1.24 (1.7) 1.47 (1.8) 1.47 (1.7) 0.92 (3.0) 0.86 (2.9) 1.02 (2.4) 1.74 (1.6) 1.45 (1.9)
1080p 2.29 (1.4) 2.17 (1.7) 2.50 (1.8) 2.74 (1.7) 2.07 (2.2) 1.58 (2.9) 1.88 (2.4) 3.24 (1.6) 2.97 (1.5)

Table 2: Average bitrate (in Mbps) and peak bitrate to average bitrate ratio (in parenthesis) of ten 360° videos.

Skydiving Sci-Fi Animals Sea R. coaster Island Racing House Concert Tennis
144p 0.08 (1.1) 0.11 (1.0) 0.10 (1.0) 0.09 (1.2) 0.08 (1.1) 0.10 (1.0) 0.08 (1.0) 0.09 (1.1) 0.09 (1.0) 0.10 (1.0)
240p 0.18 (1.1) 0.24 (1.0) 0.21 (1.1) 0.19 (1.1) 0.22 (1.0) 0.2 (1.1) 0.2 (1.3) 0.23 (1.1) 0.22 (1.1) 0.19 (1.3)
360p 0.48 (1.4) 0.45 (1.4) 0.44 (1.6) 0.51 (1.2) 0.49 (1.3) 0.41 (1.6) 0.42 (1.4) 0.49 (1.2) 0.50 (1.4) 0.51 (1.3)
480p 0.90 (1.3) 0.91 (1.3) 0.97 (1.3) 0.84 (1.4) 1.00 (1.2) 0.96 (1.1) 0.8 (1.4) 0.99 (1.3) 0.93 (1.4) 0.96 (1.3)
720p 1.75 (1.3) 1.76 (1.3) 1.61 (1.5) 1.91 (1.1) 1.93 (1.2) 1.74 (1.2) 1.84 (1.3) 1.95 (1.1) 1.84 (1.4) 1.81 (1.4)
1080p 3.15 (1.3) 3.34 (1.3) 3.06 (1.4) 2.88 (1.4) 3.49 (1.3) 3.16 (1.5) 3.58 (1.4) 3.60 (1.1) 3.24 (1.3) 3.45 (1.1)
2160p 13.73 (1.6) 14.47 (1.6) 12.35 (2.0) 13.13 (1.8) 15.86 (1.4) 15.37 (1.4) 13.69 (1.8) 15.85 (1.6) 14.13 (1.5) 13.34 (1.6)

Network conditions.We conduct in-the-wild experiments in
bothWiFi and LTE networks. In addition, we use controlled network
conditions (by controlling the network bandwidth at the server
using tc [1] and replaying various network traces collected from
WiFi/LTE networks) to investigate the power draw under various
network conditions, or for apple-to-apple comparison.

3 COMPONENT POWER MODELS
CPU power model. Both the LG and Moto phones have multiple
heterogeneous processor cores. One set of cores has lower clock
frequency ranges, while the other set has higher clock frequency
ranges; we refer to them as small and large cores, respectively. The
LG phone has two small and two large cores, supporting frequencies
307-1594 and 307-2150 MHz, respectively [17]. The Moto phone
has four small and four large cores, supporting frequencies 768-
1094 and 960-1401 MHz, respectively [16]. The CPU frequencies
are managed by CPUFreq Governors [21] in the Android OS. The
default governor is Interactive Governor (it sets the CPU speed
based on usage, and can aggressively scale up the CPU speed in
response to CPU-intensive activities), which is used throughout
this study. We observe that during video playback, all the cores
are being used. For the LG phone, the two small cores use 653 and
730 MHz primarily, and the two large cores use 653 and 1037 MHz
primarily; other frequencies are used in less than 1% of time. For
the Moto phone, only the lowest frequency is being used (i.e., 768
MHz on the four small cores and 960 MHz on the four large cores).
We con�rm experimentally that the multiple cores of the same
category use the same frequency at the same time. On the other
hand, at a given time, the small and large cores may use di�erent
frequencies, leading to heterogeneous frequency usage. While the
study in [73] has proposed a power model for smartphones with
multiple processor cores (which was adopted in [27]), the model
only considers homogeneous cores that use the same frequency
at the same time. We propose a new power model and show that
it leads to signi�cantly lower errors than the model in [73] (see
Appendix). The proposed CPU power model is

%⇠%* =
’#2

:=1

’":

8=1
U:,8

�
%⌫,#2 ,: (5:,8 ) + D:%�,: (5:,8 )

�
, (1)

where #2 is the number of enabled cores, ": is the number of
frequencies that core : uses, U:,8 is the fraction of time that core :
spends at frequency 5:,8 , %⌫,#2 ,: (5:,8 ) is the baseline power of core:
at frequency 5:,8 when #2 cores are enabled, D: is the utilization of
core : , and %�,: (5:,8 ) is the power increment of core : at frequency
5:,8 . The coe�cients of the model can be obtained using linear
regression (see Appendix).

Screen power model. Existing studies have proposed power mod-
els for di�erent display technologies [35, 54, 72]. Both the LG and
Moto phones use IPS (in-plane switching) liquid-crystal display
(LCD) panels. For such panels, the screen power mainly depends
on the brightness level of the screen. For a given brightness level,
we obtain the power draw of the screen as the di�erence of the
power draws (measured by the power monitor) in two settings: (i)
when both the screen and CPU are on, and (ii) when the screen is
o� and the CPU is on. The Appendix shows the screen power draw
for three brightness levels for the two phones. The experiments in
the rest of the paper use a medium screen brightness of 50%.

LTE and WiFi power models. The power draw of the LTE inter-
face card of a phone depends on the current Radio Resource Control
(RRC) state of the phone [27, 42]. In LTE networks, the two RRC
states are Idle and Connected. Within the Connected state, there
are three sub-states: Active, short DRX and long DRX, with Active
as the only sub-state in which the device sends or receives data. The
power draw of aWiFi interface card also depends on its state (either
Active or Idle). While a number of studies have characterized the
energy consumption of cellular networks [19, 27, 33, 42, 54, 57, 60]
and WiFi networks [19, 27, 33, 46, 54, 58], they are not for video
streaming, which is long-lived and predominantly in the downlink
direction.We propose and validate LTE andWiFi power models that
account for the characteristics of video streaming (see Appendix).
For LTE, both Active power (during data transfer) and Tail power
(no data transfer and not yet in the Idle state) are modeled. For
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Figure 1: Residual power for 9 regular videos.

WiFi, only Active power is modeled since Tail time (for transiting
from Active to Idle state) is only hundreds of milliseconds.
Residual power.An important part of power draw in video stream-
ing is due to video decoding. For both the LG and Moto phones,
based on the specs [4, 6], a suite of hardware units, e.g., GPU, Video
Processing Unit (VPU), Digital Signal Processor (DSP), on the Qual-
comm Snapdragon chipset supports video processing. We did not
�nd easily accessible ways to obtain the power draw of each of
these hardware units. On the other hand, since our goal is to iden-
tify application-level actionable items that can improve the energy
e�ciency in video streaming, it is su�cient to model the aggregate
energy consumption of these hardware units, which we refer to
as residual power, i.e., the total power subtracted by the power of
the other components (CPU, screen, NIC). In ABR streaming, since
the playback involves segments dynamically chosen from di�erent
tracks, we need to obtain per-segment residual power. We present
detailed measurement results on residual power in §4. Based on the
insights, we present models for per-segment residual power in §5.

4 RESIDUAL POWER MEASUREMENTS
In this section, we measure residual power for both regular and 360°
videos. All the results are obtained by playing back videos locally
on a phone. The residual power is obtained as the total power draw
(measured by the power meter) subtracted by the screen (screen
brightness set to 50%) and CPU power draws.

4.1 Regular Videos
While our ultimate goal is to obtain per-segment residual power,
we �rst present per-track residual power to gain insights on the
factors that impact the residual power most signi�cantly. After that,
we present per-segment residual power measurement results.

4.1.1 Per-track Residual Power. Impact of resolution and con-
tent type. Fig. 1 shows the residual power for 9 regular videos
(Table 1) on the two phones; both the mean and standard deviation
over �ve runs are plotted in the �gure. All the videos have six tracks
(144p to 1080p) with frame rate of 30 frames per second. We see that
the residual power increases with the resolution, since higher reso-
lutions lead to more pixels and naturally higher decoding overhead.
The residual power is fairly low for the lower tracks (144p-720p),
and increases signi�cantly for the highest track (1080p). This might
be due to the characteristics of the specialized hardware units – they
are highly e�cient for the lower resolution tracks, but less e�cient
for 1080p. For each of the lower tracks (144p-720p), the residual
power of the Moto phone is lower than that of the LG phone; for the
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Figure 2: Impact of frame rate (LG phone).
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Figure 3: Impact of codec and encoding quality (LG phone).

1080p track, the observation is the opposite. Furthermore, for both
phones, the residual power is not sensitive to the video content and
bitrate variations within the same resolution – for each resolution,
the residual power is similar across all the videos, even though the
content and bitrate of the video di�er signi�cantly (see Table 1), a
point that we will return to in §5.

Impact of frame rate. Intuitively, residual power increases
with frame rate since more frames need to be decoded per second.
To investigate the impact of frame rate, we use FFmpeg to encode six
videos (each of 30 frames per second) downloaded from YouTube
into three additional frame rates: 7, 15, and 60 frames per second.
The six videos include three in Table 1 (Fiction, Sports, Animation)
and three others in the categories of football, TV show, and gaming.
Fig. 2 shows the results for two videos on the LG phone; the results
for other types of videos and the Moto phone show similar trends.
For a given resolution, when doubling the frame rate, the power
draw is approximately doubled when the frame rate is increased
from 30 to 60 frames per second, and is more than doubled in
the other two cases (i.e., increased from 7 to 15, and from 15 to
30 frames per second). This approximately linear increase of the
residual power with the frame rate con�rms that the residual power
for regular videos indeed comes primarily from decoding.

Impact of codec and encoding quality. We next investigate
two other factors, codec and encoding quality, on per-track residual
power. H.265 is an emerging codec that is more e�cient than H.264.
We use FFmpeg to encode two raw videos using both H.264 and
H.265. For each resolution, we use the constant rate factor (CRF) of
23 for both codecs; for the same video and resolution, the bitrate
in H.265 encoding is about 30% lower than that of H.264 encoding.
Fig. 3 shows per-track residual power for one video under these two
codecs on the LG phone. For the same resolution, we observe similar
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Figure 4: Distribution of per-segment residual power of a
regular video (Animation).

residual power between the two codecs, which might be because
the Qualcomm Snapdragon chipset used by the two phones have
built-in hardware support for both H.264 and H.265 encodings [2].

To investigate the impact of encoding quality, we encode two raw
videos (§2) using FFmpeg [11], following the per-title “three-pass”
encoding procedure from Net�ix [31]. We use three CRF values, 15,
23 and 35; lower CRF leads to higher bitrate and quality. For each
video, we choose six tracks (144p to 1080p) as used by YouTube.
Each track is segmented into 5-sec segments, consistent with the
segment duration used by YouTube. For the same resolution, the
average bitrate di�ers signi�cantly under the three CRF values
(the average bitrate when CRF is 15 is approximately twice and
four times of that when CRF is 23 and 35, respectively), while the
residual power, perhaps surprisingly, is similar (see one example in
Fig. 3(b)). This might be because the specialized hardware decoding
units are highly e�cient and are insensitive to encoding quality
under the same resolution.

4.1.2 Per-segment Residual Power. Our per-track measurement
results above show that for the same resolution and frame rate,
the residual power is insensitive to the content and encoding qual-
ity. The above observations indicate that the segments in a track
(each a few seconds long, of the same resolution and frame rate)
may incur similar residual power draw, which is con�rmed by our
measurements below.

One way to obtain the residual power for a segment is to play
the segment multiple times, obtain the power draw each time and
then use the average as the residual power for the segment. Our
measurements show that this approach leads to large variance
among the multiple runs, due to the small segment length, which is
sensitive to measurement noises. We design a novel methodology
as follows to overcome the above problem. For a particular segment,
we repeat the segment for 10 times to construct a “video” with 10
identical segments. The average residual power draw of this “video”
is then used as the residual power draw of the segment. Since this
“video” is much longer than a segment, the variance across multiple
runs is signi�cantly lower than that when playing a single segment
multiple times. Fig. 4 plots the CDF of the residual power of a
segment (obtained from �ve runs) for all the segments in each track
of one video. We see that for both phones, segments in the same
track indeed lead to similar residual power draw.
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(d) Moto phone, Residual power.

Figure 5: Additional CPU and residual power draws when
playing back 360° videos.
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Figure 6: Residual power for ten 360° videos.

4.2 360° Videos
A user may move around while playing a 360° video. We compare
the CPU and residual powers when holding a phone stationary and
moving it around (horizontally or vertically), and �nd negligible
di�erences in the power draws. This might be because the same
set of operations is performed while playing back a panoramic 360°
video (all 360° videos used in this paper are panoramic), whether a
phone is stationary or moving. In the following, all the results are
obtained in the stationary setting. No results for 2160p are shown
for the Moto phone (it cannot play such videos).

Additional power draws in playing back 360° videos.A 360°
video can be played back as a regular video (in that case, distorted
frames will be shown due to the lack of processings speci�c to
360° videos). Fig. 5 compares the CPU and residual powers when
playing back two 360° videos versus playing them back as regular
videos. We see that, for both phones, the former leads to signi�-
cantly higher CPU and residual power draws, which is due to two
additional operations when playing back a 360° video: (i) sensor
measurements that are used to determine the viewpoint, and (ii)
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Figure 7: Distribution of per-segment residual power of a
360° video (Skydiving).

projection that is required to render a 360° video in 3D in undis-
torted forms. To measure the power draw due to the sensors, we
develop an app that does the sensor measurements in the same
way as that when ExoPlayer plays a 360° video (ExoPlayer uses
TYPE_GAME_ROTATION_VECTOR sensor as input; the frequency of
the sensor is set to SENSOR_DELAY_FASTEST, i.e., getting sensor
data as fast as possible [7]). We run the app and obtain the power
draws due to CPU (obtained from our model) and sensors (obtained
as the total power draw from the power monitor subtracted by
the CPU power; the other components are turned o�). We observe
that the CPU power before and after starting the sensor measure-
ments is similar, indicating that sensor measurements does not
lead to additional CPU operations. Therefore, the power draw due
to sensors falls into the residual power. Speci�cally, based on our
measurements, the power draw due to sensors is 247±1.9 mW on
the LG phone and 352 ±2.3 mW on the Moto phone, which is a
signi�cant portion of the residual power draw (see Figures 5(b) and
(d)). After taking account of power draw due to sensors, the rest of
the additional CPU and residual powers (compared to playing a 360°
video as a regular video) is likely due to projection. Quantifying
the precise power draw due to projection is left as future work.

Per-track residual power. Fig. 6 shows the residual power for
ten 360° videos (Table 2) on both phones. For the same video, we see
that the residual power increases with the resolution; the increase is
particularly signi�cant for 2160p on the LG phone (the Moto phone
cannot play 2160p). For the same resolution, we again see similar
residual powers across the videos (the variance is slightly larger
than that for regular videos), indicating that the residual power is
not sensitive to video content. For each resolution from 144p to
1080p, the speci�c residual power is di�erent for the two device
models, with the values being lower for the V20 device.

Per-segment residual power.We use the same methodology
as that in §4.1 to obtain per-segment residual power for two 360°
videos. Fig. 7 plot the results for one video for both phones; the
results for the other video is similar. We again observe that for both
phones, the segments in the same track have similar residual power.

5 ABR STREAMING: POWER MODELS
In this section, we �rst present per-segment residual power model
based on the measurement results in §4, and then the overall power
model for ABR streaming.

Per-segment residual powermodel.One straightforwardmethod
for obtaining per-segment residual power is following the method-
ology in §4.1.2 and store the information in a lookup table. Dur-
ing subsequent ABR streaming, when a segment is selected, we
can simply look up the table to obtain the residual power for that
segment. The above approach requires detailed pro�ling of per-
segment power draw of a video beforehand. We next present two
more scalable approaches that are based on the two insights from
our measurement results for both regular and 360° videos: (i) the
segments in the same track have similar residual power, and (ii) for
the same resolution and frame rate, the residual power of a track
is similar across videos of a wide range of categories. Speci�cally,
consider a video, let %',✓,8 denote the residual power of segment
8 in track ✓ , and let %',✓ denote the average residual power of all
the segments in track ✓ , i.e., %',✓ =

�Õ=
8=1 %',✓,8

�
/=, where = is the

number of segments in a track. The �rst insight indicates that the
di�erence of %',✓,8 and %',✓ is small – it is within ±20 and ±30 mW
for regular and 360° videos for the LG phone; the corresponding
values for the Moto phone are ±20 and ±50 mW (see Figures 4 and
7), which are only a small fraction of the total power draw during
ABR streaming (see §6). Therefore, the �rst scalable approach is to
approximate segment residual power %',✓,8 as track residual power
%',✓ , which can be obtained by playing a track locally and is more
scalable than obtaining %',✓,8 individually.

We now describe the second scalable approach. Let ( be a set
of representative videos that are encoded using similar encoding
pipelines (for scalability, a commercial service, e.g., YouTube or
Net�ix, uses the same encoding ladder and pipeline for a large
number of videos [5, 25, 29, 30, 50]). Therefore, these videos have
the same number of tracks and the resolutions across the tracks
are consistent, even though they may have signi�cantly di�erent
bitrate for the same track as shown in Tables 1 and 2. Let %',✓
represent the average power draw of track ✓ for all the videos in
( . The second insight from our measurements indicates that the
di�erence between %',✓ for one video and %',✓ is small – it is within
±9% and ±8% for the regular and 360° videos for the LG phone; the
corresponding values for the Moto phone are ±8% and ±7% (see
Figures 1 and 6). Therefore, combining the �rst and second insights,
the second scalable approach is to approximate %',✓,8 as %',✓ , 8✓,88 .

The above three approaches (i.e., the straightforward and two
more scalable approaches) for estimating per-segment residual
power are increasingly more scalable at the cost of slightly higher
errors. As we shall see in §6, even under the third approach, the
error during ABR streaming is low (below 8%).

Putting it all together.To estimate the power draw of ABR stream-
ing on a given phone, we �rst need to obtain themeasurement-based
models for CPU, screen, network interface cards, as presented in
§3. Per-segment residual power draw can be obtained using one
of the three approaches described above. After that, during ABR
streaming, the power draws from these components can be obtained
online using the respective models with real-time collected system
and player information (i.e., CPU frequency, load, screen brightness,
downlink throughput and the selected track for a segment position)
as input, and the sum of the component power draws is the power
draw of ABR streaming.
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Figure 8: WiFi and LTE traces.

6 ABR STREAMING: ENERGY BREAKDOWN
In this section, we conduct experiments in WiFi and LTE networks
using both regular and 360° videos to validate the power models
for ABR streaming. We further present the component-wise power
breakdown of ABR streaming in various scenarios.

6.1 Experiment Setup
Unless otherwise stated, the results are obtained using ExoPlayer
with an HTTP server that we set up. All the experiments are con-
ducted in the wild inWiFi and LTE networks, at locations with good
signal strength so that the network bandwidth is high and stable.
For repeatable experiments and apple-to-apple comparisons, we
emulate varying real-world network conditions by running tc at
the server to “play back” network bandwidth traces (each recording
per-second network bandwidth) that were collected from WiFi and
LTE networks under varying conditions (controlled experiments
for YouTube player are described in §6.6). For WiFi, we use 7 traces
collected at a public location on a university campus. Fig. 8(a) plots
the average and standard deviation of the network bandwidth for
these traces, sorted in the increasing order of the average network
bandwidth. The �rst 6 traces have low to medium average band-
width (0.3 to 4.7 Mbps); the last one has high average bandwidth
(42.7 Mbps). For LTE, we use 17 traces collected from commercial
LTE networks, as shown in Fig. 8(b). The �rst 15 traces have low
to medium average bandwidth (0.3 to 3.7 Mbps); the last two have
high average bandwidth (9.9 and 19.7 Mbps).

6.2 Model Validation
We validate the ABR streaming power model in §5 as follows. For a
given video and network trace, the CPU, screen and network power
draws are obtained in real time using ourmodels; the residual power
of a selected segment is obtained using one of the three approaches
described earlier: (i) use %',✓,8 directly, (ii) approximate %',✓,8 as
%',✓ , and (iii) approximate %',✓,8 as %',✓ , where %',✓,8 is the residual
power of segment 8 in track ✓ , %',✓ is the average residual power of
track ✓ of the video, and %',✓ is the average power draw of track
✓ across a set of representative videos (i.e., the nine regular and
ten 360° videos in Tables 1 and 2, respectively). To investigate the
impact of the length of the video on the accuracy of the model, we
assume the length is 2, 4, 6, 8, or 10 minutes. The error of the ABR
streaming power model is the total power draw from our model
(sum of component power draws) compared with that from the
power monitor.

1 2 3 4 5 6 7
Network trace index

0

500

1000

1500

2000

2500

3000

Po
w

er
 (m

w
)

WiFi
Residual
CPU
Screen

(a) LG phone, WiFi.

1 2 6 73 4 5 
Network trace index

0

500

1000

1500

2000

2500

3000

Po
w

er
 (m

w
)

WiFi
Residual
CPU
Screen

(b) Moto phone, WiFi.

0 5 10 15 20
Network trace index

0

500

1000

1500

2000

2500

3000

Po
w

er
 (m

W
)

LTET
LTEA
Residual
CPU
Screen

(c) LG phone, LTE

0 5 15 2010 
Network trace index

0

500

1000

1500

2000

2500

3000

Po
w

er
 (m

w
)

LTET

LTEA

Residual
CPU
Screen

(d) Moto phone, LTE.

Figure 9: Power breakdown of ABR streaming for a regular
video (Animation) in WiFi and LTE networks.

Our evaluation shows that, as expected, the errors are the lowest
when using the �rst approach and the highest when using the third
approach for per-segment residual power draw. On the other hand,
all three approaches lead to low errors. We only report the results
for one regular and 360° video (i.e., Animation and Sci-Fi) when
the video length is 10 minutes on the LG phone; the results for the
other settings (video lengths and Moto phone) are similar. For the
regular video, the relative error under the three approaches is below
3%, 4% and 5% in WiFi networks, and below 5%, 6% and 7% in LTE
networks, respectively. For the 360° video, the corresponding error
bounds are 3%, 3%, and 4% in WiFi networks, and 3%, 3%, and 5% in
LTE networks. The measurement results in the rest of the section
use the third approach to obtain per-segment residual power.

0 100 200 300 400
0

500

1000

1500

2000

2500

3000

po
w

er
 (m

w
)

Screen
CPU
Residual
WiFi
Monsoon

0 100 200 300 400
0

5

10

th
ro

ug
hp

ut
 (k

bp
s)

netwrok profile
actual download speed

0 100 200 300 400
Time (s)

0

1

2

3

4

5

se
le

ct
ed

 tr
ac

k 
N

o.

Time (s)

Figure 10: Power draw over time for a regular video under
one network trace (Animation, WiFi network).

6.3 Results for Regular Videos
In each setting, we plot the measurement results in increasing
order of the average network bandwidth of the network traces. The
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results for each network trace are obtained from three runs. Only
the average values are plotted (the standard deviations are low
and omitted). The power draw of a component is the total energy
consumed by the component divided by the duration of the run
(from starting the player until the end of the video playback).

WiFi networks. The top row of Fig. 9 plots the component-wise
power breakdown under the 7 WiFi traces for a regular video on
the LG and Moto phones. For both phones, the screen power is
a constant and the CPU power is close to a constant across the
traces (CPU is not involved in decoding and is not sensitive to
the tracks that are chosen in ABR streaming). As expected, the
residual power increases with the average network bandwidth,
since higher resolution segments are downloaded under higher
network bandwidth; the increase is particularly signi�cant for the
last trace, where the highest track (1080p) is selected most of the
time due to the high network bandwidth. Maybe surprisingly, the
WiFi power draw under the �rst 6 traces is similar, despite their
dramatically di�erent pro�les; the WiFi power draw under the last
trace is noticeably lower. The above observations on WiFi power
draw are due to the complex behavior of ABR streaming, as to be
explained later. The power breakdown on these two phones has
signi�cant di�erence. Speci�cally, for the �rst 6 traces, the screen,
CPU, residual, and WiFi powers take 35-38%, 23-25%, 4-8%, and 32-
35% of the total power draw on the LG phone; the percentages on
the Moto phone are 50-54%, 30-33%, 1-7%, and 12-13%. For the last
trace, the percentages on the LG phone are 43%, 27%, 17%, and 14%,
while the percentages are on the Moto phone are 48%, 29%, 18%,
and 4%. Compared to the Moto phone, the LG phone has a higher
percentage of power draw due to WiFi, and lower percentages due
to screen and CPU.

We now explain the reasons behind the WiFi power draw as
observed above. The WiFi power draw depends on two main fac-
tors: (i) the amount of time when the network interface card is
in the Active state, and (ii) the amount of power draw during the
Active state. The �rst factor is a�ected by the ratio of the network
bandwidth to the average bitrate of a segment, which we term
as “slackness”. A larger “slackness” leads to a faster bu�er �lling
rate, and hence a shorter amount of time in the Active state (the
downloading stops when the bu�er reaches a certain threshold and
resumes again when it is below another threshold; by default, these
two thresholds are 50 and 15 seconds in the ExoPlayer that we use).
In ABR streaming, the rate adaption logic adapts to the network
bandwidth – under a higher network bandwidth, the ABR logic
may choose a segment with a higher quality/bitrate and vice versa,
and the track selection is based on the declared bitrate of a track
(which is close to the peak bitrate, instead of the average bitrate).
For the video in Fig. 9, since the ratio of the peak over average
bitrate is larger for the higher tracks, the “slackness” under higher
tracks tends to be larger than that under lower tracks, leading to
less time in the Active state, and less average power draw. The im-
pact of the second factor (i.e., the amount of power draw during the
Active state) is in the opposite direction: it increases with network
bandwidth (see Appendix), and hence higher bandwidth leads to
higher power draw during the Active state. The interaction of the
above two factors leads to similar WiFi power draw for the �rst
six network traces. For the last network trace, since the bandwidth

is signi�cantly higher, the amount of “slackness” is signi�cantly
larger, and hence the �rst factor plays a more dominant role (i.e.,
the WiFi interface spends most time in the Idle state), leading to
lower overall WiFi power draw.

We illustrate the above complex interaction in Fig. 10 for one net-
work pro�le (with the average bandwidth of 0.6 Mbps). It includes
three sub-plots: the component-wise power draw, the network
bandwidth and downloading throughput, and the selected tracks
over time. We see that the downloading follows an on-o� pattern,
causing the network power draw to follow an on-o� pattern as
well. Higher tracks indeed tend to be selected when the network
bandwidth is higher, during which the power draw is higher. The
�rst sub-plot in Fig. 10 also shows the power measurement from
the power monitor over time. Overall, it matches well with the total
power draw calculated from our models.

LTE networks. The bottom row of Fig. 9 plots the results under
the LTE traces for both phones. Compared to the results under WiFi
networks, the overall power under LTE networks is higher for both
phones, primarily due to higher LTE power draw (sum of Active
and Tail power) compared to WiFi power draw. As a result, the
percentages of screen and CPU power draws over the total power
draw in LTE networks are lower than those in WiFi networks. For
similar reasons as described earlier, for both phones, the LTE power
draw under the �rst 15 traces is similar despite the signi�cantly
di�erent pro�les of these traces; the LTE power draw under the last
two traces is signi�cantly lower due to their signi�cantly higher
network bandwidth. For the �rst 15 traces, the screen, CPU, residual,
and LTE powers account for 30-34%, 18-21%, 3-10%, and 39-48%
of the total power draw on the LG phone; the percentages on the
Moto phone are 42-48%, 25-28%, 5-15%, and 18-20%. For the last two
traces, the percentages of the LTE power are 32% and 28% for the
LG phone, and 11% and 9% for the Moto phone. The LG phone has
a larger percentage of power draw due to network than the Moto
phone.

6.4 Measurement Results for 360° Videos
In our experiments with 360° videos, since the Moto phone cannot
play 2160p resolution, we prevent the 2160p track from being se-
lected by removing it from the manifest �les. For the LG phone, all
seven tracks (144p to 2160p) can be selected.

WiFi networks. The top row of Fig. 11 plots the power breakdown
for a 360° video under the 7WiFi traces on the two phones. For both
phones, the CPU and residual power draws are signi�cantly higher
than those for the regular videos due to the additional operations
required for rendering 360° videos (see §4.2). For the WiFi power
draw, the trend is similar as that for the regular videos: the network
power draw is similar under the �rst 6 traces, and lower under the
last trace compared to other traces. For the �rst 6 traces, the screen,
CPU, residual, and WiFi powers take 21-24%, 24-27%, 21-24%, and
26-34% of the total power draw on the LG phone; the percentages
on the Moto phone are 28-32%, 24-27%, 33-37%, and 9-11%. For the
last trace, the percentages are on the LG phone are 25%, 28%, 39%,
and 8%; the percentages are on the Moto phone are 29%, 26%, 41%,
and 3%. Di�erent from the observations for regular videos, for both
phones, the screen power becomes less dominant, while the residual
power becomes much more signi�cant. For the Moto phone, the
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Figure 11: Power breakdown of ABR streaming for a 360°
video (Sci-Fi) over WiFi and LTE networks.

percentage of power draw due to residual power is higher than that
for the LG phone; their di�erence for the last trace is less signi�cant,
where the LG phone selects 2160p track most of the time, while the
Moto phone selects 1080p most of the time.

LTE networks. The bottom row of Fig. 11 plots the results for
a 360° video under the 17 LTE traces. We again observe that, for
both phones, the residual power is a signi�cant part of the total
power draw despite the specialized hardware units. For the �rst
15 traces, the screen, CPU, residual, and LTE powers account for
21-22%, 22-23%, 22-23%, and 31-36% of the total power draw on the
LG phone; the percentages on the Moto phone are 25-28%, 21-23%,
31-35%, and 17-20%. For the last two traces, the LTE power are
lower than that under the �rst 15 traces: the percentages of LTE
power draw is 23% and 17% for the LG phone, and 15% and 12% for
the Moto phone.

6.5 Summary of Main Results
The above results are for one regular and one 360° video; the results
for other videos show similar trend. Summarizing the above, the
key observations are as follows.
• Due to signi�cantly higher CPU and residual powers, 360° videos
consume much more energy than regular videos: for regular videos,
the total power draw under various WiFi and LTE network condi-
tions is 1.7-2.4⇥ of the baseline power draw (i.e., power draw with
no ABR streaming, see §2) for the LG phone and 1.2-1.6⇥ for the
Moto phone, while for 360° videos, the corresponding ratios are
3.4-4.2⇥ and 2.1-3.4⇥.
• For regular videos, the residual power is low due to the specialized
hardware units (taking 4-17% and 1-18% of the total power draw
under various network conditions for the LG and Moto phones,
respectively); for 360° videos, the residual power is signi�cant for
both phones (the percentages being 17-39% and 26-41% for the two
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Figure 12: Energy saving by capping the top track (LG
phone). For each setting, the three bars represent the results
for not capping, and capping to 720p and 480p, respectively.

phones). Therefore, reducing residual power draw for 360° videos
is an important future direction.
• We observe clear device heterogeneity: one phone has signi�-
cantly lower network power draw, while signi�cantly higher resid-
ual power for 360° videos than the other phone. Therefore, di�er-
ent energy reduction strategies need to be developed for di�erent
phones.

6.6 YouTube Player
The results reported so far are for ExoPlayer. We now brie�y re-
port the results for YouTube player, with the focus on power model
validation. In the interest of space, we only present the validation re-
sults for ABR streaming over LTE networks. We run a YouTube app
(version 14.06.56) that requests a regular video (Elephant Dream)
from the YouTube server. The video has 6 tracks with resolution
from 144p to 1080p. For controlled experiments, we use the set of
LTE traces in §6.1. To control the network bandwidth, we run a
proxy (ProxyDroid) on the phone; the proxy connects to a sever
that we set up through a commercial LTE network, and the network
bandwidth is controlled at the server using tc. The CPU, screen
and network (WiFi and LTE) power draws are estimated using our
models, and the per-segment residual power is obtained using the
three approaches in §6.2. The error is the total power draw from
our models compared with that from the power monitor. We again
observe that the relative error is low (below 6%, 7% and 8% under
the three approaches, respectively).

7 ENERGY REDUCTION STRATEGIES
Our measurement results indicate that, for existing ABR schemes
that are not energy-cognizant, a simple strategy to reduce their
energy consumption is to lower the selected tracks so as to increase
the amount of “slackness”, i.e., the ratio of the network bandwidth
to the bitrate of the selected track. In particular, when the original
scheme selects a high-resolution track, it can be lowered, which
reduces both network and residual power draw, while not degrading
viewing quality much for small screens (such as those on phones).
In the following, we explore two such strategies. Our goal is not
to derive optimal strategies, rather, is to demonstrate that simple
energy-aware enhancement to existing ABR schemes can already
provide substantial energy savings.

Consider a video with = tracks. The �rst strategy caps the top
track to ✓̄ < =. That is, if the rate adaptation logic selects a track
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✓ > ✓̄ , then the track is set to ✓̄ . The second strategy uses per-segment
track reduction: for a segment position, if the rate adaptation logic
selects a track ✓ , then the track is reduced to ✓ � 1 as long as ✓ � ✓ .
Both strategies can be easily deployed at the server (by modifying
the manifest �le) or the player (by including a pre�lter or in the
adaptation logic).

We implement the above two strategies in ExoPlayer. In the fol-
lowing, we quantify their energy savings using two regular videos
(Fiction and Sports in Table 1, both with six tracks from 144p to
1080p), and three network pro�les collected from a commercial
LTE network. For each network pro�le, we scale it to create four
traces with the average network bandwidth as 3, 4, 7 and 10 Mbps,
respectively. All the experiments are conducted in the wild in a
commercial LTE network, following the methodology in §6.1. The
resulting viewing quality is quanti�ed using Video Multimethod
Assessment Fusion (VMAF) [48], a state-of-the-art perceptual qual-
ity metric that correlates quality strongly with subjective scores.
Speci�cally, for the segments selected by a strategy under a net-
work trace, we use

Õ=
8=1F8@8 to quantify the viewing quality, where

F8 is the percentage of the time when track 8 is selected and @8 is
the average VMAF score of all the segments in track 8 (the VMAF
for a segment is the mean VMAF value of all the frames in the
segment; using median leads to similar values). In the following,
we only report the results of one video under one network pro�le
(the results under the other two network pro�les and for the other
video show similar trends) for the LG phone.

For the capping top track strategy, we explore setting ✓̄ to 5 or 4
(i.e., the highest track selected is 720p or 480p). Figures 12(a) and
(b) plot respectively the power breakdown and the percentage that
each track is selected under three cases (no capping, and capping
the top track to 720p and 480p). We observe signi�cant energy
savings: compared to no capping, the percentage of savings is 8-
22% and 23-30% when capping the top track to 720p and 480p. When
the average network bandwidth is low (3 or 4 Mpbs), the saving
is primarily from lower network power draw; when the network
bandwidth is high (7 or 10 Mpbs), the saving is due to both lower
residual and network power draws. We further see that capping the
top track can lead to less low quality tracks, since avoiding high
resolution tracks can lead to less bu�er drainage and hence higher
bu�er level (under which ExoPlayer is less likely to choose low
quality tracks). The VMAF is 92-99, 92-95 and 86-87 under the above
three cases, showing that capping the top track only leads to slight
degradation in viewing quality (VMAF score is between 0 and 100,
and above 80 is considered as good quality [48]). Fig. 13 plots the
results for the per-segment track reduction strategy, where ✓ = 2.
We again observe signi�cant energy savings (22-24%), with only
slight viewing quality degradation (the VMAF is 92-99 and 84-93
for the two cases, respectively).

8 DISCUSSION
Use cases.We next brie�y outline several use cases of our power
models for ABR streaming.
• Evaluating the energy e�ciency of existing ABR schemes.
Existing ABR schemes have been primarily evaluated in terms
of QoE. Our power models allow easy evaluation of the energy
consumption of these schemes on commodity phones. Speci�cally,
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Figure 13: Energy saving byper-segment track reduction (LG
phone). For each setting, the two bars represent the result of
the original scheme and that after applying the strategy.

when running an ABR scheme, the power breakdown of the various
components can be obtained using our component-wise models
based on system and player information that can be easily collected.
• Towards energy-e�cient ABR schemes. Based on the eval-
uation of energy e�ciency, existing ABR schemes that were not
energy-cognizant can be improved to be more energy-e�cient. The
two simple energy reduction strategies in §7 are examples of such
use cases. A more elaborate strategy can be based on a systematic
what-if analysis. Our measurement results further show that, when
the amount of slackness is high, the network power draw is only a
small fraction of the total power draw. Therefore, another aspect
is investigating how much the slackness needs to be under which
there is no need to reduce the track selection. In addition to im-
proving the energy e�ciency of existing ABR schemes, our power
models can be explicitly incorporated in designing new energy-
aware ABR schemes. For example, suppose that a phone’s battery
level is ⌫, and we would like to consume at most ⌫/2 of the battery
while watching a video. The ABR logic can then take account of
the total energy constraint and the estimated energy consumption
obtained online from our models to make track selections in order
to maximize the QoE under the energy constraint.
• Guiding track ladder design for mobile platform. Our mea-
surements results show that the residual power is more sensitive to
resolution (particularly for very high resolution) while is insensi-
tive to the bitrate for a given track resolution. The network power
draw, on the other hand, is naturally related to average bitrate of a
track. These results indicate that track design for ABR streaming
needs to consider both the residual power and network power when
determining the resolution and quality/bitrate of the tracks.
Generality of models and measurement �ndings. Our study
focuses on two phones that are among the best phones with remov-
able batteries for easy power measurement [20]. The coe�cients of
the component-wise models are speci�c to these two phones. On
the other hand, our methodologies in deriving these models are
applicable to other phones. Our measurement results are obtained
by running popular ABR players on these two phones. The speci�c
measurement �ndings may di�er for newer phones. For instance,
for newer phones, the residual power for higher resolution tracks
may be reduced due to advances in hardware, and the CPU and
residual power draws of 360° videos may reduce over time. On the
other hand, our measurement methodologies, combined with new
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component-wise models that are derived for new phones, can be
used to obtain new measurement �ndings.

9 RELATEDWORK
Power models and measurements for smartphones. In addi-
tion to those reviewed in §3, additional studies include power
breakdown of a phone’s main hardware components [23], energy
drains in the wild [27], energy consumed by background applica-
tions [26, 43], energy pro�ling on smartphones [57, 60], energy
emulation tool [54], overall and component power draw of real
users [63], and power characteristics of LTE networks [42]. None
of the above studies focuses on ABR streaming as in this study.

Energy consumption measurement for video streaming.
Existing studies primarily focus on single-track regular videos, e.g.,
[39, 67] measure the energy consumption of commercial mobile
video services, [69, 70]measure and analyze the power consumption
of video streaming in LTE networks. While several studies present
power measurements (e.g., aggregate power draw measured by
power meters) for ABR streaming; none of them presents power
breakdown as in our study. Power consumption of 360° streaming
on phones is investigated in [44], which does not consider multi-
track ABR streaming or propose component-wise power models.

Energy saving techniques for video streaming. The litera-
ture on reducing energy consumption in video streaming is ex-
tensive, see survey in [38]. Existing techniques include dynamic
caching [47], tra�c scheduling [37, 41, 66, 71], multipath deliv-
ery [36], coding/transcoding techniques [18, 55], tra�c shaping
on wireless devices [34, 51], managing radio states by predicting
tra�c patterns [32], and various techniques on reducing display
energy [24, 28, 35, 49, 52]. Most techniques are designed for single-
track video streaming. Energy saving techniques for ABR streaming
are much sparser: [45, 65] propose both video adaptation and screen
brightness techniques for energy-e�cient ABR streaming; [68]
presents a novel end-to-end adaptation framework that considers
display and delivery jointly to reduce energy consumption; and
[61] develops quality-aware strategies while reducing data usage,
which can lead to reduced energy consumption. We propose energy
saving strategies for ABR streaming based on the insights from our
measurements, which have not been explored in existing studies.

10 CONCLUSION
In this paper, we have developed component-wise power models
for ABR streaming. Using these models, we quantify the power
breakdown in ABR streaming for both regular and 360° videos in a
wide range of network settings. Our measurements validated the
accuracy of the power models and provided a number of insights.
Based on the insights, we explored two simple energy reduction
strategies for ABR streaming, and demonstrated that they can pro-
vide up to 30% energy savings, with little degradation in quality in
various network conditions.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers who gave valuable feedback
to improve this work, and our shepherd, Jörg Ott, for guiding us
through the revisions. We also thank Shuai Hao for helpful discus-
sion and suggestions, and his help on YouTube player measurement.

REFERENCES
[1] Linux tc. https://linux.die.net/man/8/tc, 2014.
[2] Snapdragon 4k Datasheet, Qualcomm. https://www.qualcomm.com/media/

documents/�les/snapdragon-4k-datasheet.pdf, 2014.
[3] ISO/IEC 14496-12 Information technology – Coding of audio-visual objects – Part

12: ISO base media �le format. International Organization for Standardization,
2015.

[4] Adreno Video and Display, Qualcomm. https://www.intrinsyc.com/datasheets/
qualcomm-adreno-video-and-display-infographic.pdf, 2015.

[5] Per-Title Encode Optimization. Net�ix Technology Blog. https://medium.com/
net�ix-techblog/per-title-encode-optimization-7e99442b62a2, 2015.

[6] Snapdragon 820 - Technology and Traction, Qual-
comm. https://www.qualcomm.com/media/documents/�les/
snapdragon-820-technology-and-traction-presentation-francisco-cheng.pdf,
2015.

[7] Android SensorManger. https://developer.android.com/reference/android/
hardware/SensorManager., 2016.

[8] AT&T Application Resource Optimizer (ARO): User Guide. https://developer.att.
com/static-assets/documents/aro/release/att-aro-user-guide-5.0.pdf, 2016.

[9] ExoPlayer 2 - Why, what and when? https://medium.com/google-exoplayer/
exoplayer-2-x-why-what-and-when-74fd9cb139, 2016.

[10] Xiph.org Video Test Media. https://media.xiph.org/video/derf/, 2016.
[11] FFmpeg Project. https://www.�mpeg.org/, 2017.
[12] H.264 : Advanced video coding for generic audiovisual services. ITU. https:

//www.itu.int/rec/T-REC-H.264, 2017.
[13] ISO/IEC 13818-1 Information technology – Generic coding of moving pictures

and associated audio information – Part 1: Systems. International Organization
for Standardization, 2018.

[14] youtube-dl. https://ytdl-org.github.io/youtube-dl/index.html, 2018.
[15] Monsoon power monitor, Monsoon Solutions Inc. https://www.msoon.com/

LabEquipment/PowerMonitor/, 2019.
[16] Snapdragon 430 Mobile Platform, Qualcomm. https://www.qualcomm.com/

products/snapdragon-430-mobile-platform, 2019.
[17] Snapdragon 820 Mobile Platform, Qualcomm. https://www.qualcomm.com/

products/snapdragon-820-mobile-platform, 2019.
[18] F. Albiero, J. Vehkaperä, M. Katz, and F. Fitzek. Overall performance assessment

of energy-aware cooperative techniques exploiting multiple description and
scalable video coding schemes. In Communication Networks and Services Research
Conference (CNSR). IEEE, 2008.

[19] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy con-
sumption in mobile phones: a measurement study and implications for network
applications. In Proc. of IMC, 2009.

[20] Brad. 9 Best Phones with Removable Battery In 2019. https://thedroidguy.com/
2019/04/9-best-phones-removable-battery-2019-1079207, 2019.

[21] D. Brodowski. CPU frequency and voltage scaling code in the Linux (TM) kernel.
2017.

[22] D. Carraway. Lookbusy – a synthetic load generator. http://www.devin.com/
lookbusy/, 2013.

[23] A. Carroll and G. Heiser. An analysis of power consumption in a smartphone. In
USENIX Annual Technical Conference, 2010.

[24] N. Chang, I. Choi, and H. Shim. DLS: dynamic backlight luminance scaling of
liquid crystal display. IEEE Trans. VLSI Syst., 12(8), August 2004.

[25] C. Chen, Y.-C. Lin, A. Kokaram, and S. Benting. Encoding bitrate optimization
using playback statistics for HTTP-based adaptive video streaming. https://arxiv.
org/abs/1709.08763, 2017.

[26] X. Chen, J. Abhilash, D. Ning, C. H. Yu, G. Maruti, and V. Rath. Smartphone
background activities in the wild: Origin, energy drain, and optimization. In Proc.
of ACM MobiCom, 2015.

[27] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and R. Vannithamby. Smart-
phone energy drain in the wild: Analysis and implications. ACM SIGMETRICS
Performance Evaluation Review, 43(1):151–164, 2015.

[28] L. Cheng, S.Mohapatra, M. E. Zarki, N. Dutt, andN. Venkatasubramanian. Quality-
based backlight optimization for video playback on handheld devices. Advances
in Multimedia, 1, 2007.

[29] J. D. Cock, Z. Li, M. Manohara, and A. Aaron. Complexity-based consistent-
quality encoding in the cloud. In Proc. of IEEE International Conference on Image
Processing, 2016.

[30] M. Covell, M. Arjovsky, Y.-C. Lin, and A. C. Kokaram. Optimizing transcoder
quality targets using a neural network with an embedded bitrate model. In Visual
Information Processing and Communication, 2016.

[31] J. De Cock, A. Mavlankar, A. Moorthy, and A. Aaron. A large-scale video codec
comparison of x264, x265 and libvpx for practical VOD applications. In SPIE,
Applications of Digital Image Processing, 2016.

[32] S. Deng and H. Balakrishnan. Tra�c-aware techniques to reduce 3G/LTE wireless
energy consumption. In Proc. of ACM CoNEXT, 2012.

[33] N. Ding, D. Wagner, X. Chen, A. Pathak, Y. C. Hu, and A. Rice. Characterizing
and modeling the impact of wireless signal strength on smartphone battery drain.

163



MMSys’20, June 8-11, 2020, Istanbul, Turkey C. Yue et al.

ACM SIGMETRICS Performance Evaluation Review, 41(1):29–40, 2013.
[34] F. R. Dogar, P. Steenkiste, and K. Papagiannaki. Catnap: exploiting high bandwidth

wireless interfaces to save energy for mobile devices. In Proc. of ACM MobiSys,
2010.

[35] M. Dong and L. Zhong. Chameleon: a color-adaptive web browser for mobile
OLED displays. In Proc. of ACM MobiSys, 2011.

[36] Y. Go, O. C. Kwon, and H. Song. An energy-e�cient HTTP adaptive video
streamingwith networking cost constraint over heterogeneouswireless networks.
IEEE Transactions on Multimedia, 17(9), September 2015.

[37] M. A. Hoque, M. Siekkinen, and J. K. Nurminen. Using crowd-sourced viewing
statistics to save energy in wireless video streaming. In Proc. of ACM MobiCom,
2013.

[38] M. A. Hoque, M. Siekkinen, and J. K. Nurminen. Energy e�cient multimedia
streaming to mobile devices–a survey. IEEE Communications Surveys & Tutorials,
16(1):579–597, 2014.

[39] M. A. Hoque, M. Siekkinen, J. K. Nurminen, and M. Aalto. Dissecting mobile
video services: An energy consumption perspective. In Proc. of WoWMoM, 2013.

[40] M. Hosseini and V. Swaminathan. Adaptive 360 VR video streaming: Divide and
conquer! arXiv preprint arXiv:1609.08729, 2016.

[41] W. Hu and G. Cao. Energy-aware video streaming on smartphones. In Proc. of
IEEE INFOCOM, pages 1185–1193. IEEE, 2015.

[42] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. A close
examination of performance and power characteristics of 4G LTE networks. In
Proc. of MobiSys. ACM, 2012.

[43] J. Huang, F. Qian, Z. M. Mao, S. Sen, and O. Spatscheck. Screen-o� tra�c charac-
terization and optimization in 3G/4G networks. In Proc. of IMC, 2012.

[44] N. Jiang, V. Swaminathan, and S. Wei. Power Evaluation of 360 VR Video Stream-
ing on Head Mounted Display Devices. In Proc. of Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV). ACM, 2017.

[45] J.-S. Leu, M.-C. Yu, C.-Y. Liu, A. P. B. Budiarsa, and V. Utomo. Energy e�cient
streaming for smartphone by video adaptation and backlight control. Computer
Networks, 113:111–123, 2017.

[46] C.-Y. Li, C. Peng, S. Lu, and X. Wang. Energy-based rate adaptation for 802.11n.
In Proc. of MobiCom, 2012.

[47] X. Li, M. Dong, Z. Ma, and F. C. Fernandes. GreenTube: power optimization
for mobile videostreaming via dynamic cache management. In Proc. of ACM
Multimedia, 2012.

[48] Z. Li, A. Anne, K. Ioannis, M. Anush, and M. Megha. Toward a practi-
cal perceptual video quality metric. https://medium.com/net�ix-techblog/
toward-a-practical-perceptual-video-quality-metric-653f208b9652, 2016.

[49] C.-H. Lin, P.-C. Hsiu, and C.-K. Hsieh. Dynamic backlight scaling optimization:
A cloud-based energy-saving service for mobile streaming applications. IEEE
Trans. Comput., 63, February 2014.

[50] Y.-C. Lin, H. Denman, and A. Kokaram. Multipass encoding for reducing pulsing
artifacts in cloud based video transcoding. In Proc. of IEEE International Conference
on Image Processing, 2015.

[51] J. Liu and L. Zhong. Micro power management of active 802.11 interfaces. In
Proc. of ACM MobiSys, 2008.

[52] Y. Liu, M. Xiao, M. Zhang, X. Li, M. Dong, Z. Ma, Z. Li, and S. Chen. GoCAD:
GPU-assisted online content-adaptive display power saving for mobile devices in
internet streaming. In Proc. of World Wide Web Conference (WWW), April 2016.

[53] C. Marshall. Youtube brings us stats for nerds. https://tubularinsights.com/
youtube-stats-for-nerds/, 2013.

[54] R. Mittal, A. Kansal, and R. Chandra. Empowering developers to estimate app
energy consumption. In Proc. of MobiCom, 2012.

[55] S. Mohapatra, R. Cornea, H. Oh, K. Lee, M. Kim, N. Dutt, R. Gupta, A. Nico-
lau, S. Shukla, and N. Venkatasubramanian. A cross-layer approach for power-
performance optimization in distributed mobile systems. In Proc. of Parallel and
Distributed Processing Symposium. IEEE, 2005.

[56] D. Ochi, Y. Kunita, K. Fujii, A. Kojima, S. Iwaki, and J. Hirose. HMD viewing
spherical video streaming system. In Proc. of the ACM international conference on
Multimedia, 2014.

[57] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside my app?
Fine grained energy accounting on smartphones with Eprof. In Proc. of EuroSys,
2012.

[58] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang. Fine-grained power
modeling for smartphones using system call tracing. In Proc. of EuroSys, pages
153–168. ACM, 2011.

[59] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan. Optimizing 360 video delivery
over cellular networks. In Proc. of the ACM Workshop on All Things Cellular:
Operations, Applications and Challenges, 2016.

[60] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck. Pro�ling resource
usage for mobile applications: a cross-layer approach. In Proc. of ACM MobiSys,
2011.

[61] Y. Qin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, B. Wang, and C. Yue. Quality-aware
strategies for optimizing ABR video streaming QoE and reducing data usage. In
Proc. of ACM MMSys, June 2019.

[62] P. Rondao Alface, J.-F. Macq, and N. Verzijp. Interactive omnidirectional video
delivery: A bandwidth-e�ective approach. Bell Labs Technical Journal, 16(4):135–
147, 2012.

[63] A. Shye, B. Scholbrock, and G. Memik. Into the Wild: Studying Real User Activity
Patterns to Guide Power Optimizations for Mobile Architectures. In Proc. of
Micro, 2009.

[64] D. Stenberg. Curl. https://curl.haxx.se/, 2019.
[65] B. Varghese, G. Jourjon, K. Thilakarathne, and A. Seneviratne. e-DASH:Modelling

An Energy-Aware DASH Player. In Proc. of WoWMoM, June 2017.
[66] S. Wei, V. Swaminathan, and M. Xiao. Power e�cient mobile video streaming

using HTTP/2 server push. In Proc. of International Workshop on Multimedia
Signal Processing (MMSP), 2015.

[67] Y. Xiao, R. S. Kalyanaraman, and A. Yla-Jaaski. Energy consumption of mobile
YouTube: Quantitative measurement and analysis. In Proc. of Next Generation
Mobile Applications, Services, and Technologies, 2008.

[68] Z. Yan and C. W. Chen. RnB: rate and brightness adaptation for rate-distortion-
energy tradeo� in HTTP adaptive streaming over mobile devices. In Proc. of
ACM MobiCom, 2016.

[69] J. Zhang, G. Fang, C. Peng, M. Guo, S. Wei, and V. Swaminathan. Pro�ling
energy consumption of DASH video streaming over 4G LTE networks. In Proc.
of International Workshop on Mobile Video, page 3. ACM, 2016.

[70] J. Zhang, Z.-J. Wang, S. Guo, D. Yang, G. Fang, C. Peng, and M. Guo. Power
consumption analysis of video streaming in 4G LTE networks. Wireless Networks,
May 2017.

[71] J. Zhang, Z.-J. Wang, Z. Quan, J. Yin, Y. Chen, and M. Guo. Optimizing power
consumption of mobile devices for video streaming over 4G LTE networks. Peer-
to-Peer Networking and Applications, 11(5):1101–1114, 2018.

[72] L. Zhang, B. Tiwana, R. P. Dick, Z. Qian, Z. M. Mao, Z. Wang, and L. Yang.
Accurate online power estimation and automatic battery behavior based power
model generation for smartphones. In IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2010.

[73] Y. Zhang, X. Wang, X. Liu, Y. Liu, L. Zhuang, and F. Zhao. Towards better CPU
power management on multicore smartphones. In Proc. of the Workshop on
Power-Aware Computing and Systems, page 11. ACM, 2013.

A COMPONENT POWER MODEL
CPU power model.We use the following methodology to obtain
the coe�cients of the model in Eq. (1). For a phone, we create a
dataset by setting the frequency of each core to one of the predom-
inant frequencies that is used during video streaming, and varying
its utilization from 20% to 100% by running a workload generation
tool, Lookbusy [22], in the background. For each setting, we collect
data for 10 minutes. The data collected from all the settings is then
used to train and validate the model. The 10-fold cross validation
error is 1.8% and 1.7% for the LG and Moto phones, respectively,
indicating that the model is robust and has no over�tting. After
that, we obtain the coe�cients of the model for each phone using
all the data. The coe�cients for the two phones are listed Table 3.
The average errors of the models (by comparing model estimation
and the measurement from the power monitor) are very low (both
1.3%) for the two phones.

For comparison, we also run 10-fold cross validation using the
model in [73]. The cross validation error is 6.8% and 8.1% for the
LG and Moto phones, signi�cantly larger than that for our models.
Since the CPU model is used to isolate power draw from other
components, it is important to use the more accurate model derived
using our approach.

Screen power model. For the LG phone, the screen power draw
when the screen brightness is set to 30%, 50% or 80% of the full
brightness is 293, 440, and 754 mW, respectively (each obtained as
the average of �ve measurements; the variance is small with the
the Coe�cient of Variation below 0.01). For the Moto phone, the
corresponding values are 446, 573, and 858 mW, respectively.

LTE power model.We conduct a set of experiments in a commer-
cial LTE network. In each experiment, we use cURL [64] to download

164



Energy Considerations for ABR Video Streaming to Smartphones: Measurements, Models and Insights MMSys’20, June 8-11, 2020, Istanbul, Turkey

Table 3: CPU power model.

CPU frequency (Mhz) %� (mW) %⌫ (mW)

LG

Small cores 653 167 38
730 179 56

Large cores 653 201 38
1037 291 46

M
ot
o Small cores 768 26 34

Large cores 960 49 34

data from a large �le stored at a remote well-provisioned server
using TCP (since TCP is the commonly used transport protocol in
ABR streaming). The downloading follows a periodic on-o� pattern,
on for 2 minutes and then o� for 2 minutes. Only the CPU and the
LTE interface card are active during each experiment (the screen
is o�). The LTE power draw is obtained by subtracting the CPU
power (derived using our model) from the total power measured
by the power monitor. To investigate the impact of signal strength
on the LTE power draw, we conduct experiments at three locations
with signi�cantly di�erent signal strength, the RSRP (Reference
Signals Received Power) values being in a wide range from -108
to -86 dBm. The measurements at each location contain four hours
of data collection. We observe that the LTE power draw increases
linearly with the downlink throughput, and is a function of RSRP,
with higher RSRP leading to lower power draw. The power draw
of the Idle state is approximately zero. Correlating the power and
the throughput, we con�rm that the Tail time is approximately 11
seconds, which is consistent with the results in [27, 42].

Our proposed model considers both the Active power and Tail
power; transition power draw among di�erent RRC states is not
included since the transition latency is very short [42]. The device
is considered as being in the Active state if there is data transfer
within the past second, and transits to the Idle state when there is
no tra�c for 11 seconds. Let %!)⇢,� and %!)⇢,) denote respectively
the Active power and Tail power, respectively. We set %!)⇢,) as
a constant, obtained directly from the measurements. Based on
the earlier observations, we can model %!)⇢,� as a function of
both downlink throughput and RSRP. Speci�cally, we can divide
the value of RSRP into multiple ranges, and model %!)⇢,� as a
linear function of the downlink throughput for each range. This
approach, however, has two drawbacks: (i) it is di�cult to decide the
ranges of the RSRP values, and (ii) the model will be very complex.
For simplicity, we propose the following model that does not take
RSRP into account, and only considers the downlink throughput:
%!)⇢,� = U3(3 + V , where (3 is downlink throughput, and U3 and
V are coe�cients that can be obtained using linear regression from
the training data. As we shall show below, this model provides
good accuracy even though it does not consider RSRP. We also
explored the model in [42], which considers both downlink and
uplink throughput and found that it is less accurate than our model.
This might be because the tra�c in the uplink is sparse (primarily
ACKs corresponding to the data packets); including the uplink
throughput leads to more noises in the model, and hence larger
errors.

Table 4: LTE power model.

U3 (mW/Mbps) V (mW) %!)⇢,) (mW)
LG V20 29.2 1050.2 110.4
Moto G5 23.1 429.4 53.2

Table 5: WiFi power model.

LG V20 Moto G5
U3 V U3 V

(mW/Mbps) (mW) (mW/Mbps) (mW)
<15 Mbps 35.3 770.9 23.1 261.8

(15, 30] Mbps 21.0 971.2 10.2 410.2
(30, 50] Mbps 15.1 1091.2 4.2 592.2
>50 Mbps 1.7 1682.0 0.7 759.1

The coe�cients of the proposed LTE power model are obtained
using the measurements collected at the three locations with vary-
ing signal strengths. The 10-fold cross validation error is 6.4% and
7.1% for the LG and Moto phones, respectively. We then obtain
the coe�cients of the models for the two phones, as shown in
Table 4. Comparing the estimations from the model and the ground-
truth measurements, the average error is 5.2% and 6.6% for the two
phones, respectively.
WiFi power model. We conduct a set of experiments over a WiFi
network with varying throughput and signal strength settings. The
phone is close or far away from the AP (leading to higher or lower
signal strength). The downlink throughput is not limited or lim-
ited to a value by running tc on the server (where the bandwidth
limit is varied from 2 to 130 Mbps). Each experiment involves peri-
odic on-o� data downloading, as that used for obtaining the LTE
power model. In each setting, we repeat the on-o� downloading
procedure for 10 minutes. Only the WiFi interface card and CPU
are active during the experiments. The WiFi power is obtained as
the total power measured by the power monitor minus the CPU
power (derived from our model). We observe a piecewise linear
relationship between the WiFi power and downlink throughput.
The signal strength does impact power draw: for the same downlink
throughput, higher signal strength tends to lead to lower power
draw (�gure omitted).

Since Tail time is very short (only hundreds of milliseconds), we
do not consider it in the power model. Speci�cally, we consider
each 100 ms interval. If there is tra�c, we say the WiFi interface is
in Active state; otherwise, we say it is in Idle state. As the LTE power
model, we do not take signal strength into account for simplicity.
Based on the piecewise linear observation earlier, we divide the
downlink throughput into ranges, and for each range, adopt a linear
throughput-based model as %,8�8 = U3(3 + V , where (3 is the
downlink throughput, and U3 and V can be obtained using linear
regression. The 10-fold cross validation error for the four cases is
0.2-1.8% for the LG phone and 0.3-1.6% for the Moto phone. The
coe�cients of the models (Table 5) are learned using the entire
dataset. The average error of the model is 1.2% for the LG phone
and 1.1% for the Moto phone.
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