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Abstract

Rogue (unauthorized) wireless access points pose serious security threats to local networks. In this paper, we
propose two online algorithms to detect rogue access points using sequential hypothesis tests applied to packet-
header data collected passively at a monitoring point. One algorithm requires training sets, while the other does
not. Both algorithms extend our earlier TCP ACK-pair technique to differentiate wired and wireless LAN TCP
traffic, and exploit the fundamental properties of the 802.11 CSMA/CA MAC protocol and the half duplex nature
of wireless channels. Our algorithms make prompt decisions as TCP ACK-pairs are observed, and only incur
minimum computation and storage overhead. We have built a system for online rogue-access-point detection using
these algorithms and deployed it at a university gateway router. Extensive experiments in various scenarios have
demonstrated the excellent performance of our approach: the algorithm that requires training provides rapid detection
and is extremely accurate (the detection is mostly within 10 seconds, with very low false positive and false negative

ratios); the algorithm that does not require training detects60%-76% of the wireless hosts without any false positives;
both algorithms are light-weight (with computation and storage overhead well within the capability of commodity
equipment).

I. I NTRODUCTION

The deployment of IEEE 802.11 wireless networks (WLANs) has been growing at a remarkable rate during the

past several years. The presence of a wireless infrastructure within a network, however, raises various network

management and security issues. One of the most challenging issues is rogue access points (APs), i.e., wireless

access points that are installed without explicit authorization from a local network management [9], [1], [3], [4].

Although usually installed by innocent users for convenience or higher productivity, rogue APs pose serious security

threats to a secured network. They potentially open up the network to unauthorized parties, who may utilize the

resources of the network, steal sensitive information or even launch attacks to the network. Furthermore, rogue APs

may interfere with nearby well-planned APs and lead to performance problems inside the network.

Due to the above security and performance threats, detecting rouge APs is one of the most important tasks

for a network manager. Broadly speaking, two approaches can be used to detect rogue APs. The first approach

detects rogue APs by monitoring the RF airwaves, possibly exploiting additional information gathered at routers

and switches [2], [8], [9], [1], [3], [4], [10], [11], [27]. The second approach monitors incoming traffic at a traffic

aggregation point (e.g., a gateway router) and determines whether a host uses wired or wireless connection1. If

1A local network typically supports both Ethernet and WLAN technologies, and therefore the aggregation point observes a mixture of

wired and wireless traffic. The scenario of purely wireless network is discussed in Section VIII-B.
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a host is determined as using wireless connection while it is not authorized to do so (e.g., it is not contained in

the authorization list), the AP attached by this host is detected as a rogue AP. The first approach can suffer from

various drawbacks including scalability, deployment cost, effectiveness and accuracy (see Section I-A). The second

approach does not have the above drawbacks: (1) since it is based on passive measurements at asinglemonitoring

point, it is scalable, requiring little deployment cost and effort, and is easy to manage and maintain; (2) since the

detection is by detecting wireless connections, it is equally applicable to detect layer-2 or layer-3 rogue devices

while the first approach may need different schemes for rogues at different layers [10], [11]. The challenge in

applying the second approach is: how to effectively detect wireless traffic frompassivelycollected data in anonline

manner?

In this paper, we take the second approach and develop twoonlinealgorithms to meet the above challenges. Our

main contributions are as follows:

• We extend the analysis in [25] and demonstrate that using TCP ACK-pairs can effectively differentiate Ethernet

and wireless connections (including both 802.11b and 802.11g).

• We develop two online algorithms to detect rogue APs. Both algorithms use sequential hypothesis tests and

make prompt decisions as TCP ACK-pairs are observed. One algorithm requires training data, while the other

does not. To the best of our knowledge, ours are the first set ofpassive onlinetechniques that detect rogue

APs by differentiating connection types.

• We have built a system for online rogue-AP detection using the above algorithms and deployed it at the gateway

router of the University of Massachusetts, Amherst (UMass). Extensive experiments in various scenarios have

demonstrated the excellent performance of our algorithms: (1) The algorithm that requires training provides

rapid detections and is extremely accurate (the detection is mostly within 10 seconds, with very low false

positive and false negative ratios); (2) The algorithm that does not require training detects60%-76% of the

wireless hosts without any false positives; (3) Both algorithms are light-weight, with computation and storage

overhead well within the capability of commodity equipment. We further conduct experiments to demonstrate

that our scheme can detect connection-type switching and wireless networks behind a NAT box, and it is

effective even when the hosts have high CPU, disk or network utilizations.

The rest of the paper is organized as follows. Section I-A describes related work. Section II presents the problem

setting and a high-level description of our approach. Section III analyzes TCP ACK-pairs in Ethernet and WLAN.

Sections IV and V present our online algorithms and online rogue-AP detection system, respectively. Sections VI and

VII present experimental evaluation methodology and results, respectively. Section VIII discusses several practical

issues related to rogue AP detection. Finally, Section IX concludes the paper.

A. Related work

As mentioned earlier, monitoring RF waves and IP traffic are two broad classes of approaches to detecting rogue

APs. Most existing commercial products take the first approach — they either manually scan the RF waves using

sniffers (e.g., AirMagnet [2], NetStumbler [8]) or automate the process using sensors (e.g.,[1], [9], [4]. Automatic

scanning using sensors is less time consuming than manual scanning and provides a continuous vigilance to rogue

APs. However, it may require a large number of sensors for good coverage, which leads to a high deployment cost.

Furthermore, since it depends on signatures of APs (e.g., MAC address, SSID, etc.), it becomes ineffective when

a rogue AP spoofs signatures. Three recent research efforts [10], [11], [27] also use RF sensing to detect rogue

APs. In [10], wireless clients are instrumented to collect information about nearby APs and send the information

to a centralized server for rogue AP detection. This approach is not resilient to spoofing. Secondly, it assumes that

rogue APs use standard beacon messages in IEEE 802.11 and respond to probes from the clients, which may not
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Fig. 1. Problem setting: a monitoring point at an aggregation point (e.g., the gateway router) captures incoming traffic and outgoing traffic

to detect rogue APs.

hold in practice. Last, all unknown APs (including those in the vicinity networks) are flagged as rogue APs, which

may lead to a large number of false positives. The main idea of [11] is to enable dense RF monitoring through

wireless devices attached to desktop machines. This study improves upon [10] by providing more accurate and

comprehensive rogue AP detection. However, it relies on proper operation of a large number of wireless devices,

which can be difficult to manage. In contrast, our approach only requires a single monitoring point, and is easy

to manage and maintain. The focus of [27] is on detecting protected layer-3 rogue APs. Our approach is equally

applicable to detect layer-2 or layer-3 rogue devices.

The studies of [13], [19] detect rogue APs by monitoring IP traffic. The authors of [13] demonstrated from

experiments in a local testbed that wired and wireless connections can be separated by visually inspecting the

timing in the packet traces of traffic generated by the clients. The settings of their experiments are very restrictive.

Furthermore, the visual inspection method cannot be carried out automatically. Our schemes are based on arigorous

analysisof Ethernet and wireless traffic characteristics inrealistic settings. Furthermore, we provide two sequential

hypothesis tests toautomaticallydetect rogue APsin real time. The technique in [19] requires segmenting large

packets into smaller ones, and hence is not a passive approach.

There are several prior studies on determining connection types. However, none of them provides a passive online

technique, required for our scenario. Our previous work [25] proposes an iterative Bayesian inference technique to

identify wireless traffic based on passive measurements. This iterative approach is not suitable for online deployment.

The work of [12] uses entropies to detect wireless connection in anoffline manner. In other studies, differentiating

connection types is based on active measurements [26] or certain assumptions about wireless links (such as very

low bandwidth and high loss rates) [15], which do not apply to our scenario.

Last, sequential hypothesis testing [24] provides an opportunity to make decisions as data come in, and thus is

a suitable technique for our purpose. It is also used for prompt portscan detection in [18].

II. PROBLEM SETTING AND APPROACH

Consider a local network (e.g., a university campus or an enterprise network), as illustrated in Fig. 1. A monitoring

point is placed at an aggregation point (e.g., the gateway router) of this local network, capturing traffic coming in

and going out of the network. End hosts within this network use either wired Ethernet or 802.11 WLAN to access

the Internet. An end host not authorized to use WLAN may install a rogue AP to connect to the network. Our goal

is to detect those rogue APs inreal timebased onpassivemeasurements at the monitoring point. For this purpose,
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Fig. 2. Settings for the analysis: (a) Ethernet, (b) WLAN (802.11b or 802.11g). The dashed rectangle between the sender and the router

represents the monitoring point. The pair of ACKs,A1 andA3, forms an ACK-pair.

we must answer the following two questions: (1) what statistics can be used to effectively detect wireless hosts?

(2) how to detect wireless hosts in an online manner? We next provide a high-level description on how we address

these two questions; a detailed description is deferred to Sections III and IV.

We have shown thatinter-ACK timeis a statistic that can be used to effectively detect wireless hosts in [25].

An inter-ACK time is the inter-arrival time of aTCP ACK-pair, i.e., a pair of ACKs corresponding to two data

packets that arrive at the monitoring point close in time. In [25], we analyze the inter-ACK time in Ethernet and

WLAN and demonstrate that it can be used to differentiate these two connection types. However, the analysis does

not include 802.11g, since it was not widely deployed at that time. In Section III, we extend the analysis in [25]

to 802.11g, and derive a new set of results for Ethernet and 802.11b. Our results demonstrate that inter-ACK times

can effectively differentiate Ethernet and WLAN (including both 802.11b and 802.11g hosts).

For online detection of wireless hosts, we develop two light-weight algorithms (see Section IV), both using

sequential hypothesis tests and taking the inter-ACK times as input. These two algorithms roughly work as follows.

They calculate the likelihoods that a host uses WLAN and Ethernet as TCP ACK-pairs are observed. When the

ratio of the WLAN likelihood against the Ethernet likelihood exceeds a certain threshold, they make a decision

that the host uses WLAN.

III. A NALYSIS OF TCP ACK-PAIRS

In this section, we extend the analysis in [25] and demonstrate analytically that inter-ACK time can be used to

effectively differentiate Ethernet and WLAN (including both 802.11b and 802.11g). In the following, we start from

the assumptions and settings, and then present the analytical results. At the end, we briefly summarize the insights

obtained from the analysis.

A. Assumptions and settings

The settings for our analysis are shown in Fig. 2, where an outside sender sends data to a receiver in the local

network. In Fig. 2(a), the receiver uses Ethernet; in Fig. 2(b), the receiver uses 802.11b or 802.11g WLAN. We

refer to the above settings asEthernet settingand WLAN setting, respectively. In both settings, a router resides

between the sender and the receiver, and is connected to the sender by linkL2 with 100 Mbps bandwidth. The

monitoring point is between the sender and the router, tapping into linkL2. In the Ethernet setting, the router and

the receiver are connected by linkL1 with 100 Mbps bandwidth. In the WLAN setting, an access point resides
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between the router and the receiver. The access point and the router are connected by linkL1 with 100 Mbps

bandwidth; and the receiver is connected to the access point using11 Mbps 802.11b or54 Mbps 802.11g. In both

the Ethernet and WLAN settings, the router’s queues for incoming data packets and ACKs are modeled asM/D/1
queues. LetQD and QA denote the queues for data and ACKs respectively. The utilizations ofQD and QA are

ρD andρA, respectively.

We assume that the receiver implements delayed ACK policy2, since this policy is commonly used in practice [21],

[7]. To accommodate the effects of delayed ACK, we consider four data packetsP1, P2, P3 andP4, each of1500
bytes, sent back-to-back from the sender. Without loss of generality, we assume that packetP1 is acknowledged.

Since we assume delayed ACK, packetP3 is also acknowledged. LetA1 andA3 denote the ACKs corresponding to

packetsP1 andP3, respectively. ThenA1 andA3 form an ACK-pair. Let∆A represent the inter-ACK time ofA1

andA3 at the monitoring point. Let∆ denote the inter-arrival time of the data packetsP1 andP3 at the monitoring

point. Then∆ = 120× 2 = 240 µs since eachPi (i = 1, . . . , 4) is 1500 bytes and the bandwidth of linkL2 is 100
Mbps.

Intuitively, the random backoff mechanism in 802.11 (i.e., a host must wait for a random backoff interval to

transmit [17]) and the half duplex nature of wireless channels (i.e., data packets and ACKs contend for media

access at a wireless host) may lead to larger inter-ACK times in WLAN than those in Ethernet. To demonstrate

analytically that this is indeed the case, we consider the following worst-case scenarios (in terms of differentiating

Ethernet and WLAN hosts). In the Ethernet setting, we assume cross traffic traversing both queues,QD andQA,

at the router so that the Ethernet link may be heavily utilized. In the WLAN setting, the wireless link between

the access point and the receiver is underidealized conditions, i.e., the channel is perfect, and is only used by the

access point and the receiver. As we shall see, even in the above scenarios, the inter-ACK times of WLAN are

generally larger than those of Ethernet, and hence can be used to differentiate WLAN and Ethernet connections.

B. Analysis of Ethernet

We next present two theorems on inter-ACK times in the Ethernet setting. Their proofs are found in Appendices I

and II, respectively.

Theorem 1:(Inter-ACK time distribution for Ethernet) In the Ethernet setting, when0 < ρD, ρA ≤ 1,

P (∆A > 600 µs) < 0.18.

We next consider the sample median distribution of inter-ACK times, and calculate the probability that it exceeds

600 µs. Let {∆A
i }n

i=1 denote an i.i.d sequence ofn inter-ACK times from a host (they can be from different TCP

flows). Let ξn
.5(∆A) denote the sample median of{∆A

i }n
i=1. Then we have the following theorem onξn

.5(∆A).
Theorem 2:(Median inter-ACK time for Ethernet) In the Ethernet setting, for a given i.i.d sequence of

sample inter-ACK times{∆A
i }n

i=1, when0 < ρD, ρA ≤ 1 and43 ≤ n ≤ 100, we haveP (ξn
.5(∆A) ≤ 600 µs) ≈ 1.

Furthermore,limn→∞ P (ξn
.5(∆A) ≤ 600 µs) = 1.

Both of the above theorems will be used explicitly to construct a sequential hypothesis test in Section IV-B.

C. Analysis of 802.11b WLAN

We now analyze the inter-ACK time distribution in the 802.11b WLAN setting. As mentioned earlier, we assume

idealized conditions, that is, the wireless channel between the access point and the receiver is perfect and there is

no contention from other wireless nodes. For 11 Mbps 802.11b, the transmission overhead for a TCP packet with

zero payload is508 µs, which includes the overhead to transmit physical-layer, MAC-layer, IP and TCP headers,

2That is, a receiver releases an ACK after receiving two packets, or if the delayed-ACK timer is triggered after the arrival of a single

packet.
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the overhead for ACK transmission, and the durations of one SIFS and DIFS [16]. The slot time is20 µs and a

wireless device waits for a random backoff time uniformly distributed in[0, 31] time slots (i.e.,[0, 620] µs) before

transmitting a packet. Therefore, theMAC service time(i.e., the sum of the constant transmission overhead and

the random backoff time) of a data packet of 1500 bytes is uniformly distributed in[1570, 2190] µs. The MAC

service time of an ACK of 40 bytes is uniformly distributed in[508, 1128] µs. We have the following theorem for

the 802.11b WLAN setting; the proof is found in Appendix III.

Theorem 3:(Inter-ACK time distribution for 802.11b) In the 802.11b WLAN setting, under idealized condi-

tions, P (∆A > 600 µs) > 0.96.

D. Analysis of 802.11g WLAN

We next show that 54 Mbps 802.11g WLAN generally has larger inter-ACK times than 100 Mbps Ethernet

although they have comparable bandwidths. We again assume ideal conditions. For 54 Mbps 802.11g, the trans-

mission overhead for a TCP packet with zero payload is103 µs. The slot time is9 µs. The receiver waits for

a random backoff time uniformly distributed in[0, 15] time slots (i.e.,[0, 135] µs) before transmitting a packet.

Therefore, the MAC service time of a data packet (1500 bytes) is uniformly distributed in[325, 460] µs; the MAC

service time of an ACK (40 bytes) is uniformly distributed in[109, 244] µs. We have the following theorem for

the 802.11g WLAN setting; the proof is found in Appendix IV.

Theorem 4:(Inter-ACK time distribution for 802.11g) In the 802.11g WLAN setting, under idealized condi-

tions, P (∆A > 600 µs) > 0.45.

E. Summary of Analysis

The above analysis demonstrates that, even when WLAN is under idealized conditions while Ethernet LAN is

fully utilized, using TCP ACK-pairs can effectively differentiate Ethernet and WLAN connections: for Ethernet,

less than18% of the inter-ACK times exceed600 µs, while for 802.11b and 802.11g, at least96% and45% of the

inter-ACK times exceed600 µs (see Theorems 1, 3 and 4). Under more realistic conditions (e.g., noisy wireless

channel and with contention), inter-ACK times in WLAN may be even higher than those in Ethernet. Last, our

analysis is based on the fundamental properties of the 802.11 CSMA/CA MAC protocol and the half-duplex nature

of wireless channels, thus indicating that using inter ACK-time is a robust technique and cannot be easily spoofed

(e.g., it is robust against MAC-address spoofing).

IV. ONLINE DETECTION ALGORITHMS

In this section, we develop two online algorithms to detect wireless hosts based on our analysis in the previous

section. Both algorithms use sequential hypothesis test technique and take the inter-ACK times as the input. The first

algorithm requires knowing the inter-ACK time distributions for Ethernet and WLAN traffica priori. The second

algorithm does not have such a requirement. Instead, it is directly based on Theorems 1 and 2 (see Section III).

We refer to these two algorithms assequential hypothesis test with trainingandsequential hypothesis test without

training respectively. The algorithm without training, although is not as powerful as the one with training (see

Section VII), is suitable for scenarios where the inter-ACK time distributions are not availablea priori (e.g., for

organizations with no wireless networks).

We now describe these two algorithms in detail. Both algorithms use at mostN = 100 ACK-pairs to make a

decision (i.e., whether the connection is Ethernet or WLAN) to accommodate the scenarios where a host switches

between Ethernet and WLAN connections.



7n = 0, lE = lW = 0.
do {

Identify an ACK-pair
n = n + 1
pn = P (∆A

n = δA
n | E), qn = P (∆A

n = δA
n | W )

lE = lE + log pn, lW = lW + log qn

if lW − lE > log K
Report WLAN,n = 0, lE = lW = 0.

else if lW − lE < − log K
Report Ethernet,n = 0, lE = lW = 0.

else if n = N
Report undetermined,n = 0, lE = lW = 0.

}

Fig. 3. Sequential hypothesis test with training,N = 100.

A. Sequential Hypothesis Test with Training

We have demonstrated that the inter-ACK time distributions for Ethernet and WLAN differ significantly (see

Section III). When these distributions are known, we can calculate the likelihoods that a host uses Ethernet and

WLAN respectively given a sequence of observed inter-ACK times. If the likelihood of using WLAN is much

higher than that of using Ethernet, we conclude that the host uses WLAN (and vice versa).

We now describe the test in more detail. Let{δA
i }n

i=1 represent a sequence of inter-ACK time observations from

a host, and{∆A
i }n

i=1 represent their corresponding random variables. LetE andW represent respectively the events

that a host uses Ethernet and WLAN. LetLE = P (∆A
1 = δA

1 , ∆A
2 = δA

2 , . . . ,∆A
n = δA

n | E) be the likelihood that

this observation sequence is from an Ethernet host. Similarly, letLW = P (∆A
1 = δA

1 , ∆A
2 = δA

2 , . . . ,∆A
n = δA

n | W )

be the likelihood that the observation sequence is from a WLAN host. Letpi = P (∆A
i = δA

i | E) be the probability

that thei-th inter-ACK time has valueδA
i given that it is from an Ethernet host. Similarly, letqi = P (∆A

i = δA
i | W )

be the probability that thei-th inter-ACK time has valueδA
i given that it is from a WLAN host. Bothpi and qi

are known, obtained from the inter-ACK time distributions for Ethernet and WLAN traffic respectively. Assuming

that the inter-ACK times are independent and identically distributed, we have

LE = P (∆A
1 = δA

1 , . . . , ∆A
n = δA

n | E) =
n∏

i=1

pi,

LW = P (∆A
1 = δA

1 , . . . , ∆A
n = δA

n | W ) =
n∏

i=1

qi.

This test updatesLW andLE as an ACK-pair is observed. LetK > 1 be a threshold. If after then-th ACK-pair,

the ratio ofLW andLE is over the threshold, i.e.,LW /LE > K, then the host is classified as a WLAN host. If

LW /LE < 1/K, then the host is classified as an Ethernet host. If neither decision is made afterN ACK-pairs,

the connection type is classified as undetermined. In the implementation, for convenience, we use log-likelihood

function lw = log(LW ) and lE = log(LE) instead of the likelihood function.

This test is summarized in Fig. 3. As we can see, it has very little computation and storage overhead (it only

stores the current likelihoods for Ethernet and WLAN for each IP address being monitored).



8m = n = 0.
do {
Identify an ACK-pair
n = n + 1
m = m + 1(δA

n ≥ 600 µs)
p̂ = m

n

if p̂ = 1 and n > − log K
log θ

Report WLAN. m = n = 0.

else if n < m(log p̂−log θ+log(1−θ)−log(1−p̂))−log K
log(1−θ)−log(1−p̂)

Report WLAN. m = n = 0.

else if n ≥ 43 and p̂ ≥ 0.5
Report WLAN. m = n = 0.

else if n = N
Report undetermined.m = n = 0.

}

Fig. 4. Sequential hypothesis test without training, , where1(·) is the indicator function,N = 100.

B. Sequential Hypothesis Test without Training

This test does not require knowing the inter-ACK time distributions for Ethernet and WLAN hostsa priori.

Instead, it leverages the analytical results that the probability of an inter-ACK time exceeding600 µs is small for

Ethernet hosts, while it is much larger for WLAN hosts (see Section III). In the following, we first construct a

likelihood ratio test [14], and then derive from it a sequential hypothesis test.

The likelihood ratio test is as follows. Letp be the probability that an inter-ACK time exceeds600 µs, that is,

p = P (∆A > 600 µs). By Theorem 1, we havep < θ = 0.18 for Ethernet host. Therefore, if the hypothesisp < θ

is rejected by the inter-ACK time observation sequence, we conclude that this host does not use Ethernet and hence

uses WLAN. More specifically, consider two hypotheses,H0 andHa, representing respectively the null hypothesis

that a host uses Ethernet and the alternative hypothesis that the host uses WLAN. For a sequence of inter-ACK

time observations{δA
i }n

i=1, let m be the number of observations that exceed600 µs. Let K > 1 be a threshold.

Then the likelihood ratio test rejects the null hypothesisH0 when

λ =
sup0≤p≤θ pm(1− p)n−m

sup0≤p≤1 pm(1− p)n−m
<

1
K

In the middle term above, the numerator is the maximum probability of having the observed sequence (which has

m inter-ACK times exceeding600 µs) computed over parameters in the null hypothesis (i.e.,0 ≤ p ≤ θ). The

denominator ofλ is the maximum probability of having the observed sequence over all possible parameters (i.e.,

0 ≤ p ≤ 1). If λ < 1/K, that is, there are parameter points in the alternative hypothesis for which the observed

sample is much more likely than for any parameter points in the null hypothesis, the likelihood ratio test concludes

that H0 should be rejected. In other words, ifλ < 1/K, the likelihood ratio test concludes that the host uses

WLAN.

We now derive a sequential hypothesis test from the above likelihood ratio test. Letp̂ = m/n, wherem is the

number of inter-ACK times exceeding 600µs andn is the total number of inter-ACK times. It is straightforward
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to show thatp̂ is the maximum likelihood estimator ofp, i.e., sup0≤p≤1 pm(1 − p)n−m is achieved whenp = p̂.

When p̂ ≤ θ, we havesup0≤p≤θ pm(1− p)n−m = sup0≤p≤1 pm(1− p)n−m, and henceλ = 1 > 1/K. In this case,

the null hypothesisH0 is not rejected. Therefore, we only consider the case whereθ < p̂, which can be classified

into two cases:

Case 1:θ < p̂ < 1. In this case, to reject the null hypothesisH0, we need

p̂m(1− p̂)n−m

θm(1− θ)n−m
> K

which is equivalent to

n <
m(log p̂− log θ + log(1− θ)− log(1− p̂))− log K

log(1− θ)− log(1− p̂)
. (1)

Case 2: p̂ = 1. In this case, to reject the null hypothesisH0, we need

1
θn

> K

which is equivalent to

n > − log K

log θ
. (2)

WhenK = 106 andθ = 0.18, from (2), we haven ≥ 8. This implies that we need at least8 ACK-pairs to detect

a WLAN host for the above setting.

In addition to conditions (1) and (2), we also derive a complementary condition to reject the null hypothesis

H0 directly from Theorem 2. Theorem 2 states that, when the number of inter-ACK observationsn is between43
and100, we haveP (ξn

.5(∆A) ≤ 600 µs) ≈ 1 for Ethernet hosts. Therefore, an additional condition to rejectH0 is

when43 ≤ n ≤ 100 and p̂ > 0.5 (because this condition implies that at least half of the inter-ACK observations

exceed600 µs, that is,ξn
.5(∆A) > 600 µs, which contradicts Theorem 2).

We combine the above three conditions to construct a sequential hypothesis test as shown in Fig. 4. As we can

see, this test has very little computational and storage overhead (it only stores the total number of inter-ACK times

and the number of inter-ACK times exceeding 600µs for each IP address being monitored). Last, note that it only

reports WLAN hosts, while the sequential hypothesis test with training reports both WLAN and Ethernet hosts.

V. ONLINE ROGUE-AP DETECTION SYSTEM

We design a system for online detection of rogue APs. This system consists of three major components as

illustrated in Fig. 5. The data capturing component collects incoming and outgoing packet headers. These packet

headers are then passed on to theonline detection engine, where WLAN hosts are detected using the algorithms

described in the previous sections. Once a WLAN host is detected, its IP address is looked up from an authorization

list for rogue-AP detection. We next describe the online detection engine, the core component in the system, in more

detail. Afterwards, we describe how to identify ACK-pairs in real time and obtain inter-ACK time distributionsa

priori (required by the sequential hypothesis test with training).
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Fig. 5. Online rogue-AP detection system.

A. Online Detection Engine

The online detection engine makes a detection on a per host (or IP address) basis. Since TCP data packets

and ACKs come in on a per flow basis and a host may have multiple simultaneous active TCP flows3, the online

detection engine maintains a set of data structures in memory, each corresponding to an active TCP flow. We name

the data structure as anunacked-data-packet queuesince it stores the information on all the data packets that have

not been acknowledged by the receiver. Each item in a queue represents a data packet in the corresponding active

flow. It records the sequence number (4 bytes), the timestamp (8 bytes) and size (2 bytes) of the packet. In addition,

the online detection engine also records the latest ACK for each TCP flow in memory. These information is used

to identify ACK-pairs as follows. For each incoming ACK, the online detection engine finds its corresponding

unacked-data-packet queue (using a hash function for quick lookup) and then matches it with the items in the

queue to identify ACK-pairs. Once an ACK-pair is identified, depending on whether training data is available, it is

fed into the sequential hypothesis test with or without training to determine whether the host uses WLAN.

The memory requirement of the online detection system mainly comes from storing the unacked-data-packet

queues. Each queue contains no more thanM items, whereM is the maximum TCP window size (since an item

is removed from the queue once its corresponding ACK arrives). In our experiments, we find that most queues

contain a very small number of items (see Section VII-C), indicating that the memory usage of this online detection

system is low.

B. Online Identification of TCP ACK-pairs

As described earlier, two successive ACKs form an ACK-pair if the inter-arrival time of their corresponding data

packets at the monitoring point is less than a thresholdT (chosen as240 µs or 400 µs in our system, see Section VII).

In addition to the above condition, we also take account of several practical issues when identifying ACK-pairs.

First, we exclude all ACKs whose corresponding data packets have been retransmitted or reordered. We also exclude

ACKs due to expiration of delayed-ACK timers if delayed ACK is implemented (inferred using techniques in [25]).

This is because, if an ACK is triggered by a delayed-ACK timer, it is not released immediately after a data packet.

3We define a flow that has not terminated and has data transmission during the last minute as an active flow.
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Therefore, the inter-arrival time of this ACK and its previous ACK does not reflect the characteristics of the access

link. Furthermore, to ensure that two ACKs are successive, we require that the difference of their IPIDs to be no

more than1. We also restrict that the ACKs are for relatively large data packets (of size at least1000 bytes), to

be consistent with the assumption of our analysis (in Section III). Last, we require that the inter-ACK time of an

ACK-pair to be below200ms. This is due to the following reasons. Consider three ACKs, the second and third

ones being triggered by delayed-ACK timer. If the second ACK is lost, the measurement point will only observe

a pair of ACKs (the first and third ACK), which is not a valid ACK-pair (since the third ACK is triggered by

delayed-ACK timer). Requiring the inter-ACK time of an ACK-pair to be below200 ms can exclude this pair of

ACKs because their inter-arrival time is at least200 ms (it takes at least100 ms for a delayed-ACK timer to go

off).

A user may purposely violate the above criteria for ACK-pairs (e.g., by never using TCP, using smaller MTUs

or tampering with the IPID field) so that the measurement point does not capture any valid ACK-pair from this

user. However, all the above cases are easy to detect and can raise an alarm that this user may attempt to hide a

rogue AP.

C. Obtaining Inter-ACK Time Distributions Beforehand

To apply the sequential hypothesis test with training, we need to know the inter-ACK time distributions for

Ethernet and WLAN beforehand. In general, the inter-ACK time distribution for a connection type can be acquired

from a training set, which contains TCP flows known to use this connection type. We detail how we construct

training sets for our experimental evaluation in Section VI-B; training sets for other networks can be constructed

in a similar manner.

VI. EVALUATION METHODOLOGY

We evaluate the performance of our rogue-AP detection algorithms through extensive experiments. In this section,

we describe our evaluation methodology, including the measurement equipment, training sets, test sets, and offline

and online evaluation.

A. Measurement Equipment

Our measurement equipment is a commodity PC, installed with a DAG card [6] to capture packet headers. It is

placed at the gateway router of UMass, Amherst, connected via an optical splitter to the access link connecting

the campus network to the commercial network. The TCP and IP headers of all the packets that traverse this link

are captured by the DAG card, along with the current timestamp. The captured data are streamed to our online

detection algorithms, which are running on the commodity PC. The PC has three Intel Xeon Y 2.80 GHz CPUs

(cache size 512 KB), 2 Gbytes memory, and SCSI hard disks.

B. Training Sets

Training sets are required to obtain inter-ACK time distributions (see Section V-C). We construct training sets for

our experimental evaluation as follows. First, based on our knowledge on the UMass campus network, we identify

E andW, denoting the set of IP addresses known to use Ethernet and WLAN respectively. The setE consists of

IP addresses for hosts using 100 Mbps Ethernet in the Computer Science department. The setW consists of IP

addresses that are reserved for the campus public WLAN (an 802.11 network providing wireless access to campus

users at public places such as the libraries, campus eateries, etc.). The numbers of IP addresses inE andW are 648

and 1177 respectively. The training set for Ethernet (or WLAN) is constructed by extracting TCP flows destined

to hosts inE (or W) from a trace collected at the monitoring point. The trace for Ethernet was collected between
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Fig. 6. Ethernet and WLAN inter-ACK time distributions obtained from training sets (T = 240 µs).

February and April, 2005. In early 2006, 802.11g APs were deployed on UMass campus and more users start to

use 802.11g. Therefore, we collected a new set of traces on9/29/2006 for WLAN. Note that the training set for

WLAN contains a mixture of 802.11b and 802.11g traffic since a host can use either 802.11b or 802.11g depending

on whether its wireless card and its associated AP support 802.11g.

From the training set (for Ethernet or WLAN), we identify a sequence of ACK-pairs, and discretize the inter-ACK

times to obtain the inter-ACK time distribution. The discretization is as follows. We divide the range from 0 to 1

ms into50µs-bins, and divide the range from 1 ms to200 ms (which is the maximum value for inter-ACK times)

into 1ms-bins. Fig. 6 plots the CDFs (Cumulative Distribution Function) of the inter-ACK times for Ethernet and

WLAN, where the thresholdT = 240 µs. We observe that2.5% of the inter-ACK times for Ethernet hosts are

above600 µs, while 59.0% of the inter-ACK times for WLAN hosts are above600 µs, confirming our analytical

results in Section III (for Ethernet, the observed value is lower than the analytical result because our analysis is

very conservative; for WLAN, the samples contain a mixture of 802.11b and 802.11g traffic).

C. Test Sets

To validate that our algorithms can detect WLAN hosts while does not misclassify Ethernet hosts, we construct

a WLAN and an Ethernet test set, containing IP addresses known to use WLAN and Ethernet respectively. The

WLAN test set contains the IP addresses (of1177 addresses) reserved for the campus public WLAN. The Ethernet

test set contains the IP addresses of a subset of Dell desktops that use Ethernet in the Computer Science building. It

contains258 desktops, each with documented IP address, MAC address, operating system, and location information

for ease of validation. Among these desktops,35% of them use different versions of Windows operating system

(e.g., Windows 2000, Windows ME, Windows XP, etc.); the rest use different variants of Linux and Unix operating

systems (e.g., RedHat, Solaris, CentOS, Fedora Core, etc.). These hosts are three hops away from the university

gateway router (and the monitoring point).

In addition to these two test sets, we further investigate whether our schemes can detect connection switchings

and other types of rogue APs by conducting additional experiments in the Computer Science Department. The total

IP space monitored in our experimental evaluation consists of the WLAN test set (1177 addresses) and all the IP

addresses in the Computer Science Department (2540 addresses), totally 3217 addresses.



13TABLE I

OFFLINE EVALUATION OF SEQUENTIAL HYPOTHESIS TEST WITH TRAINING: RESULTS ONWLAN S (10/20/2006).

T=240 µs T=400 µs
K = 104 K = 105 K = 106 K = 104 K = 105 K = 106

Avg. # of ACK-pairs for a detection 5 6 7 5 6 7
Avg. # of data pkts for a detection 250 288 347 204 235 283

Median detection time (sec) 8 10 13 6 8 11
Number of detections 12, 607 10, 882 8, 969 15, 724 13, 567 11, 169
Correct detection ratio 99.43% 99.59% 99.61% 99.38% 99.53% 99.61%

ACK-pair ratio 2% 2%

TABLE II

OFFLINE EVALUATION OF SEQUENTIAL HYPOTHESIS TEST WITH TRAINING: RESULTS ONETHERNET (10/20/2006).

T=240 µs T=400 µs
K = 104 K = 105 K = 106 K = 104 K = 105 K = 106

Avg. # of ACK-pairs for a detection 11 13 16 13 16 19
Avg. # of data pkts for a detection 87 106 124 73 89 106

Median detection time (sec) 0.6 1.0 1.2 0.3 0.6 0.9
Number of detections 4, 896 3, 990 3, 363 5, 860 4, 747 4, 002
Correct detection ratio 99.88% 100.00% 99.97% 99.61% 99.79% 99.78%

ACK-pair ratio 13% 17%

D. Offline and Online Evaluation

We evaluate the performance of our algorithms in both offline and online manners. In offline evaluation, we

first collect measurements (to the hard disk) and then apply the sequential hypothesis test to the collected trace. In

online evaluation, we run the sequential hypothesis test online while capturing the data at the measurement point.

The offline evaluation, although does not represent the normal operation mode of our algorithms, allows us to

investigate the impact of various parameters (e.g.,T , the threshold to identify ACK-pairs,K, the threshold in the

sequential hypothesis tests). The online evaluation investigates the performance of our algorithms in their normal

operation mode.

VII. E XPERIMENTAL EVALUATION

We now describe our experimental results. In our experiments, the online detection algorithms make a decision

(detecting WLAN, Ethernet or undetermined) with at mostN ACK-pairs, N = 100. A decision of WLAN or

Ethernet is referred to as adetection. The time it takes to make a decision is referred to asdetection time.

In the following, we first evaluate the performance (in terms of accuracy and promptness) of our online detection

algorithms (Sections VII-A and VII-B). We then investigate the scalability of our approach (Section VII-C).

Afterwards, we demonstrate that our approach is effective to detect other types of rogues (Section VII-D). Last, we

show that our approach can quickly detect connection-type switchings (Section VII-E) and is robust to high CPU,

disk or network utilization at end hosts (Section VII-F).

A. Performance of Sequential Hypothesis Test with Training

We now investigate the performance of our sequential hypothesis test with training. The Ethernet and WLAN

inter-ACK time distributions required by this algorithm are obtained as described in Section VI-B. We next describe

results from offline and online evaluation.
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Fig. 7. Detection-time distributions for the trace collected on10/20/2006 (T = 240 µs, K = 106, N = 100).

1) Offline Evaluation:In offline evaluation, we collect measurements on three consecutive days, from10/18/2006
to 10/20/2006. The trace on each day lasts for6 to 7 hours. The threshold to identify ACK-pairs,T , is set to

240µs or 400 µs. The threshold to decide a host’s connection type,K, is set to104, 105 or 106. We next describe

the results for the trace collected on10/20/2006; the results for the other two days are similar.

Tables I and II present the detection results for the campus public WLAN and the Ethernet test set respectively.

In both cases we observe that the detection results are similar under different values ofT andK, indicating that our

algorithm is insensitive to the choice of parameters. For all values ofT andK, the detection results are extremely

accurate with a correct detection ratio above99.38%. On average, it takes less than10 ACK-pairs (corresponding

to 250 to 347 data packets) to make a detection for WLAN and less than20 ACK-pairs (corresponding to87 to

124 data packets) for Ethernet. The relatively larger number of data packets for a detection of WLAN compared to

that of Ethernet can be explained as follows. The inter-ACK times in WLAN tend to be large (compared to those

in Ethernet), leading to large inter-arrival times between newly triggered data packets due to TCP’s self-clocking.

When the inter-arrival time of the data packets is larger than the thresholdT , the corresponding ACKs are not

qualified as an ACK-pair. This is confirmed by the lower ACK-pair ratio (i.e., the number of ACK-pairs divided

by the total number of packets) in WLAN traffic shown in Tables I and II.

The detection-time distributions for both WLAN and LAN whenK = 106 is shown in Fig. 7. The median

detection times for Ethernet and WLAN are around 1 second and 10 seconds respectively. The much shorter

detection time in Ethernet is due to higher ACK-pair ratios, as explained earlier. We also observe long detection

times (over 5 minutes) in the figure. They might be caused by users’ change of activities (e.g., a user stops using

the computer to think or talk and then resume using it).

Finally, around84% of ACK-pairs used in WLAN detection and89% of ACK-pairs used in LAN detection are

generated by web traffic, indicating that our approach is effective even for short flows.

2) Online Evaluation: In online evaluation, we run our detection algorithm online on three consecutive days,

from 10/25/2006 to 10/27/2006, lasting for 6 to 7 hours on each day. We setT = 240 µs,K = 106, representing a

conservative selection of parameters. Table III presents the detection results for both test sets. We observe consistent

results as those in offline evaluation. That is, the detection is highly accurate and prompt. The average numbers of

ACK-pairs and data packets required for a detection are consistent with those in the offline evaluation. The above

demonstrates the efficiency of our online detection algorithm.



15TABLE III

ONLINE EVALUATION OF SEQUENTIAL HYPOTHESIS TEST WITH TRAINING(10/25/2006 - 10/27/2006).

10/25/2006 10/26/2006 10/27/2006
WLAN Ethernet WLAN Ethernet WLAN Ethernet

Avg. # of ACK-pairs for a detection 7 16 8 21 7 16
Avg. # of data pkts for a detection 310 145 351 153 336 135

Median detection time (sec) 9.7 1.2 15.0 0.1 11.4 1.2
Number of detections 23, 266 5, 798 15, 977 15, 654 10, 628 2, 948
Correct detection ratio 99.58% 99.93% 98.44% 99.92% 99.72% 99.76%

ACK-pair ratio 2% 11% 2% 13% 2% 12%

TABLE IV

EVALUATION OF SEQUENTIAL HYPOTHESIS TEST WITHOUT TRAINING ONWLAN S.

Date 10/18/2006 10/19/2006 10/20/2006

Detection ratio 68% 76% 60%
Avg. # of ACK-pairs for a detection 22 21 19
Avg. # of data pkts for a detection 997 858 903

Median detection time (sec) 105 59 52
Number of detections 3, 259 6, 539 2, 722

B. Performance of Sequential Hypothesis Test without Training

We now examine the performance of our sequential hypothesis test without training. Recall that this algorithm does

not require training sets. It takes at mostN ACK-pairs to make a decision (i.e., detecting WLAN or undetermined).

We apply this algorithm to traces collected between10/18/2006 and 10/20/2006 using T = 240 µs, K = 106,

and N = 100. For the Ethernet test set, this algorithm detects no WLAN host for all the traces, indicating that

it has no false positives. Note that although this algorithm is derived using analytical results in Section III (in a

setting where the receiver is one hop away from the router), our experimental results indicate that it is accurate in

more relaxed settings (the Ethernet hosts in the Computer Science building are three hops away from the gateway

router). This is not surprising since our algorithm is based on an extremely conservative analysis (assuming that

the single Ethernet link is full utilized). For the WLAN test set, of all the hosts with at least one ACK-pair, this

algorithm detects60% to 76% of them as WLAN hosts. Table IV presents the experimental results for the WLAN

test set. In general, this algorithm requires more ACK-pairs and longer time to make a detection than the algorithm

with training.

C. Scalability Study

We investigate the scalability of our approach by looking at its CPU and memory usages of the PC that runs the

detection algorithms (the configuration of the PC is described in Section VI-A). During online evaluation, we sample

the CPU usage at the measurement PC every 30 seconds. The maximum CPU usage is9.1% (without optimizing

our implementation), indicating that the measurement task is well within the capability of the measurement PC. For

memory usage, we investigate the space taken by the unacked-data-packet queues since the memory usage mainly

comes from storing these queues (see Section V). Fig. 8 plots the CDF of the maximum number of items in each

queue for the trace collected on10/20/2006 (results for other traces are similar). This trace was collected over 7

hours and captures1.8 million TCP flows for the IP addresses being monitored (the maximum number of concurrent

flows is 8244). We observe that most of the queues are very short:90% of them have less than 3 items, indicating

that the memory usage is very low (each data item only keeps 14 bytes of data; see Section V-A). However, we also

observe very long queues. We conjecture that these long queues are due to routing changes or abnormal behaviors
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in the routes. As an optimization to our online detection system, we can discard unacked-data-packet queues longer

than a certain threshold.

D. Detection of Wireless Networks behind NAT

We now demonstrate that our approach is equally applicable to detect other types of rouges, in particular, wireless

networks behind a NAT box. Note that, schemes using MAC address (e.g., [9], [4], [10]) fail to detect this type of

rogue, since all traffic going through a NAT box have the same MAC address (i.e., the MAC address of the NAT

box). We look at NAT boxes in two settings, one configured by ourselves and the other being used in the Computer

Science Department.

1) Self-configured NAT:We configure a Linux hostA as a NAT box. HostA has two network interfaces, an

Ethernet card and a ZCOMAX AirRunner/XI-300 802.11b wireless card. The Ethernet interface connects directly

to the Internet. The wireless card is configured to the master mode using Host AP [5] so that it acts as an AP. We

then set up two laptopsB andC to access the Internet through the wireless card ofA. When hostB or C accesses

the Internet, its packets reach hostA. HostA then translates the addresses of the packets and forwards the packets

to the Internet through its Ethernet card.

We conduct an experiment on10/26/2006. The experiment lasts for about two minutes. We observed163 ACK-

pairs. Among them,92% of the ACK-pairs are from web traffic via port 80. The remaining ACK-pairs are from

port 1935, which is used by Macromedia Flash Communication Server MX for the RTMP (Real-Time Messaging

Protocol). The sequential hypothesis test with training makes37 online detections, all as WLAN host. On average,

one detection is made in every4 ACK-pairs. The above results demonstrate that our test can effectively detect

wireless networks behind NAT boxes.

2) NATs in the Computer Science Department:Two NAT boxes in the Computer Science Department provide

a free local network to users in the department. A host may use either Ethernet or WLAN to connect to a NAT

box. All traffic through a NAT box will have the IP address of the NAT box. We monitor the IP addresses of these

two NAT boxes. Our offline detection (from10/18/2006 to 10/20/2006) and online detection (from10/25/2006
to 10/27/2006) both indicate a mixture of WLAN and Ethernet connections. The ACK-pair ratios are higher than

that of WLAN and lower than that of Ethernet hosts, which are consistent with the setting that these two NAT

boxes provide both WLAN and Ethernet connections.
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E. Detection of Connection-type Switchings

Next we explore a scenario where an end host may switch between a wired and wireless connection. Our goal

is to examine whether our detection approach can accurately report the connection switchings. We use an IBM

laptop with both100 Mbps Ethernet and54 Mbps 802.11g WLAN connections. This laptop uses a web crawler to

download the first 200 web files from cnn.com (8.3 Mbytes of data) using Ethernet, and then switches to WLAN to

download the first200 web files from nytimes.com (6.5 Mbytes of data). This process is repeated for three times.

We run the sequential hypothesis test with training usingT = 240µs, K = 106 andN = 100. Our algorithm makes

284 detections,283 correct and one incorrect. The correct detection ratio is99.65%. This demonstrates that our

approach is effective in detecting connection-type switchings. Therefore, if a host switches between using Ethernet

and WLAN provided by its rogue AP, our approach can effectively detect this rogue AP.

F. Detection under High CPU, Disk or Network Utilization

We now investigate whether the performance of our approach will be affected when an end host has very high

CPU, disk or network utilization. For this purpose, we stress either the CPU, disk or network connection of an end

host, while downloading the first 200 web files from cnn.com using a web crawler at the host. For each scenario,

we conduct experiments for both Ethernet and WLAN connections and detect the connection type using sequential

hypothesis test with training. All experiments are conducted on an IBM laptop with both a100 Mbps Ethernet and

a 54 Mbps 802.11g WLAN connection card.

We stress the CPU (utilization reaching100%) by running an infinite loop. For the Ethernet connection, we observe

1077 ACK-pairs and53 detections. For the WLAN connection, we observe921 ACK-pairs and123 detections. All

the detections are correct. We stress the hard disk by running a virus scanning program that scans the disk. For the

Ethernet connection, we observe1158 ACK-pairs and57 detections. For the WLAN connection, we observe872
ACK-pairs and84 detections. Again, all the detections are correct.

To stress the network connection, we conduct two sets of experiments, one stressing the downlink direction by

downloading a large file from the local network; the other stressing the uplink direction by uploading a large file

to the local network. Note that both cases only generate traffic in the local network, not captured at the monitoring

point, and hence does not interfere with data monitoring. When stressing the downlink, we observe848 ACK-pairs

and42 detections for the Ethernet connection;660 ACK-pairs and72 detections for the WLAN connection. When

stressing the uplink, we observe438 ACK-pairs and21 detections for the Ethernet connection;487 ACK-pairs

and 46 detections for the WLAN connection. All the detections are correct. We observe that while stressing the

downlink or the uplink, the number of ACK-pairs is significantly smaller than that when stressing CPU or disk.

This is due to cross traffic generated by the local downloading or uploading activities. We also observe that the

number of ACK-pairs is less when stressing the uplink than that when stressing the downlink. This is because the

uploading data packets may be inserted between ACKs and lead to less ACK-pairs.

In summary, the above results indicate that our detection approach is effective even when hosts have high CPU,

hard disk or network utilization.

VIII. D ISCUSSIONS

We next discuss several issues related to rogue AP detection.

A. Locating Rogue APs

Our approach to detecting a rogue AP also helps to locate the rogue AP. Let us consider a common scenario

in which a WLAN host is connected to a rogue AP, which is connected to an access router via one or multiple

switches. In this scenario, the rogue AP can be located using the following steps. First, a network manager detects
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the IP address of the WLAN host at the monitoring point, and then locates the access router of this host based on

the host’s IP address and the subnet addressing structure. From the ARP table at the access router (which stores

the mapping between an IP address and its corresponding MAC address), the network manager further determines

the MAC address of the WLAN host. Afterwards, the network manager uses the identified MAC address to obtain

its corresponding switch port by SNMP querying the first downstream switch connected to the access router (this

is through the switch table at the switch, which stores the mapping between a MAC address and a switch port).

Last, the network manager sequentially queries downstream switches (if any) to locate the switch port (and hence

the physical location) of the rogue AP.

B. Rogues by Authorized Users

Our scheme can easily detect rogue APs installed by hosts not authorized to use WLAN. We next discuss the

case that rouges are installed by hosts authorized to use WLAN. We consider two types of local networks: purely

wireless networks (i.e., all IP addresses are allowed to use wireless connections) and mixed networks (i.e., networks

supporting both Ethernet and wireless connections).

Purely wireless networks.In such a network, a wireless hostA may set up another wireless card as a rogue AP

for an illegitimate hostB (as described in Section VII-D). In this case, packets fromB will have the IP address

of A, which is an authorized WLAN address. Therefore, our scheme does not detect this type of rogue directly.

However, since hostB connects to the Internet through two wireless hops, its traffic characteristics will differ from

those through a single wireless hop and those through Ethernet, and hence can be detected through traffic analysis.

An accurate detection scheme for this type of rogue is left as future work.

Mixed networks. In such a network, we consider two scenarios. In the first scenario, the IP address blocks for

Ethernet and WLAN connections do not overlap. Then a host will have different IP addresses for its Ethernet and

WLAN connections. In this scenario, if a host authorized to use both Ethernet and WLAN installs a rogue AP on

its Ethernet connection, the host obtains an IP address in the Ethernet block and the associated rogue AP will be

easily detected by our scheme. If the host uses its authorized WLAN connection to connect to the Internet and sets

up another wireless card as a rogue AP for an illegitimate host, then this illegitimate host connects to the Internet

via two wireless hops, and can be detected through traffic analysis (as described for purely wireless networks.)

In the second scenario, the IP address blocks for Ethernet and WLAN connections overlap. Then a host may

maintain the same IP address for both Ethernet and WLAN connections. Similar to the first scenario, we can detect

rogue APs that provide hosts Internet connection using two wireless hops through traffic analysis. However, a

host authorized to use WLAN may also set up a rogue AP on its Ethernet connection for itself to connect to the

Internet. This type of rogue cannot be detected by our scheme or traffic analysis (since this host only use a single

wireless hop). However, in this case, our scheme can be combined with RF-sensing schemes so that only hosts in

the authorization list need to be closely monitored by RF sensing.

The above discussions imply that, to achieve tighter security, it is better to use separate IP blocks for Ethernet

and WLAN connections.

C. Possible attacks to our approach

Our approach is based on inter-ACK times. It is effective for the common scenario where a rogue AP is installed

by an innocent user (for convenience or flexibility). It is also robust against MAC-address spoofing attacks. However,

a rogue AP may change the inter-ACK times to elude being detected by our algorithms. For instance, it may reduce
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the inter-ACK times by buffering ACKs first and then releasing them in a batch in order to disguise the traffic as

Ethernet traffic. Such a camouflage, however, will inevitably increase local RTTs (i.e., the portion of RTT inside

the WLAN). Therefore, we may combine inter-ACK time and local RTT measurement to detect such a camouflage.

An effective scheme is left as future work.

IX. CONCLUSIONS

In this paper, we have proposed two online algorithms to detect rogue access points, based on real time passive

measurements collected at a gateway router. Both algorithms exploit the fundamental properties of the 802.11

CSMA/CA MAC protocol and the half duplex nature of wireless channels to differentiate Ethernet and WLAN

TCP traffic. Central to both algorithms are sequential hypothesis tests that determine a host’s connection type

in real time by extending our earlier TCP ACK-pair techniques [25]. One algorithm requires training sets, while

the other does not. Extensive experiments in various scenarios and over hosts with various operating systems

have demonstrated the excellent performance of our approach: the algorithm that requires training provides rapid

detection and is extremely accurate; the algorithm that does not require training detects60%-76% of the wireless

hosts without any false positives; both algorithms require computation and storage well within the capability of

commodity equipment. Furthermore, our scheme can detect connection switchings and wireless networks behind a

NAT box. Last, our scheme remains effective for hosts with high CPU, hard disk or network utilizations.
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APPENDIX I
PROOF OFTHEOREM 1

In the Ethernet setting, we ignore the transmission time of an ACK since it is negligible. For convenience, we

introduce atime unit of 30 µs. Measurement studies show that the average packet size on the Internet is between

300 and400 bytes [23], [20]. For ease of calculation, we assume that all cross-traffic packets are375 bytes. Then

the transmission time of a cross-traffic packet on a100 Mbps link is 1 time unit.

Recall that∆A denotes the inter-ACK time of ACKsA1 and A3. We discretize∆A using the time unit and

denote the discretized value asIA, that is,IA = b∆A/30c. Let ∆D denote the inter-departure time of packetsP1

and P3 at queueQD (i.e., the queue at the router in the direction of data packets). Similarly, we discretize∆D

and denote the discretized value asID, that is,ID = b∆D/30c. We next state three lemmas that are used to prove

Theorem 1.

Lemma 1:Let Z = ID − 8. WhenρD = 1, Z follows a Poisson distribution with the mean of8 time units.

Proof: One component ofID is the transmission time of packetsP1 andP2 at queueQD, which is2×120/30 =
8 time units (sincePi is 1500 bytes and the bandwidth of the link between the router and the receiver is100 Mbps).

The other component ofID is the (discretized) transmission time of the cross-traffic packets that arrive betweenP1

andP3 at QD, denoted asZ. ThenZ = ID−8. By theM/D/1 queue assumption,Z follows a Poisson distribution.

Furthermore, since the inter-arrival time ofP1 andP3 at QD is 2× 120/30 = 8 time units (sincePi is 1500 bytes

and the bandwidth of the link between the source and the router is100 Mbps), on average,8 cross-traffic packets

arrive betweenP1 andP3 at QD. This is because, givenρD = 1, the arrival rate of cross-traffic packets atQD is

1 packet per time unit, equal to the processing rate. Therefore, the mean ofZ is 8 time units.

Lemma 2:SupposeID = x time units. WhenρA = 1, the conditional distribution ofIA given ID follows a

Poisson distribution with the mean ofx time units.

Proof: From Fig. 2(a),IA is the same as the inter-departure time of ACKsA1 andA3 at queueQA. Since

we assume no other traffic between the router and the receiver, the inter-arrival time ofA1 andA3 at queueQA is



21
the same asID. Therefore, given thatID = x time units, the number of cross-traffic packets arriving betweenA1

andA3 at queueQA follows a Poisson distribution with the mean ofx time units (following a reasoning similar to

the proof for Lemma 1). Therefore, the conditional distribution ofIA given ID = x follows a Poisson distribution

with the mean ofx time units.

Lemma 3:WhenρD = ρA = 1,

P (IA ≤ x) =
∞∑

y=8

8y−8e−8

(y − 8)!

x∑

i=0

yie−y

i!

Proof: This follows directly from Lemmas 1 and 2.

We now proceed to prove Theorem 1.

Proof: We first prove the theorem whenρD = ρA = 1. Under this condition, from Lemma 3, by direct calculation,

we haveP (IA > 20) = P (∆A > 600 µs) < 0.18.

We next prove that the theorem also holds when0 < ρD < 1 or 0 < ρA < 1. When 0 < ρD < 1, the

inter-departure time of data packetsP1 andP3 at queueQD is no more than that whenρD = 1. Similarly, when

0 < ρA < 1, the inter-departure time of ACKsA1 and A3 at queueQA is no more than that whenρA = 1.

Therefore,P (∆A > 600 µs) < 0.18 also holds when0 < ρD < 1 or 0 < ρA < 1.

APPENDIX II
PROOF OFTHEOREM 2

We first present a lemma that is used to prove Theorem 2.

Lemma 4:Let g(n, q) =
∑n

i=b(n+1)/2c
(n

i

)
qi(1 − q)n−i. Then g(n, q) is an increasing function ofq, where

0 ≤ q ≤ 1. Furthermore,limn→∞ gq(n) = 1 for q > 1/2.

Proof: We first prove the monotonicity of the functiong(n, q) with respect toq.

∂g(n, q)
∂q

=
n∑

i=b(n+1)/2c

n!
i!(n− i)!

iqi−1(1− q)n−i

−
n−1∑

i=b(n+1)/2c

n!
i!(n− i)!

(n− i)qi(1− q)n−i−1

=
n∑

i=b(n+1)/2c

n!
(i− 1)!(n− i)!

qi−1(1− q)n−i

−
n−1∑

i=b(n+1)/2c

n!
i!(n− i− 1)!

qi(1− q)n−i−1

=
n−1∑

j=b(n+1)/2c−1

n!
j!(n− j − 1)!

qj(1− q)n−j−1

−
n−1∑

i=b(n+1)/2c

n!
i!(n− i− 1)!

qi(1− q)n−i−1

=
n!qb(n+1)/2c−1(1− q)n−b(n+1)/2c

(b(n + 1)/2c − 1)!(n− b(n + 1)/2c)! ≥ 0

Henceg(n, q) is an increasing function ofq, 0 ≤ q ≤ 1.
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We now prove the second part of the lemma. Assume that{Xi} is a set of i.i.d Bernoulli random variables with

P (Xi = 1) = q. By the definition of a binomial distribution,

gq(n) = P
( ∑n

i=1 Xi

b(n + 1)/2c ≥ 1
)
.

We have ∑n
i=1 Xi

(n/2) + 1
≤

∑n
i=1 Xi

b(n + 1)/2c ≤
∑n

i=1 Xi

n/2
∀n.

By the strong law of large numbers, we also have

lim
n→∞

∑n
i=1 Xi

(n/2) + 1
= lim

n→∞

∑n
i=1 Xi

n/2
= 2q a.e.

Therefore,

lim
n→∞

∑n
i=1 Xi

b(n + 1)/2c = 2q a.e.

Since almost sure convergence implies convergence in probability [22], we have

lim
n→∞P

(
|

∑n
i=1 Xi

b(n + 1)/2c − 2q| ≥ ε
)

= 0 ∀ε > 0,

which is equivalent to

lim
n→∞P

( ∑n
i=1 Xi

b(n + 1)/2c ∈ (2q − ε, 2q + ε)
)

= 1 ∀ε > 0.

Since forq > 1/2 and0 < ε < 2q − 1, we have

1 ≥ gq(n) = P
( ∑n

i=1 Xi

b(n + 1)/2c ≥ 1
)

≥ P
( ∑n

i=1 Xi

b(n + 1)/2c ∈ (2q − ε, 2q + ε)
)
.

It follows that limn→∞ gq(n) = 1 for q > 1/2.

We now prove Theorem 2. Let∆(1)
A , . . . , ∆(n)

A be the ordered statistic of∆A
1 , . . . , ∆A

n in the ascending order.

For simplicity, we useξn
.5(∆A) = ∆(b(n+1)/2c)

A regardlessn being even or odd.

Proof: Let u = P (∆A ≤ 600 µs).

P (ξn
.5(∆A) ≤ 600 µs) =

n∑

i=b(n+1)/2c

(
n

i

)
ui(1− u)n−i

= g(n, u),

whereg(n, u) is as defined in Lemma 4. By Lemma 4,g(n, q) is an increasing function ofq for 0 ≤ q ≤ 1. By

Theorem 1, we knowu > 1 − 0.18 = 0.82. Therefore, we haveg(n, u) ≥ g(n, 0.82). Hence,P (ξn
.5(∆A) ≤ 600

µs) ≥ g(n, 0.82). By direct calculation, we haveP (ξn
.5(∆A) ≤ 600 µs) ≈ 1 for 43 ≤ n ≤ 100. Furthermore, since

0.82 > 1/2, by Lemma 4, we havelimn→∞ P (ξn
.5(∆A) ≤ 600 µs) = 1.
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APPENDIX III

PROOF OFTHEOREM 3

Before proving Theorem 3, we first state a lemma that is used in the proof.

Lemma 5:Let ∆D
i,i+1 represent the inter-arrival time of data packetsPi and Pi+1 at the AP,i = 1, 2, 3. Then

P (∆D
i,i+1 < 1570 µs) ≈ 1, P (∆D

i,i+1 < 325 µs) ≥ 0.89.

Proof: Let ID
i,i+1 be the discretized value of∆D

i,i+1, i.e., ID
i,i+1 = b∆D

i,i+1/30c. WhenρD = 1, similar to the

proof of Lemma 1, we can show thatID
i,i+1 follows a Poisson distribution with the parameter of 4 time units. Then

P (∆D
i,i+1 < 1570µs) > P (ID

i,i+1 = 52) =
∑52

x=4
4x−4e−4

(x−4)! ≈ 1. WhenρD < 1, the value of∆D
i,i+1 is less than that

whenρD = 1, and henceP (∆D
i,i+1 < 1570µs) ≈ 1 also holds. Similarly, we obtainP (∆D

i,i+1 < 325 µs) ≥ 0.89.

We now prove Theorem 3.

Proof: Let C denote the condition that∆D
i,i+1 ≤ 1570 µs, i = 1, 2, 3. Under this condition,Pi+1 arrives at the

AP before the AP finishes transmittingPi, since the MAC service time of a data packet is at least1570 µs in 11

Mbps 802.11b. Assuming independence, we have

P (C) =
∏3

i=1 P (∆D
i,i+1 ≤ 1570 µs). From Lemma 5,P (C) ≈ 1. Let C̄ denote the complementary condition of

C. Then

P (∆A > 600 µs)

= P (∆A > 600 µs | C)P (C) + P (∆A > 600 µs | C̄)P (C̄)

≥ P (∆A > 600 µs | C)P (C) ≈ P (∆A > 600 µs | C)

We now deriveP (∆A ≤ 600 µs | C). To satisfy∆A ≤ 600 µs, no data packet can be transmitted between

A1 and A3, since the transmission time of a data packet is at least1570 µs. Therefore, only the following two

sequences are possible:P2P3A1A3P4 andP2P3P4A1A3.
We first derive the probability that the first sequence occurs given conditionC. SinceP2 arrives at the AP before

the AP finishes transmittingP1, the receiver and the AP contend for the wireless channel: the receiver needs to

transmit ACKA1 (which is generated corresponding to packetP1) while the AP needs to transmit packetP2. Let

φ denote the probability thatA1 obtains the channel earlier thanP2. Since this probability can be affected by

many factors (e.g., the timing whenA1 reaches the MAC layer, when packetP2 can be transmitted), we assumeφ

can take any value in[0, 1]. WhenP2 transmits earlier thanA1, A1 will contend with packetP3 for the wireless

channel. In this case, we assume thatA1 andP3 are equally likely to win the contention, since they can both be

transmitted immediately. To summarize, the probability thatP2 and P3 are earlier thanA1 is (1 − φ) × 1/2, the

probability thatA1 andA3 are earlier thanP4 is 1/2× φ (for similar reasons as described earlier). Therefore, the

probability that the first sequence occurs givenC is (1− φ)× 1/2× 1/2× φ = φ(1− φ)/4.
For the second sequence, the probability of havingP2 andP3 earlier thanA1 is (1−φ)×1/2; the probability thatP4

is earlier thanA1 is 1/2. Therefore, the probability that the second sequence occurs is(1−φ)×1/2×1/2 = (1−φ)/4.
In both sequences, to satisfy∆A ≤ 600 µs, we also require the MAC service time ofA3 to be less than600

µs. The probability of this condition being satisfied is(600− 508)/620 = 92/620. Therefore,

P (∆A ≤ 600 µs | C) = [φ(1− φ)/4 + (1− φ)/4]92/620

=
1
4
(1− φ2)

92
620

< 0.04.

Hence,P (∆A > 600 µs) ≥ P (∆A > 600 µs | C) > 1− 0.04 > 0.96.
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APPENDIX IV

PROOF OFTHEOREM 4

Proof: The proof is similar to that of Theorem 3. LetC denote the condition that∆D
i,i+1 ≤ 325 µs, i = 1, 2, 3.

Under this condition,Pi+1 arrives at the AP before the AP finishes transmittingPi, since the MAC service time of a

data packet is at least325 µs in 54 Mbps 802.11g. Then assuming independence and from Lemma 5,P (C) ≥ 0.893.

We now obtainP (∆A ≤ 600 µs | C). To satisfy∆A ≤ 600 µs, there can be at most one data packet transmitted

between ACKsA1 andA3, since the minimum transmission time of two data packets and one ACK exceeds600
µs. This constraint leads to the following four possible sequences:P2P3A1A3P4, P2P3P4A1A3, P2A1P3A3P4,

and P2P3A1P4A3. The first two sequences are the same as those in the proof of Theorem 3. They occur with

respectively the probabilities ofφ(1 − φ)/4 and (1 − φ)/4, whereφ is the probability that ACKA1 transmits

earlier thanP2. Following a similar reasoning as that in the proof of Theorem 3, the probability that the third

sequence occurs is(1 − φ) × 1/2 × 1 × φ = φ(1 − φ)/2, and the probability that the last sequence occurs is

(1− φ)× 1/2× 1/2× 1/2 = (1− φ)/8.

For the first two sequences, we have∆A ≤ 600 µs. For the third sequence, to satisfy∆A ≤ 600 µs, we

need the total MAC service time ofP3 andA3 to be below600 µs. Similarly, for the fourth sequence, to satisfy

∆A ≤ 600 µs, we need the total MAC service time ofP4 and A3 to be below600 µs. Let X and Y denote

respectively the MAC service time of a data packet and an ACK. Then for both the third and the fourth sequences,

we needX + Y ≤ 600 µs. Let α = P (X + Y ≤ 600 µs). As described in Section III-D,X andY are uniformly

distributed in[325, 460] µs and [109, 244] µs, respectively. Then, by a standard technique, we have

α = 1− (244− 140)× (460− 356)/2
(460− 325)× (244− 109)

= 0.70.

Hence,

P (∆A ≤ 600 µs | C)

= φ(1− φ)/4 + (1− φ)/4 + αφ(1− φ)/2 + α(1− φ)/8

= (−87718φ2 + 38451φ + 49267)/145800 ≤ 0.37.

Therefore,P (∆A > 600 µs) ≥ P (∆A > 600 µs | C)P (C) > (1− 0.37)× 0.893 = 0.45.


