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Abstract—Smart mobile handheld devices (MHDs) are being
adopted at a fast speed. Compared to wireless non-handheld
devices (NHDs), MHDs tend to be more mobile and can be used
more opportunistically. In this paper, we study two important
network usage characteristics of MHDs, namely session lengths
and IP address usage, in a university campus WiFi network.
Specifically, we analyze two five-week long DHCP traces collected
from the network, characterize session lengths of MHDs, and
develop two hyper-exponential models to capture the distribution
of session lengths. We further characterize the IP address usage of
MHDs, and develop two analytical models to predict the number
of concurrent IP addresses that are being used by MHDs at one
point of time. Goodness of fit tests indicate that our analytical
models of session lengths provide good fit, and evaluation results
demonstrate that the predictions from our models for IP address
usage are accurate. Our results provide important insights on
managing MHDs as they are being adopted rapidly in WiFi
networks.

I. INTRODUCTION

Smartphones are one of the most rapidly adopted consumer
technologies of all time [3]. A recent PEW study indicates
that smartphone owners have outnumbered basic phone users
in 2012 [2]. Market analysts predict that within five to seven
years, smartphones will be the only mobile phones used in
the United States [3], [4]. In campus scenarios where WiFi
networks are densely deployed and well provisioned, people
often prefer to connect their smartphones to WiFi networks
(instead of cellular networks) for Internet access, because of
their higher bandwidth, lower delay, lower cost, and lower
energy consumption [8], [14], [12], [7], [31], [23]. Compared
to laptops and desktop PCs, network usage characteristics of
smartphones may differ significantly because smartphones are
more mobile and are being used more opportunistically — the
small physical forms of smartphones allow them to be carried
by their owners most of the time, and used whenever possible.
As smartphones are being adopted rapidly, it is important to
understand their network usage characteristics, which can have
immense implications on network management.

In this paper, we study network usage characteristics of
smartphones in a university campus WiFi network. We con-
sider both smartphones and tablets, and broadly referred
them as smart mobile handheld devices (MHDs). Specifically,
we focus on two network usage characteristics of MHDs,
session length and IP address usage, that are important for
network management. Session length represents how long a

client is connected to the network. Characterizing session
length is important for studying mobility, planning wireless
infrastructure deployment, designing protocols for wireless
applications and services, and analyzing their performance. In
addition, session length characteristics can be used by access
points, proxies, and servers to prepare handoffs, share clients
or traffic load with each other, and ensure a better service
quality [28]. Understanding IP address usage is important for
network planning. The large number of MHDs has increased
the demand on IP addresses, imposing significant stress on
IP address management. Accurate prediction of IP address
usage of by the MHDs can help network administrators to
take proactive actions to satisfy future IP address demands.

While the literature on MHDs and non-handheld devices
(NHDs) in WiFi networks is extensive (see Section VI), there
is little study on session lengths and IP address usage of
MHDs in campus WiFi networks. Our study analyzes two
five-week long DHCP (Dynamic Host Configuration Protocol)
traces collected from the University of Connecticut (UConn)
campus WiFi network. We focus on the results on MHDs, and
when necessary, present the results on NHDs for comparison.
Our main contributions are as follows.

• We characterize session lengths of MHDs, and develop
two hyper-exponential models to capture the distribution
of session lengths. Goodness of fit tests indicate that
both models provide good fit. In addition, we find hyper-
exponential models provide better match to the empirical
data than BiPareto models [21], [28], [27] that have been
proposed for NHDs.

• We characterize the IP address usage of MHDs, and
develop two analytical models to predict the number of
concurrent IP addresses that are being used by MHDs at
one point of time. Evaluation using the data collected
from UConn campus WiFi network demonstrates that
predictions from our models are accurate. To the best
of our knowledge, we are the first to propose analytical
models for IP address space usage when the IP addresses
are managed by DHCP.

The rest of the paper is organized as follows. Section II
presents background on DHCP. Section III describes our
methodology for collecting and analyzing data. Sections IV
and V present the results on characterizing and modeling
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Fig. 1. An example DHCP message exchange.

session lengths and IP address usage of MHDs, respectively.
Section VI briefly reviews related work. Finally, Section VII
concludes the paper and presents future work.

II. BACKGROUND ON DHCP
DHCP is the de facto protocol for managing IP addresses in

campus and enterprise networks. When connecting to a WiFi
network, a wireless device (MHD or NHD) uses DHCP to
acquire IP addresses. We next briefly describe DHCP; more
details can be found in [13].

In general, DHCP allocates an IP address from a predefined
IP address pool to a host that joins the network, and reclaims
that IP address when the lease time expires. Fig. 1 illustrates
an example DHCP message exchange between a host and a
DHCP server. When a host connects to a network, it first
broadcasts a discover message, and each of the available
DHCP servers replies with an offer message that contains an
offered IP address1. Among all of the offered IP addresses, the
host chooses one and sends a unicast request message to the
DHCP server. After that, the server confirms the IP allocation
via an ACK message with an IP lease time. The host needs
to renew the lease by sending a request message again after
half of the IP lease time [13], [25]. If the host does not send a
request message before the expiration time, the server reclaims
that IP address back to the pool, and logs an expire message.
When leaving the network, the host can send a release message
to the server (optional). An important parameter for DHCP
configuration is the default IP lease time, which specifies by
default, how long a host can lease an IP address. In UConn,
the default IP lease time for the WiFi network is 30 minutes.

III. DATA COLLECTION AND METHODOLOGY

A. Data Collection

Our data are collected from the University of Connecticut
(UConn) campus network. The campus has two DHCP servers,
both running a modified version of ISC-DHCP, and logging all
DHCP related messages into a central database. Since UConn
uses separate IP address pools for wired and wireless devices,
we can extract the DHCP trace from the database that only
contains messages for wireless devices and use it for our study.

Using the above methodology, we obtain two sets of DHCP
records of wireless hosts, one from February 20 to March

1Most DHCP relay agents can forward DHCP configuration requests,
eliminating the requirement of setting up a DHCP server on every subnet [1].

25, 2012, and the other from August 20 to September 23,
2012. Each dataset contains five weeks of records. The first
dataset is 26GB, containing 209M records. The second dataset
is 34GB, containing 279M records. We henceforth refer these
two datasets as Spring and Fall dataset, respectively. Each
entry in the datasets corresponds to a DHCP message with an
MAC address, the time of the message, and other information
(depending on the type of the message). We use host MAC
address to uniquely identify a host.

In the Spring dataset, the week between March 12 and
March 18 is a spring break week; in the Fall dataset, the week
between August 20 and August 26 is the last week of summer.
For these two weeks, the size of the trace is significantly
smaller (around 90% smaller) than that of a regular week.
In the rest of the paper, we focus on the eight regular weeks,
excluding these two weeks that have significantly less records.

B. Methodology

The DHCP trace contains a mixture of records for MHDs
(e.g., iPhones, iPod touches, Android phones, Windows
phones, and Blackberry phones) and NHDs (e.g., Windows
laptops and MacBooks). Since MHDs and NHDs may have
different network usage characteristics (as we shall see), we
first describe a methodology that determines whether a host
is an MHD or NHD. We then describe a methodology to
obtain session length, i.e., how long a client is connected to the
network, and a methodology to obtain IP address allocation
duration, i.e., how long an IP address is being allocated to a
host. In the rest of the paper, we use user, host, and client
interchangeably.

1) Determining Host Type: Two approaches have been used
to differentiate MHDs and NHDs: one approach uses the fin-
gerprints (e.g., host name, vendor name, parameter in request,
and Organization Unique Identifier) in DHCP packets [30]; the
other approach uses keywords in the user-agent field in HTTP
headers [24], [18], [10]. We use a combination of the above
two approaches. This is because the first approach can be
applied directly to DHCP records (which we have collected),
while the second approach requires collecting additional data
(i.e., HTTP headers). On the other hand, our DHCP records
only contain host names, one feature of the set of features
used in [30]. We therefore use a simplified version of the first
approach (i.e., only using host names) to classify hosts, and
use the second approach to verify the accuracy of classification
results thus obtained since user-agent fields in HTTP headers
are more reliable than host names (the former are determined
by operating systems while the latter are determined by users).

Specifically, we first use keywords in host names of DHCP
packets to differentiate MHDs and NHDs. Keywords for
MHDs include iPhone, iTouch, iPad, Android, Blackberry and
so on; keywords for NHDs include PC, Windows, Macbook
and so on. Using this simple approach, we can determine host
types for over 90% of the hosts. We then collect HTTP traffic,
use the latter approach to differentiate MHDs and NHDs, and
compare the results with those obtained from the approach
based on host names. Specifically, we capture one week, from
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March 19 to March 24, 2012, of HTTP traffic (up to 500 bytes
for each packet so that HTTP header is captured), and use the
user-agent field in HTTP headers to identify the OS type of
each IP address [24], [18], [10]. We then correlate the HTTP
headers and the corresponding DHCP traces using the source
IP address and the time so as to obtain a mapping between an
IP address and an MAC address. In this way, we can obtain the
OS type for each MAC address, which can be used to easily
determine whether a host is an MHD or NHD. The results
using this approach are consistent with the results by using
host names (there is only 0.39% discrepancy).

In the rest of the paper, host classification is through the
approach that is based on host names2. From the two DHCP
traces (Spring and Fall dataset), we identify about 48,000
unique NHDs and 18,000 unique MHDs.

2) Estimating Session Length: Consider a host. Let ts
denote the time when the host starts to own an IP address,
and te denote the time that the host does not use this address
any more. Then the session length is te − ts. From Fig. 1,
we see ts is the time of the first ACK message after the
discover message, which can be easily determined from the
DHCP trace. Determining te is much more challenging. This
is because release and expire messages are optional, and
indeed we find that they are not frequently used in practice.
In addition, we find that a host may join the network again
before the current IP lease expires. Summarizing the scenarios
we observe from the DHCP trace, we propose the following
rules to determine te.
R1: If the IP address is assigned to another host at time t,

which is earlier than the lease expiration time, we set
te = t.

R2: If the host sends a discover message at time t, which is
earlier than the lease expiration time, we set te = t.

R3: If an expire or release message is observed for the host,
then te is the time when the message is observed.

R4: If no expire or release message is observed before the
expiration time, then we use the lease expiration time as
te

3.
R1 corresponds to scenarios where the DHCP server assigns
the IP address to another host even before the current lease
expires, which should happen very rarely in a normally run-
ning network (See Table I). R2 corresponds to scenarios where
the host initiates another IP lease period before the current
lease expires, and hence the current IP lease period should be
terminated. R3 corresponds to scenarios where te is indicated
by an explicit message, while R4 corresponds to scenarios
where te is determined based on IP lease expiration time in
the absence of any explicit message. The above rules are more

2Note that although the simple approach works for our campus, it may not
work well for other campuses given that host names are not reliable. In fact,
even user-agent fields in HTTP headers can be spoofed. Developing statistical
techniques that rely on intrinsic features, and hence cannot be easily spoofed,
to reliably differentiate MHDs and NHDs is an interesting future direction
that we will pursue further.

3Since we focus on when the IP will be reclaimed, we use the expiration
time instead of the last ACK message time plus half of the default renew
period [25].

comprehensive than those in [25] (which only consider the last
two cases).

Table I presents the percentage of scenarios following each
of the four rules described above. The results are for the Fall
dataset (The results for the Spring dataset are similar, and
are omitted). First, we observe for MHDs, the percentage of
scenarios following R2 is significantly larger than that for
NHDs, indicating that MHDs connect to the network much
more frequently. Second, R3 and R4 in total only account
for 34.4% and 77.6% of the scenarios for MHDs and NHDs,
respectively. Hence it is important to consider rules R1 and
R2 in UConn network (only applying R3 and R4 as in [25]
is insufficient for UConn network). Last, the large percentage
of the scenarios following R4 for NHDs indicates that many
clients do not send expire or release messages to the DHCP
server, an observation consistent with that in other studies [25].
On the other hand, the percentage of the scenarios following
R4 for MHDs is much lower (only 1.3% versus 14.2% as in
NHDs).

TABLE I
ESTIMATING SESSION LENGTH: THE PERCENTAGE OF SCENARIOS

FOLLOWING EACH OF THE FOUR RULES (FALL DATASET).

R1 R2 R3 R4
MHD 0.02% 66.1% 33.1% 1.3%
NHD 0.03% 22.4% 63.4% 14.2%

The above method for determining session lengths may
provide an overestimate in certain scenarios (e.g., when a
host has departed a network while the IP address has not
been reclaimed due to lack of release message). Combining
networking traffic (which shows when a host does not have
any network traffic for an extended period of time) with
DHCP records can provide more accurate estimates of session
lengths [30], particularly for short session lengths. On the other
hand, we believe the overestimate from our approach does not
affect our conclusion that session lengths for MHDs tend to
be much shorter than those of NHDs, and is better matched
using hyper-exponential models instead of BiPareto models
(see Section IV). Obtaining more accurate estimates of session
lengths is left as future work.

3) Estimating IP Address Allocation Duration: Consider an
IP address. Let t denote the time when the IP is assigned to
one host, and t′ denote the time that the DHCP server reclaims
the address from that host. Then t′−t represents the allocation
duration of the IP address. We determine t as the time of the
first ACK message after the discover message, and use rules
R1, R3, and R4 to determine t′ (R2 does not apply since a
new discover message from a host does not mean that the
IP address allocated to the host has been reclaimed, see the
example below).

Note that for a host that obtains an IP address, its session
length and IP address allocation duration can be different. In
particular, IP address allocation duration may be longer than
session length since a DHCP server does not reclaim the IP
from a client until the IP lease time expires or the client sends
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out a release message explicitly. For instance, assume that a
client obtains an IP address, a, at time t1, and the expiration
time of the IP address is t2. Suppose the client moves to
another location and obtains a different IP at time t3 (t3 < t2),
and subsequently leaves the network at time t4. Then for the
client, the session length of using IP address a is t3−t1, while
the allocation duration of IP address a is t2 − t1. From the
DHCP server’s perspective, that client owns two IP addresses
simultaneously from t3 to t2.

IV. CHARACTERIZING AND MODELING SESSION LENGTHS

We first present session length distribution of MHDs ob-
tained from our dataset, and then present two analytical models
for session lengths, followed by validation of the models.

A. Session Length Distribution

For both MHDs and NHDs, we observe peak arrival rates
(i.e., the rate hosts connect to the WiFi network) between 9am
and 3pm on each day (see Section V-A). We next characterize
the lengths of the sessions during that time period. Specifically,
for users arriving between each of the two hour intervals
between 9am and 3pm (i.e., [9-11]am, [11am-1pm], [1-3]pm),
we obtain their corresponding session length distribution. The
results (not plotted) show that the distributions are similar, in-
dicating that session lengths are not time sensitive. Therefore,
for each day, we only obtain the session length distribution
for all hosts arriving between 9am and 3pm. We also obtain
the overall session length distribution, i.e., the distribution
obtained from all the sessions in the two datasets.

Fig. 2(a) plots the CCDF (Complementary Cumulative
Distribution Function) of session lengths of MHDs on four
Thursdays, two from the Spring dataset and two from the
Fall dataset, and the overall session length distribution. We
observe that all the session length distributions are similar:
the distribution of the session lengths collected in a day is
similar for the Spring and Fall semester, and is similar to the
overall distribution.

For comparison, Fig. 2(b) plots the session length distri-
bution of NHDs. Observe that the tail of the distribution for
NHDs can be much longer than that of MHDs. In addition,
as expected, session lengths of MHDs tend to be shorter than
those of NHDs. For instance, over all the data, the median of
session length for MHDs is 32.8 minutes, while the median
session length for NHDs is 64.8 minutes. In addition, 8.3%
of the sessions for NHDs while only 0.7% of the sessions for
MHDs stay longer than 500 minutes.

Recall that 30 minutes is the default IP lease time for UConn
network. Therefore, users that stay in the network shorter than
15 minutes will own their IP addresses for 30 minutes, leading
to a large percentage of session length as 30 minutes (9.4%
and 10.9% for MHDs and NHDs, respectively). This causes a
jump in the CCDF curve (not clearly visible in Fig. 2).

B. Analytical Models

Visually inspecting the CCDF of session lengths of MHDs,
we observe that it can be fit by two or three straight lines,
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Fig. 2. Session length distribution for four Thursdays and for all the data
(including both the Spring and Fall datasets).

corresponding to different portions of the curve. Therefore,
we use two-stage or three-stage hyper-exponential distribution
to model session length. We also tried BiPareto distributions
as proposed [21], [28], [27] and found the goodness of fit
is worse than those from the two hyper-exponential models,
which might be due to the much shorter tail of the session
length distribution of MHDs compared to that of NHDs. In
the following, we only present the hyper-exponential models.

Let f(x) denote the probability density function for session
length of MHDs. Incorporating the significant fraction of
session lengths that are of the default IP lease time, we
represent f(x) as

f(x) = (1− b)g(x) + bδ(x− xυ) (1)

where xυ is the default IP lease time, b ∈ [0, 1] represents the
fraction of session length of xυ, δ(·) is the indicator function,
and g(x) is a two-stage or three-stage hyper-exponential
distribution.

1) Two-Stage Hyper-exponential Model: In this model,
g(x) is represented as

g(x) = µ1pe
−µ1x + µ2(1− p)e−µ2x (2)

where µ1 > 0, µ2 > 0, and p ∈ [0, 1] are parameters in the
model. We next describe how to obtain these parameters.

Let random variable X denote session length. Then the first
two moments of X are

E(X) = (1− b)α+ bxυ, (3)

E(X2) = (1− b)β + bx2
υ, (4)

where

α =
p

µ1
+

1− p

µ2
, (5)

β =
2p

µ2
1

+
2(1− p)

µ2
2

. (6)

We can obtain E(X), E(X2) and b directly from the trace,
which can then be used to solve for α and β using equations
(3) and (4). After that, we have two equations (5) and
(6) with three unknowns, µ1, µ2, and p, which cannot be
solved to obtain µ1, µ2, and p directly. On the other hand,
many techniques can be used to create a hyper-exponential
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distribution that matches the given first two moments. We use
the following procedure to obtain µ1, µ2, and p [5].

• Calculate CV 2 = β−α2

α2 .

• Calculate p = 1
2 (1−

√
CV 2−1
CV 2+1 ). This requires CV ≥ 1,

which is true in our scenario.
• Set µ1 = 2p

α , and µ2 = 2(1−p)
α .

2) Three-Stage Hyper-exponential Model: In this model,
g(x) is represented as

g(x) = µ1p1e
−µ1x + µ2p2e

−µ2x + µ3p3e
−µ3x (7)

where µ1 > 0, µ2 > 0, µ3 > 0, and p1, p2, p3 ∈ [0, 1] are the
parameters of the model, and p1 + p2 + p3 = 1. To obtain the
parameters in (7), we use the iterative Feldmann and Whitt
procedure [17] as follows. Given a desired number of phases,
it iteratively computes the parameters of each so as to match
certain points on the CDF. The procedure starts from the tail
and works its way towards the origin, taking into account the
phases that have already been defined, and matching what is
left over.

Let a set 0 < c3 < c2 < c1 of points divide the range
of interest into exponentially-related subranges. Specifically,
c1 represents the highest values that are of interest, and c3
represents the smallest values that are of interest. The ratio
ci/ci+1 is set to a constant c. We select c =

√
c1/c3. Let

q =
√
c, where qc1 must not be larger than the highest data

point. Then, F̄ (x) = Pr(X > x) can be calculated as follows.

• Initially we match the first phase (i = 1) to the tail of
the given data. In other words, we have F̄1(x) = F̄ (x).

• In general, in step i we match the ith phase to the tail
of the remaining F̄i(x). An exponential phase has two
parameters, pi and µi. To find the values of these two
parameters, we match F̄ (x)i at two points: ci and qci.
For each phase i, i = 1, 2,

pi = F̄i(ci)e
µici

µi =
1

(1− q)ci
ln

F̄i(qci)

F̄i(ci)

(8)

where

F̄i(ci+1) = F̄ (ci+1)−
i∑

j=1

pje
−µjci+1

F̄i(qci+1) = F̄ (qci+1)−
i∑

j=1

pje
−µjqci+1

• For the last phase (i = 3), the procedure is different. This
is to satisfy that p1 + p2 + p3 = 1.

p3 = 1− p1 − p2

µ3 =
−1

c3
ln

F̄3(c3)

p3
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Fig. 3. Two-stage and three-stage hyper-exponential models for session
lengths of MHDs. For ease of illustration, we also plot the straight lines
corresponding to the models.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 9  10  11  12  13  14  15

N
um

be
r 

of
 A

rr
iv

al
s

Time (hr)

02/21(Tue)
02/23(Thu)
09/04(Tue)
09/06(Thu)

(a) MHDs

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 9  10  11  12  13  14  15

N
um

be
r 

of
 A

rr
iv

al
s

Time (hr)

02/21(Tue)
02/23(Thu)
09/04(Tue)
09/06(Thu)

(b) NHDs
Fig. 4. The number of arrivals on February 21 (Tuesday), February 23
(Thursday), September 4 (Tuesday), and September 6 (Thursday).

C. Model Validation

We next validate the models for session length distribution.
Figures 3(a) and (b) plot respectively the results of the two-
stage and three-stage hyper-exponential models along with the
empirical distribution obtained from our data (0.34M samples).
In general, we observe a good match from both two-stage and
three-stage Hyper-exponential models. Furthermore, we use
Kolmogorov-Smirnov test to evaluate the goodness of fit (we
do not use Pearson’s chi-squared test since it is very sensitive
to the binning [21]). The goodness of fit for the two-stage and
three-stage models is 0.08 and 0.06, respectively, indicating
that both models provide a good fit, and the three-stage model
slightly outperforms the two-stage model.

V. CHARACTERIZING AND MODELING IP ADDRESS
USAGE

In this section, we first present measurement results on two
factors that affect IP address usage of MHDs, namely user
arrival patterns and IP address allocation duration. We then
characterize and model IP address usage of MHDs, validate the
models, and use a case study to demonstrate that the models
are helpful for network administrators to predict IP address
usage in the future.

A. User Arrival Patterns

To measure user arrivals, we divide time into five-minute
intervals, and obtain the number of user arrivals based on the
number of discover messages in each interval (since the first
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Fig. 5. For the IP addresses allocated to MHDs, the empirical distribution
and the results using the two-stage and three-stage hyper-exponential models
for IP address allocation duration. For ease of illustration, we also plot the
straight lines corresponding to the models.

DHCP message from a host that connects to a network is a
discover message). As expected, we observe that user arrivals
follow a weekday pattern, and are affected by class schedules.
As an example, Figures 4(a) and (b) plot the number of user
arrivals from 9am to 3pm on two Tuesdays (one from the
Spring dataset and the other from the Fall dataset) and two
Thursdays (again one from each dataset) for MHDs and NHDs,
respectively. In the Spring dataset, the number of MHD arrivals
in a time window is much smaller than that of NHDs in the
same time window. The difference becomes much smaller in
the Fall dataset, confirming a much faster adoption speed of
MHDs compared to that of NHDs.

B. IP Address Allocation Duration

We observe that distributions of IP address allocation du-
ration are similar over different days. In addition, while IP
address allocation durations tend to be longer than session
lengths (see Section III), we find that the distribution of IP
address allocation duration has similar shape as that of session
length. Therefore, for IP addresses allocated to MHDs, we
also use two-stage or three-stage hyper-exponential models
for IP address allocation duration, and use the methodology
in Section IV to obtain the various parameters in the models.
Figures 5(a) and (b) plot the empirical distribution along with
the results using two-stage and three-stage hyper-exponential
models, respectively. We again observe both models provide
good match, and three-stage hyper-exponential model slightly
outperforms the two-stage model.

C. IP Address Usage

Fig. 6 shows the number of concurrent IP addresses that are
being used by MHDs and NHDs at one point of time over the
five weekdays of a week. The results are for two weeks, one
from the Spring dataset (3/19 to 3/23), and the other from the
Fall dataset (9/17 to 9/21). During weekends (not plotted in the
figure), the number of concurrent IP addresses that are being
used is around 70% less than that on a regular weekday. We
find that the number of concurrent IP addresses on the same
weekday follows a similar trend for MHDs and NHDs.

As expected, IP address usage follows a diurnal pattern on
each day. Furthermore, we observe the largest number of IP
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Fig. 6. The number of concurrent IP addresses being used over a week (we
only plot the results of the five weekdays).

addresses being used between 9am and 3pm. In addition, IP
address usage on Mondays is similar to that on Wednesdays,
and IP address usage on Tuesdays is similar to that on
Thursdays. This is because user behaviors are significantly
affected by class schedules: Monday and Wednesday have
similar class schedules, while Tuesday and Thursday have
similar class schedules.

Last, we observe that IP address usage of MHDs increases
significantly from March to September; while the increase for
NHDs is less significant. This motivates the need to predict IP
address usage of MHDs (so that network administrators can
take proactive actions to satisfy the fast growth of IP address
demand). We next present analytical models for this purpose.

D. Models for IP Address Usage

IP address usage at one point of time is determined by
two factors: user arrival process and IP address allocation
duration. The models for the latter factor have been described
in Section V-B. We next present a model for the former factor,
followed by two models for IP address usage.

Let λ(x) denote the user arrival rate at time x. Based on
measurement results (Fig. 4), we assume that user arrivals
follow a Poisson distribution with a constant arrival rate over
a short period of time, [ti, ti+1), i = 0, . . . , n, and t0 = 0.
Then, λ(x) can be defined as

λ(x) =


λ1 t0 ≤ x < t1
λ2 t1 ≤ x < t2
· · ·
λn tn−1 ≤ x < tn

(9)

For ease of exposition, define Λ(x) =
∫ x

0
λ(t)dt. That is, Λ(x)

represents the total number of IP addresses that are allocated
before time x. Then for x ∈ [tk−1, tk), we have

Λ(x) =
k−1∑
i=1

λi · (ti − ti−1) + λk · (x− tk−1). (10)

We now present models for IP address usage (or the
number of concurrent hosts). Let N(x) denote the number of
concurrent hosts at time x. With a slight abuse of notation,
in the following, we use f(x) to denote the probability
density function for IP address allocation duration, which is
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represented as (1), where g(x) represents either a two-stage
or three-stage hyper-exponential distribution function, and the
various parameters are obtained as described in Section V-B.
Since the change in the number of concurrent hosts is the
difference of arrivals and departures at time x, we have

dN(x)

dx
= λ(x)−

∫ x

0

λ(x− t)f(t)dt, (11)

where
∫ x

0
λ(x− t)f(t)dt represents the number of hosts that

are leaving at time x. Integrating on both sides of (11) yields

N(x) =

∫ x

0

λ(t)dt−
∫ x

0

∫ y

0

λ(y − t)f(t)dtdy

=

∫ x

0

λ(t)dt−
∫ x

0

f(t)dt

∫ x

t

λ(y − t)dy

= Λ(x)−
∫ x

0

f(t)dtΛ(x− t)

= Λ(x)−
∫ x

0

f(x− t)Λ(t)dt (12)

Substituting (1) into (12), we have

N(x) = Λ(x)− (1− b)

∫ x

0

g(x− t)Λ(t)dt

− b

∫ x

0

δ(x− t− xv)Λ(t)dt (13)

In (13), the third term on the right hand side can be calculated
as

b

∫ x

0

δ(x− t− xv)Λ(t)dt =

{
0, x < xv

bΛ(x− xv), x ≥ xv

(14)

Substituting (10) into the integral part of the second term on
the right hand side of (13) yields

∫ x

0

g(x− t)Λ(t)dt =
k−1∑
i=1

∫ ti

ti−1

g(x− t)Λ(t)dt

+

∫ x

tk−1

g(x− t)Λ(t)dt (15)

For two-stage hyper-exponential model, (15) can be obtained
by calculating the integral between [ti−1, ti) as∫ tj

tj−1

g(x− t)Λ(t)dt

=

∫ tj

tj−1

µ1pe
−µ1(x−t)(Λ(tj−1) + λj(t− tj−1))dt

+

∫ tj

tj−1

µ2(1− p)e−µ2(x−t)(Λ(tj−1) + λj(t− tj−1))dt

(16)
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Fig. 7. Validation of the model for IP address usage of MHDs: (a) IP address
usage predicted by two-stage and three-stage hyper-exponential models along
with the empirical data; (b) the distribution of the prediction errors.

Similarly, for three-stage hyper-exponential model, we have∫ tj

tj−1

g(x− t)Λ(t)dt

=

∫ tj

tj−1

µ1p1e
−µ1(x−t)(Λ(tj−1) + λj(t− tj−1))dt

+

∫ tj

tj−1

µ2p2e
−µ2(x−t)(Λ(tj−1) + λj(t− tj−1))dt

+

∫ tj

tj−1

µ2p3e
−µ3(x−t)(Λ(tj−1) + λj(t− tj−1))dt (17)

Combining (13), (14), (15), and (16) or (17), we obtain
N(x), the number of concurrent hosts in the network. In this
model, we treat N(0) = 0. This is because if time 0 is chosen
far away from the peak time, then based on session length
distribution, hosts that stay in the network at time 0 would
have already left the network by the peak time.

E. Model Validation

We now validate the models for IP address usage of MHDs.
The models need the IP allocation length distribution and
host arrival rate as inputs. As described earlier, IP allocation
length distributions for different days are similar, while host
arrival rate varies from day to day (See Fig. 4). Hence, to
validate the models, we use each day’s host arrival rate and the
general IP allocation length distribution (i.e., the distribution
obtained from all the data) as inputs to the models. As an
example, Fig. 7(a) plots the results for MHDs on September
6, 2012. The empirical data, and the predicted results from
the two analytical models (by using two-stage and three-stage
hyper-exponential models for IP address allocation duration,
respectively). We observe a good fit from both models visually.
To quantify how well our models predict the number of
concurrent IP addresses that are being used, we calculate the
prediction error (i.e., the relative difference between a model
and the data) every 5 minutes in each day for all the days in the
two datasets. Fig. 7(b) plots the CDF (Cumulative Distribution
Function) of the prediction errors (we use the absolute values
so all the errors are positive). For all the days we examine, the
prediction errors are below 15% and 11% for 90% of the days
from the two-stage and three-stage hyper-exponential models,
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Fig. 8. Results of the case study: using the analytical models for IP address
usage to predict future IP address demand for MHDs.

respectively. This indicates that both models provide accurate
prediction, and the prediction from the three-stage model is
more accurate.

F. Case Study

Network administrators can use the above analytical models
to predict the IP address demand of MHDs when certain
change happens in the network. We next present a case study
that predicts the IP address demand of MHDs assuming the
network usage behavior changes in the future.

To characterize the current network usage behavior, we
capture and analyze TCP flows from UConn campus WiFi net-
work over three days (2.9TB of data, see more details in [10]).
As an example result, Fig. 8(a) plots the distribution of video
lengths for MHDs. For comparison, in the figure, we also plot
the distribution of video lengths for NHDs, which tends to be
longer (the average length is 53.8s versus 6.6s as in MHDs).
We now hypothesize a scenario that assumes that users watch
more videos on their MHDs in the future, motivated by the
growing popularity of online videos. Specifically, we assume
a user watches X more videos in each IP address allocation
duration, and X follows a uniform distribution with range of
[0, 300]. Fig. 8(b) plots the predicted IP address demand by
MHDs for this scenario, where the lengths of the videos follow
the distribution depicted in Fig. 8(a). We can see that the peak
IP address demand will be increased as large as 25% in this
scenario.

In the above scenario, we assume the arrival rate of MHDs
does not change significantly (specifically, we use the arrival
rate of September 6, 2012). Using a similar procedure, we can
predict IP address demand of MHDs in a scenario where both
the arrival rate and the session lengths are increased, and in
many other scenarios.

VI. RELATED WORK

The studies on WiFi networks are extensive, ranging from
traffic characterization [33], [11], [19], [32], [24], user activ-
ities [34], [16], network performance [6], to mobility model-
ing [9], [29], [26], [20]. However, most of these studies are for
NHDs since MHDs have only been widely adopted recently.
In [21], [28], [27], BiPareto distribution is proposed to model
the session lengths of wireless devices. Again, the wireless

devices are predominantly NHDs. We propose two hyper-
exponential models to capture session length distributions of
MHDs and find that they provide better fit than BiPareto
distribution, probably because the session length distribution
of MHDs has a much shorter tail.

Recently, a flurry of studies are on smartphones (e.g., [15],
[18], [8], [31], [37], [10], [22], [35]). However, none of them is
on characterizing and modeling session lengths and IP address
usage of MHDs in WiFi networks as in our study. Our study
also differs in scope from several studies on DHCP, which
focuses on setting DHCP lease time [25], [30], and debugging
DHCP performance [36].

VII. CONCLUSION AND FUTURE WORK

In this paper, we have analyzed two five-week long DHCP
traces collected from UConn campus WiFi network. We char-
acterized session lengths of MHDs, developed two hyper-
exponential models to capture the distributions of session
lengths. We further characterized the IP address usage of
MHDs, and developed two analytical models to predict IP
address usage of MHDs at one point of time, and used a case
study to demonstrate the usefulness of our models. Goodness
of fit tests indicate that our analytical models of session
lengths provide good fit, and evaluation results demonstrate the
predictions from our models for IP address usage are accurate.

Our study has been conducted in a specific WiFi network,
UConn campus WiFi network. A natural question is whether
our results are applicable to other WiFi networks. One of our
results demonstrates that, conforming to the nature of MHDs
(small pocket devices), MHDs are indeed more mobile and
used more opportunistically compared to NHDs, reflected in
session lengths and IP address usage. We conjecture that this
result might hold in other WiFi networks. As future work, we
plan to conduct further studies using data collected from other
WiFi networks.
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