PERFORMANCE
fﬁ% EVALUATION

ELSEVIER Performance Evaluation 49 (2002) 129-146

www.elsevier.com/locate/peva

Continuous-time hidden Markov models for
network performance evaluation

Wei Wefi*, Bing Wang, Don Towsley
Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA

Abstract

In this paper, we study the use of continuous-time hidden Markov models (CT-HMMs) for network protocol and application
performance evaluation. We develop an algorithm to infer the CT-HMM from a series of end-to-end delay and loss observations
of probe packets. This model can then be used to simulate network environments for network performance evaluation. We
validate the simulation method through a series of experiments bottaimd over the Internet. Our experimental results show
that this simulation method can represent a wide rangeasdhetwork scenarios. It is easy to use, accurate and time efficient.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords:Continuous-time hidden Markov model; EM algorithm; Performance evaluation; Network simulation

1. Introduction

Simulation is a common approach to evaluate a network protocol or application. An event-driven
simulator requires the specification of the topology as well as the parameters of every component of the
simulated network. The setting of these parameters requires fine tuning and needs to be representative
of a real world scenario, which is a non-trivial task. Furthermore, simulation of very large networks can
be very difficult due to excessive memory and CPU time requirements. Consequently, there have been
considerable efforts to speed up event-driven simulation. For exaffipf@ovides a means to distribute
anns|[2] simulation on several connected workstations. The scalable simulation framework (SSF) aims
to transparently utilize parallel processor resources and scale to very large collection of simulated entities
[3]. Fluid simulation is another speed up technique that makes simplified assumptions about the system
and is studied if4,5]. Compared to a simulator, an emulation package has the advantage of using real
traffic generators. Dummyngd] and NIST Nef{7] are two such examples. Although still require users to
specify some parameters such as propagation delay and loss rate, they provide greater transparency: fron

* This research was supported in part by the National Science Foundation under NSF grants ANI-0085848, ANI-9973092,
EIA-0080119 and by DARPA under contract F30602-00-2-0554. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.

* Corresponding author.

E-mail addressesveiwei@cs.umass.edu (W. Wei), bing@cs.umass.edu (B. Wang), towsley@cs.umass.edu (D. Towsley).

0166-5316/02/$ — see front matter © 2002 Elsevier Science B.V. All rights reserved.
PIl: S0166-5316(02)00122-0

130 W. Wei et al./ Performance Evaluation 49 (2002) 129-146

the user’s point of view, the network is a black box simulated by the emulator. The challenge here is how to
make the black box a good model of a real network. For instance, Dummynet uses an independent uniforr
random loss model, which differs from the correlated loss observations made by several[8{Qfies

In this paper, we propose the use of a continuous-time hidden Markov model (CT-HMM) for network
performance evaluation. We infer a CT-HMM from delay and loss observations seen by a sequence
of probes sent from one end host to another end host. This CT-HMM can then be incorporated into a
simulator or an emulator to drive the simulation of a network protocol or application by providing losses
and delays to packets in the network at arbitrary points of time. By collecting probe traces in a wide
variety of network settings, one can construct a library of CT-HMMs, with each model representing a
particular network setting. A model can then be selected to simulate a network protocol or application
under a particular network environment. This simulation method can thus provide users with a simulation
environment representing a wide rangeesl| network scenarios.

We carry out experiments imsand over the Internetto validate this simulation method. The experiments
allow us to validate the method in both controlled and real network environments. We demonstrate that
the CT-HMM is a good model of the network settings by showing that the behavior of a flow driven
by the model is similar to that of a flow in the original network. Here the flow can be governed by a
network protocol or an application. We validate using both TCP and a streaming video application. Our
experiments show that this simulation method is accurate, and time and space efficient. For a simulation
time of 3000s, the running time using this method is around 2 min on a Pentium 4 regardless of the
complexity of the network (topology, number of flows, etc.) being simulated. A simulation of a similar
three-router scenario ims can take over 30 min.

Previous work on network modeling focuses on the loss behavior and uses discrete-timg hed&ls
Yajnik etal.[11] use &th order Markov model for the temporal dependence in packetloss. Salamatian and
Vaton[12] use a discrete-time HMM to model packet loss in network channels and show that the number
of states required is significantly less than usirigraorder Markov model. For the purpose of network
protocol or application simulation, the delay characteristics also have to be modeled. Furthermore, it is
necessary to assign a delay or a loss to a packet at an arbitrary point of time. This cannot be provided by
a discrete time model.

The rest of the paper is organized as follows. The inference of CT-HMM is descrildgelciion 2
Section Jprovides numerical validation of the mod8kction 4describes methodology for the validation.
Sections 5 and @escribe the validation of this simulation methodgand over the Internet, focusing on
TCP and a streaming video application, respectively. Findtgtion 7concludes the paper and describes
future work.

2. Inference of the CT-HMM

In this section, we assume that a network in steady-state can be modeled by a CT-HMM and describe
how the parameters of such a model can be inferred given a sequence of observations. These observatiol
are losses or delays seen by a sequence of probes sent from one end host to another end host in t
network. Because delays can take arbitrary non-negative real values, we discretize them into a finite seto
values. We shall refer to these values along with loss as a set of observation symbols. Let us suppose ths
the network can be modeled as a CT-HMM wikh distinct observation symbols ard hidden states.

Here, a hidden state cannot be observed directly but is reflected by the observations.

W. Wei et al. / Performance Evaluation 49 (2002) 129-146 131

Let {Z(¢)};>0 be the CT-HMM that we wish to learn. Each stat&¢) contains two components: the
hidden stateX () € {1, 2, ..., N} and the observation symb¥l(z) € {1,2,..., M}. Thatis,Z(t) =
(X(1),Y(@).LetS={1,2,...,N} x {1, 2, ..., M}. The stochastic proce$Z (1)};-o takes values iy
and is governed by a single infinitesimal generator of Mikex MN. Denote this infinitesimal generator
asQ = [gj], wheregj > 0, gii = — >_;_; gij. i, j € S.

We develop a mechanism to infer the infinitesimal gener@pogiven the sequence of discrete-time
observationgY,}_,, whereT is the length of the sequence. The valug/pfs either an observation or
unknown, and the time difference between two adjacent observatiansSmce the observations are at
discrete times, we start from a probability transition matrix reflected by the observation8(Agt=
[pij(A)] denote the probability transition matrix derived from the continuous-time Markov chain, where
pij(4) is the probability that the Markov chain, currently in statis in statej after an additional timet,
wherei, j € S [13]. Without confusion, we leP represent’(A) in the rest of the paper for simplicity.
Our first step is to derive the probability transition matfixfrom the observation sequence using an
expectation maximization (EM) algorithm. Our second step is to calculate the infinitesimal gergrator
from the probability transition matri®. We next describe these two steps in detalil.

2.1. An EM algorithm to infer the discrete-time model

We consider a discrete-time model derived from the continuous-time Markov chain with the probability
transition matrixP and initial distributionz. For convenience, let = (P, 7). We next describe the
procedure to infek from a sequence df observations.

When the observation sequence is obtained by periodic probing, our algorithm to infer the pakameter
is derived from the EM algorithm ifiL4] by representing the hidden state and the observation symbol as
a state. We refer to this as the complete-data EM algorithm. In some situations, it is impossible to obtain
a periodic probing sequence. For instance, if one of the hosts is behind a firewall, we may have to use
TCP probes, which cannot be guaranteed to follow a specified probing process. For this case, we assume
the existence of a minimum time intervalsuch that the intervals between observations are multiples of
A. The probe sequence can then be regarded as a periodic sequence witpetibdome missing
data points. We develop a missing-data EM algorithm to deal with this situation.

We next describe the missing-data EM algorithm; the complete-data EM algorithm being a special
case of it. The detailed derivation and description of the algorithms can be fo{i]iwWe first define
some notations conforming to those usedlif]. Let (i, j) represent a state with hidden component
and observation symbgl. An element in the transition matrik is denoted ap; j«) representing
the probability of transition from statg, j) to state(k, I). Defineo, (i, j) to be the probability of the
observation sequence up to timand the state being ifi, j) at timer, giveni. That is

at(i’ J) - P(Zt - (l$.])7 le)’l’ Y2 :)72,---,Yt :yll)")

Define g, (i, j) to be the probability of the observation sequence from timel to T', given state being
in (i, j) attimet, giveni. That is

B, j) = P(Yry1 = Y1, ..., Yr = yrlZ; = (0, J),).

Defineg, (i, j, k, 1) to be the probability of state being (i j) at timer and in(k, /) at timer + 1, given
the observation sequence ahdDefiney; (i, j) to be the probability of being in statg, j) at timez,

132 W. Wei et al./ Performance Evaluation 49 (2002) 129-146
given the observation sequence and hat is
&, J kD) =P(Z =0,)) Zixa=k,DIY1=y1,Yo=y2,.... Y71 =y, A)
vi(i,j)=PZ =0 DIY1=y1,Y2=yz,....Yr = yr, A).
We derives, (i, j, k, 1) from «, (i, j) and g, 1(k, [) as follows:
o (i, D pa. jwnBeralk, 1)

Et(i7j7kvl): .. . (1)
Zf\;l Zfil lecv=l Zlﬁil i (i, J) pa.jyk.n Bk, 1)
Observe thay; can be calculated fror) as
N M
vili, j) =YY &G j. kD). @)

k=1 1=1

The EM algorithm is an iterative algorithm in which each iteration consists of two steps: the expectation
step and the maximization step. During the expectation step, we compute the expected number of transi
tions from statéi, ;) and the expected number of transitions from statg) to statgk, /) using the model
parameters obtained during the previous iteration. Denote these g$ andm(i, j, k, [), respectively.
During the maximization step, we calculate the new model parametersifiior) andm (i, j, k,). The
iteration ends when the difference between the new model and the previous model parameters are les
than a certain threshold.

Without loss of generality, we assume the observation valueg,fandY; are known. Lety, be the
observation value fo¥;. We sayy, = u if the observation fofy; is missing. In the expectation step,
we first calculatex and 8 using the procedures as follows. The procedure to calculdte;), where
1<r<T,1<i<N,1<j<M,consists of the following steps:

(1) Initialization:
o (i, y1), J=y1
ai(i, j) = .
0, J#)1
(2) Induction:
09 yt-’rl#u’j 7é)’t+l’
ZII{V=1 Zlﬂil o (k, l)p(k,l)(i,j)a OtherWise
wherer =1,2,3,..., T — 1.

(X;-{-l(i, .]) = {

The procedure to calculage(i, j),where 1<t <T,1<i < N,1 < j < M, contain the following
steps:

(1) Initialization:

1, j=yr,

Brii, j) =
! [0, j# .

W. Wei et al. / Performance Evaluation 49 (2002) 129-146 133
(2) Induction:
0, Ve Fu, j F i,
S Y papanBrealk, D), otherwise
wheret =7 -1,T —-2,...,1.

B, j) =

Oncea and 8 are obtained, we calculate and y using (1) and (2) Then we calculate(i, j) and
m(i, j, k, 1) fromy;(i, j) and&, G, j, k, [) as follows:

T-1
n(i, j) =Y n, j), 3)
=1
T-1
mG, j, k1) =Y &G, j, kD). 4)
=1

The new model parameter estimates are obtained in the maximization step as follows:

R m(i, j, k, 1)

Pa, k) = —— (5)
@@, j)(k,D) I’l(l,])

6,5 = v, j). (6)

2.2. Obtain the infinitesimal generat@r from the transition matrixP

We next describe a method to calculate the infinitesimal genegafaym the transition matrix. By
solving the Kolmogorov equations, we obtain the following relation betweamd Q:

P =e??. (7)
Therefore, when I9P) exists,Q can be calculated as follows:
1
= —In(P). 8
0 A n(pP) (8)
We extend the Taylor expansion() = ij;l(—l)”‘l(x —1"/n,0 < x < 2to matrices and define
= AP =)
In(P) = —pyrte o 9
n(P) ;<) . 9
when the right-hand side ¢®) converges, wheré is the identity matrix, we have
1S (P—=1)"
=) (—pri—, 10
0= ;() . (10)

In this paper, we consider the complete metric space of matrices ofdize MN with the maximum
absolute row sum norm as the mefii€]. We next state a theorem describing the convergence condition
of (9).

134 W. Wei et al./ Performance Evaluation 49 (2002) 129-146

Theorem 1. The right-hand side a®) converges itvi, p; > 1/2.
Proof. Define f,(P) = >'_,((=1)~(P — I)")/i. We prove thatf, (P) converges when — oo by

showing thatf, (P) is a Cauchy sequence. First, becavse; > 1/2, we have

IP =1l =max| |pi =1+ py
J#i
=max1 — pi +1 - pi) = 2max1 — pi) = 2(1 —minp;j) < 1.

Without loss of generality, assume < n, then

I fn(P) = fu(P)Il =

—~ D -
> :

1

NP =D P =1
B

i=m+1 i=m+1 i=m+1
n n—m-—1
< > WP=IFF =P =1 > P =1
i=m+1 i=0
o0
. P =t
<[P =11""Y (P -D = ——.
2 1— P -1

i=0

For anye > 0, to satisfy| P — I|"*1/(1— ||P — I|) < ¢, we need IG|P — I||"*) < In e 4+ In(1—
|P — I)). Therefore,

Ine+InL—||P—1I|)
In|P — 1|

m > 1.

Hence,Ve > 0,IN = [(Ine+ In(Q—||P —1I|))/In||P —I|7 — 1, such that for alln,n > N,

I fm(P)— fu(P)| < €. Therefore f,(P) is a Cauchy sequence. Thys(P) converges by the complete-
ness of the metric space. O

Note that the convergence conditiorildfeorem 1s sufficient but not necessary. Our experiments show
that very often convergence holds even when the elements on the diagonal ofPreateixnuch less than
1/2. We next state a theorem which provides a more relaxed convergence conditidih¢oaem 1

Theorem 2. The right-hand side of9) converges iic > 0 and§ > 0, such that there exist&y =
N(P, 8, c) satisfyingvn > N, |[(P —)"|| < c¢/n®.

Proof. SinceVn > N, ||[(P — I)"|| < ¢/n’, we have

00 00 00
no1 (P —1)" (P — D" c
I R e
n=N+1 n=N+1 n=N+1

Sinced_>7, 1/n'* convergesy o2 (—1)"~1((P — I)"/n) converges. O

W. Wei et al. / Performance Evaluation 49 (2002) 129-146 135
When the right-hand side @) does not converge, we approximate the infinitesimal generator by using
1
=—(P-=1. 11
0 A() (11)

Our numerical and experimental validations show that the approximation is reasonably good.

3. Numerical validation of the model

In this section, we apply the model inference procedure to observation traces generated by known
CT-HMMs. After a model is inferred, we examine if it is close to the original model for validation. We
first describe the results from one model in detail. This model has two hidden states and three observation
symbols. Its infinitesimal generat@r is shown below:

-4 2 1 1 0 0]
1 -5 3 0 1 0
2 3 -6 0 0 1
=152 0 o0 -7 2 3
O 2 0 3 -8 3

|0 0 2 2 5 —9]

We use the model to generate a 1000 s long trace. Using sampling intervals of 1 and 100 ms, we obtain
observation sequenceéy (of length 1,000,000) an@1¢ (of length 10,000), respectively. The sequence
O100is used for model inference. The sequenias used to check the quality of the inferred CT-HMM,

as described later. Since we cannot observe the number of hiddentditestly from the observation
sequenceéigg, We explore the sensitivity of the models to the choic&/oln particular, we consideyw
in{2,3,...,10} for model inference.

We observe that the inferred CT-HMM is not guaranteed to be exactly the same as the original model,
since the results of the EM algorithm are local maxima and the inference is from a discrete-time sample
of the original model. For example, the inferred infinitesimal gener@tovhenM = 3 andN = 2 is
different from the original mode) as shown below:

[—324 157 003 001 000 164
153 —-444 005 001 000 285
207 000 -767 000 553 007
000 120 143 -—-456 193 000
000 281 349 300 -929 000
006 000 033 232 297 -567|

Q>
I

However, the inferred models are very close to the original model in the following two senses. First,
inferred models generate sequences whose autocorrelation functions (ACFs) are very close to that of a
sequence generated by the original moHig). 1shows the ACFs of a sequence of length 10,000 generated
from the inferred models for various values @fand that of the original sequenc® . The lag is in

136 W. Wei et al./ Performance Evaluation 49 (2002) 129-146

1

0.8 i

0.6

0.4

0.2

Autocorrelation

0

-0.2

0 5 10 15 20
Fig. 1. ACFs for the original and various modeig,= 3.

multiples of 1200 ms. The models fof = 4 and 6 are fron{9) while the model forN = 9 is from the
approximation11). We observe that the ACFs of these models are very similar to that of the original.

Second, symbols lying between observations can be estimated from an inferred model accurately. Fol
instance, we obtain the MLE sequence at the interval of 1 ms using the seqogp@nd an inferred
model! Our results show that 82% of the MLE symbols match the observation symb@is Moreover,
most of the MLE sequences for different values\ofire identical, demonstrating the similarity among
the inferred models.

We generate another nine models for further validation. Each model has two hidden states and three
observation symbols. The transition rates of each model are randomly chosen between 1 and 10. Fo
each model, we investigate the rangeNofrom 2 to 10 for a total of 81 experiments. Among the®),
converges for 62 cases. In the remaining 19 cases, the s(8hdiverges mostly for high values of
(N = 6). The reason why higher value &f leads to divergent results can be explained as follows. The
number of states in the CT-HMM increases linearly with For large values oV, the probability of
the process remaining in a given state after one transition tends to be very small. Alfffeayem lis
not a necessary condition for convergence, very small valugg t&nds to lead to divergence (). We
obtain approximate models for the 19 divergent cases ygibyIn the MLE sequences obtained from
the models, 82-90% of the MLE symbols match the observation symbdls.iRurthermore, the MLE
sequences from the models for different valued/aire mostly identical.

We also examine the behavior of an inferred model of size smaller than the original model and observe
similar results as earlier. The details ard1%]. In summary, our numerical validation shows that, for
a given model, the models inferred by our algorithm for different value¥ afre close to the original
model and close to each other.

4. Validation of the method

In this section, we describe the methodology used to validate our simulation method. The validation is
based on a series of experiments carried ousiand over the Internet. Ins we investigate a variety of

! The method to obtain MLE sequence is describefd &).

W. Wei et al. / Performance Evaluation 49 (2002) 129-146 137

target flow (forward) model-driven flow(forward)

probes (forward)

O—Q---mmmmn-- o—oO0 i i 0 O

| source dest.! | source dest. |

model-driven flow(backward) |

Model inference Model validation

Fig. 2. Model inference and validation.

settings characterized by different traffic and topologies. Over the Internet, we examine several settings
characterized by different delay and loss behaviors. We believe that these experiments show our approach
to be quite promising.

As shown in the model inference partffy. 2, in each experiment, we send probes from the source to
the destination along withtargetflow. The behavior of the target flow is governed by a network protocol
or an application. When necessary, probe packets are also sent along the backward direction of the targe
flow. The observations of the forward and backward probes are used to infer CT-HMMs for the forward
and backward paths, respectively. The models are then used to generate end-to-end losses and delays fc
packets in a flow, as shown in the model validation pafigf 2. We validate this simulation method by
comparing the behavior of the target flow in the original setting with the model-driven flow. Note that the
link controlled by the model represents the whole path in the original network. Hence the running time
required by our simulation method is independent of the complexity of the network being simulated.

The probes are either sent periodically with the spacinyof/ A, where is a geometrically distributed
random variable. We refer to these as periodic probing and geometric probing, respectively. For periodic
probing,A is set to 20, 50 or 100 ms. For geometric probingzlbe the average inter-sending time. We
setr to be 20, 50 or 100 ms arito 1 or 10 ms. The random varialdléhus has a geometric distribution
with the parameter oft /. We next describe the experimental methodology in detail.

4.1. Loss and delay as symbols

The CT-HMM usesV symbols to representthe observed delay and loss sequence. One way to discretize
the delay and loss sequence is to (le— 1) symbols to represent delay and a single symbol to represent
loss. Another way is to combine loss and large delays into one symbol since large delays and loss are
usually closely related. We find that the first method requires very fine probing interval since the duration
of a loss behavior is shorter than the processing time of one packet. We therefore adopt the second
approach. More specifically, we divide the range of delay values Mtequal length bins. A delay
value falling in theith (1 < i < M) bin is represented by symbalMore formally, suppose we have a
probing observation sequengg}’_;. Let the minimum delay and the maximum delaydag, anddmax,
respectively. We usé, = oo to denote that the observatiorras a loss. We say, = u if the observation
atr is missing. The intervaldmin, dmad is divided into M bins. The length of each bin is denotedias
Thenb = (dmax — dmin)/ M. We convert the delay and loss observation sequence to a symbol sequence

138 W. Wei et al./ Performance Evaluation 49 (2002) 129-146

{y:}_, as follows:

M, dt :OO,
d; — dmi
Ve = lrszm—‘ , dmin < d; < dmax,
u, di=u.

Atthe same time, we record the probability that symiatorresponds to a loss. Note that, in this way, we
regard that loss is only correlated with the largest delay symhadh practice, the correlation of loss and

large delays may not be strong in some situations, for instance, when RED is used for queue managemer
in the routers. If15], we extend the EM algorithm iBection 2.1so that there is a component of loss
associated with each symbol.

4.2. Mapping symbols to delay and loss values

Once a CT-HMM is inferred, we can determine an observation symbol for any point of time from
the model. For the purpose of simulation, this symbol has to be mapped back into delay or loss. When
mapping a symbol to delay or loss, ifi = M, we first decide if it is a loss according to the loss
probability in symbolM. If it is not a loss, we generate a delay for it according to the conditional
distribution of delays given that the symbol jsvhich is obtained from the probing trace. The details are
in [15].

4.3. Usage of virtual probes in ns

For a given setting, we need to investigate the simulation results over a range of probing intervals.
In order to save time and space, and to make the results at different probing intervals comparable,
we use virtual probes to study a setting with a single link first. Unlike a real probe, a virtual probe
does not generate traffic. It records the loss or delay value at a certain point of time by analyzing the
nstraces. A virtual probe sees a loss if the packet before it is dropped. Otherwise, the delay seen by
the probe is calculated by keeping track of the enqueue time and processing time of all of the pre-
vious packets. This simulation method allows us to impose “probes” at a range of probing intervals
to discover the granularity of the probing required for a network setting. We, for instance, confirmed
that very fine probing intervals are required if loss is represented as a single symbol as described in
Section 4.1

4.4, Measurement of one-way delay over the Internet

If the clocks at the sender and receiver are synchronized, the subtraction of the timestamp of a packe
at the receiver and the sender is the one-way delay. However, we do not have an external universal time
reference to synchronize the two clocks. Given this, we use the method propodéed o remove
clock offset and skew. The resulting delay sequence represents the variable portion of the one-way delay
over the network. To obtain the actual delay value, a constant portion has to be added, which contains
the one-way transmission delay, propagation delay, and the minimum queuing delay experienced by the
probe packets during the chosen time period. We describe the estimation of this value when describing
the experiments (iBections 5.2 and)6

W. Wei et al. / Performance Evaluation 49 (2002) 129-146 139

5. Experimental validationsfor TCP

In this section, we validate the simulation method through a series of experiments for TCP carried out
in nsand over the Internet. That is, in each experiment, we send probes along with a target TCP flow on
the forward and backward paths. The forward and backward probes are used to infer the models for the
forward and backward paths, respectively. The inferred models are then used to provide delay and loss
to packets along the forward and backward paths of the model-driven TCP flow.

The metrics we use amverage loss rate, average throughpahdACF of the throughput sequence
The average loss rate records the loss ratio of data packets from the TCP source. The average throughpu
records the amount of data reaching the TCP sink from the source. The ACF of the throughput sequence
records the temporal dependence of throughput in the TCP flow.

5.1. Validation in ns

We next validate our simulation method through experiments under a variety of network settings in
ns We study topologies containing a single link and multiple links. The traffic combinations include
infinite TCP sources only, infinite TCP sources with on—off UDP sources, and infinite TCP sources with
HTTP sources. The target TCP flow uses Reno or SACK. For all the settings we examined, the loss and
throughput predictions made by the model-driven simulation falls within 10% of those of the target TCP
flow in the original setting i andN are chosen properly. In the interest of space, we only describe results
for traffic combinations of TCP and HTTP sources with multiple links. More results are descrildédl.in

In this setting, we connect four routerg r1, ro andrz as shown irFig. 3. The bandwidth between
routerrg andr, is set to be 2 Mb. The bandwidth between the other consecutive routers ¢rowater and
routerr; to r3) is set to be 5 Mb. The bandwidth for all the other links is set to be 10 Mb. The maximum
gueue length and propagation delay between two consecutive routers are set to be 100 packets and 30 ms
respectively. There are two types of TCP flows in this setting: flows traversing all the routers and flows
pass part of the routers. We call the first type of flanaversingflows and the second type of flows
bypasdlows. The number of traversing TCP flows from routgto r3 and fromrs to rq are set to be 3
and 2, respectively. Each traversing flow starts from a TCP source connected to-gdrgewith their
corresponding TCP sink connected to routg(rg). Each bypass flow starts from a source connected

Bypass
O traffic
TCP TCP

sources . O 10Mb, ! sinks

TCP

sinks TCP

O
5Mbr3 C:)sources
O

c]ﬁTeT:ts' : HITP
O . servers

O

Fig. 3. TCP and HTTP sources with multiple linksria

140 W. Wei et al./ Performance Evaluation 49 (2002) 129-146

Table 1
Number of bypass TCP flows in the multiple-link settinghs

>From— to Number

ro—>ri
ro —> rs
ri —> r
rp — rs
rop —> r3
ri —>ro
rp —> o
ro —>ri
r3 —>ri
r3 — rp

NWWNRFEBMANNPE®

to routerr; and ends at another router, where 0< i, j < 3. The number of bypass flows along the
path from router; to r; are listed inTable 1 The propagation delay between a TCP source or sink to
its corresponding router is uniformly distributed in [10,20] ms. There are 10 HTTP clients connected to
routerrg, with their corresponding HTTP servers connected to rautefhe HTTP traffic follows the
empirical data provided biys The propagation delay from an HTTP server or client to its corresponding
router is also set to be uniformly distributed in [10,20] ms.

We choose a traversing TCP flow fromito r3 as the target flow and send probe packets with the TCP
flow along both the forward and backward directions at the probing interval of 20 ms. The target TCP
flow encounters a loss rate of 1.49% along the patf &6 3 and its average throughput is 0.144 Mbps.
The errors of both throughput and loss rate of the model-driven TCP flow relative to the target TCP flow
are shown inTable 2 We observe that in general the performance of a model improves as the number
of states increases. The relative errors of the throughput and the loss rate fall within 17% for various
settings.

Fig. 4 compares the ACFs of the throughput of a model-driven TCP and the target TCP flow, where
lags are measured in seconds. The model used in the graph is inferredisin@ andN = 2. The
figure demonstrates a good match of the two functions.

Table 2

Relative errors for TCP and HTTP sources with multiple linkasn

M; (=My) Nt (=Np) Throughput error (%) Loss error (%)
3 2 7.7 15.6
4 2 8.1 -0.0
5 2 17.0 1.9
2 3 -9.9 8.5
3 3 5.6 -10.7
4 3 9.3 -3.2
2 4 -39 1.7
3 4 -35 7.2

W. Wei et al. / Performance Evaluation 49 (2002) 129-146 141

1

M=3,N=2 ——
08 target
c
2 06
o
[
5 0.4
o
<]
5 02
<<
0
-0.2

0 5 10 15 20
Lag (seconds)

Fig. 4. ACF of throughput for TCP and HTTP sources with multiple linkasn

5.2. Validation over the Internet

We next describe our validation of the simulation method over the Internet. Two Faeesl 7> are
shown inTable 3 Each trace is collected by a 1-hour run and contains two-way (along the forward and
the backward paths) traces. For both traces, the sender of the target TCP is at our site (UMass) and the
receiver is at University of Southern California (USC). The number of hops from UMass to USC is 20
and the number of hops from USC to UMass is 14. The measurement of one-way delays is described in
Section 4.4We take half of the minimum round-trip time of the target TCP flows as the constant portion
to obtain the actual delays. To incorporate the modelsnstand drive a TCP flow, we need to obtain
some key parameters used in the target TCP flow. We find that the target TCP flow uses TCP SACK by
the method described [48]. Most of the packets in the target TCP flow (over 99%) are 1448 bytes. The
receiver window size changes over the session while it is fixed ilVe obtain a rough estimate of the
window size from[19] and finely tune it during the validation process. We next present the results for
tracesT; andT».

In traceT;, probes are sent at regular intervalof 20 ms in the directions from UMass to USC and
from USC to UMass. We focus on a stationary segment of 300s. On the route from UMass to USC,
the average loss rate and throughput of the target TCP flow are 1.51% and 0.214 Mbps, respectively, as
shown inTable 3 In ns we set the one-way delay to be 100 ms and the window size to Beb& 4
summarizes the errors of throughput and loss rate of the model-driven TCP flows relative to the target TCP
flow for different settings of the models, where entries marked bye obtained by the approximation
(11). We observe that, for this trace, the number of observation symbols as 2—-3 and the number of hidden
states as 2-5 are sufficient to achieve good results. The comparison of the ACF of the throughput for the

Table 3

Two validation experiments for TCP over the Internet

Trace Time Probing Loss rate (%) Throughput (Mbps)
Th 03/08/02, 22:24 Periodicd =20 ms 1.51 0.214

T, 03/16/02, 14:06 Geometrigd = 10ms,r = 50ms 0.41 1.578

142 W. Wei et al./ Performance Evaluation 49 (2002) 129-146

Table 4

Relative errors of throughput and loss rate for trace

M;¢ Ni M, Ny Throughput error (%) Loss error (%)
2 3 2 2 —-0.4 —-12.0
2 4 2 2 —4.2 8.0
2 5 2 2 -5.6 9.4
3 3 3 2 -1.0 16.0
3 4 3 2 2.9 -3.3
3 5 3 2 3.1 -0.6
2 3 2 3 -0.3 10.1
2 4 2 3 —4.7 —6.7
2 5 2 3 -55 104
3 3 3 3 -0.6 11.0
3 4 3 3 11 -9.0
3 5 3 3 2.6 2.3

model-driven TCP and the target TCP flow is showRiig. 5@), where lags are measured in seconds and
the model is obtained by settirld; = 3, Ny =5, M, = 3, N, = 2.

For traceT, (seeTable 3, we use geometric probing on the forward and the backward paths with the
average probing intervalof 50 ms. Due to limitation in the time granularity of Linux, the minimum prob-
ing interval A is set to be 10 ms. We focus on a stationary segment of 1200 s and use the missing-data EM
algorithm in the model inference process. As showrehle 3 the average loss rate in this trace is 0.41%,
significantly lower than in tracg,. The average throughputis 1.578 Mbpsnfnwe set the one-way delay
to be 43 ms and the window size to be 18. We cannot find a convergent solution for the model on the back-
ward path even foM, = 2 andN, = 2. The reason is that there are no losses on the backward path and the
delay variations are in a very short range2(ms). We therefore use a constant delay (the average delay on
the backward path) for the backward direction. The errors of the model-driven TCP flow relative to the tar-
get TCP are shown ifiable 5 The relative errors of throughput and loss rate of all the settings in the table

Mf=Mb=3,Nf=5,Nb=2 —— M=2,N=4 ——
08 \ target 0.8 target
| c
S o6 \\ S 06
K] «
o o
5 04 5 04
Qo Q
e ie} 0.2
g 0.2 2 .
0 0
-0.2 -0.2
0 5 10 15 20 0 5 10 15 20
Lag (seconds) Lag (seconds)

(a) ACF of throughput for T7. (b) ACF of throughput for T5.

Fig. 5. ACFs of throughput for tracgs and7,. ACF of throughput for (aY; and (b)75.

W. Wei et al. / Performance Evaluation 49 (2002) 129-146 143

Table 5

Relative errors of throughput and loss rate for trage

M N; Throughput error (%) Loss error (%)
2 2 -0.1 -3.0
2 3 2.8 —-12.4
2 4 24 -10.4
2 5 -0.6 0.3
2 6 -0.3 -11
2 7 -1.4 4.0
2 8 -1.5 3.6
2 9 14 —6.8

fall within 3 and 13%, respectively. We also observe good conformance of the model-driven TCP flow and
the target TCP from the ACFs of the throughput as shoviign(b), where lags are measured in seconds.

6. Validation for a streaming video application

In this section, we validate the simulation method using a streaming video application. We send probe
packets along with a streaming video application from one end host to another end host. The streaming
video application uses UDP and there are no acknowledgments along the backward path. Therefore, we
only need to infer the model along the forward path. Since streaming media applications are sensitive to
delays and losses, we use the following metrics:

e average loss rate, average delay and CV (coefficient of variation) of the delays;
e distribution of the delays;
e ACF of the delay and loss symbols.

The one-way delays from the sender to the receiver are obtained as desc8betion 4.4To calculate
the ACF of the delay symbols, the obtained variable portion of the one-way delay is sufficient. To calculate
the other delay metrics, we need to obtain the actual delay by adding a constant portion to the variable
portion. However, unlike with TCP, this constant portion does not affect the behavior of the application.
We estimate the constant portion roughly from the round-trip time reportqangypackets. We send
ping packets lasting for 30 min before the experiments and take half of the minimum round-trip time to
be the constant portion.

We next describe an experiment from our site (UMass) to a site in Universidade Federal do Rio de
Janeiro (UFRJ), Brazil, which was carried out at 10:25 a.m. on 1 April 2002 and lasted for 1 h. The
number of hops from UMass to UFRJ is 14. We use a 200 Kbps CBR (constant bit rate) video. The frame
rate of the video is 25 frames per second. For this experiment, we use geometric probing with the average
probing intervak as 50 ms and the minimum time intervalas 10 ms. The constant portion of the delay
is estimated to be 78 ms.

We choose a 1200s stationary segment from the video stream as the target stream and use the
missing-data EM algorithm in the model inference process. For the target stream, the average loss rate is
0.2%, the average delay is 99 ms and the CV of the delays is 0.12. The errors of delay and CV of delays
of the model-driven stream relative to the target stream are shoWabie § whereM is from 2 to 3 and

144 W. Wei et al./ Performance Evaluation 49 (2002) 129-146

Table 6

Relative error for a streaming video application

M N Delay error (%) CV error (%)
2 2 -2.1 -35
2 3 -2.0 1.9
2 4 -2.1 0.9
2 5 -2.0 1.8
3 2 -2.3 0.4
3 3 -2.4 -0.6
3 4 -2.4 -0.3
3 5 2.2 —0.6

1

oo b 00| g N ——
0.8 video —— T
0.7 5
0.6 _ 3
& 05 ‘ 2
O * 5]
041 4 g
03| 4 3
0.2
01t J
0 - 0
0.06 0.1 0.14 0.18 0.22 0 5 1015202530 35 40 4550
Delay (seconds) Lag (40ms)
(a) Delay distribution (b) ACF of delay symbols

Fig. 6. Results for a streaming video application.

N is from 2 to 5. For various settings & andN, the delay errors are within 3% and the errors of CV
of the delays are within 4%. The loss rates for various settings are around 0.2%.

The delay cumulative distribution functions (CDFs) of the target video stream, probes and a model-driven
video stream are shown Kig. 6(a). We observe that the delay distribution of the model-driven stream is
almost identical to that of the probes. The difference in the delay distribution of the model-driven stream
and the target stream is caused by the different observations seen by the probes and the target stream.

We compare the ACFs of the delays of the target stream and model-driven stream for different settings
of M and N. We observe that, for the sanié, the ACF becomes closer to that of the target stream
as N increasesFig. 6(b) shows the ACFs of the delay symbols of the target video stream and that of
model-driven streams. Each lag is 40 ms. The model is inferred by séftiag3 andN = 4.

7. Conclusion and futurework

In this paper, we explored the use of CT-HMMs for network protocol and application evaluation.
We develop a mechanism to infer a CT-HMM from a sequence of observations of probe packets. Our

W. Wei et al. / Performance Evaluation 49 (2002) 129-146 145

validations of this simulation method ims and over the Internet demonstrate that this method has the
potential to represent a wide rangereél network scenarios. It is accurate, and time and space efficient.
We observe that for real network settings we examined, models of small size are sufficient to achieve
good results. As future work, we are pursuing the following directions: (i) examine the use of the model
in more real network scenarios; (ii) investigate how to use the probing trace in combination with the
CT-HMM to model transient behavior in the network.

Acknowledgements

We would like to thank J. Kurose, E.A. de Souza e Silva and the anonymous reviewers for their insightful
comments. We would also like to thank L. Golubchik, C. Papadopoulos and E.A. de Souza e Silva for
providing us accounts for the Internet experiments; W. Cheng, F.J. Silveira Filho, A. Lee, A. Papagapiou
and A.P. Couto Silva for their cooperations in the experiments. B. Melander laid the foundation for our
nsvalidations. D.R. Figueiredo, B. Liu, J. Padhye, T. Bu and H. Zhang helped us witls #mal Internet
experiments. We would like to express our thanks to all of them.

References

[1] G.Riley, R. Fujimoto, M. Ammar, Parallel/Distributed Nigtp://www.cc.gatech.edu/computing/compass/pdns/index.html
[2] S. McCanne, S. Floyd, ns-LBNL Network Simulatbttp://www-nrg.ee.lbl.gov/ns/
[3] J.H. Cowie, Scalable Simulation Framework API Reference Manual, March 1999.
[4] Y. Guo, Time-stepped hybrid simulation (TSHS) for large scale networks, in: Proceedings of the IEEE INFOCOM, March
2000.
[5] B. Liu, D.R. Figueiredo, Y. Guo, J. Kurose, D. Towsely, A study of networks simulation efficiency: fluid simulation vs.
packet-level simulation, in: Proceedings of the INFOCOM, 2001.
[6] L. Rizzo, Dummynet: a simple approach to the evaluation of network protocols, ACM Comput. Commun. Rev. 27 (1)
(1997) 31-41.
[7] M. Carson, NIST Nethttp://snad.ncsl.nist.gov/itg/nistnet
[8] V. Paxson, End-to-end Internet packet dynamics, IEEE/ACM Trans. Network. 7 (3) (1999) 277-292.
[9] D. Rubenstein, J. Kurose, D. Towsley, Detecting shared congestion of flows via end-to-end measurement, in: Proceedings
of the ACM SIGMETRICS, June 2000.
[10] M. Yajnik, J. Kurose, D. Towsely, Packet loss correlation in the MBone multicast network, in: Proceedings of the IEEE
Global Internet, November 1996.
[11] M. Yajnik, S. Moon, J. Kurose, D. Towsley, Measurement and modelling of the temporal dependence in packet loss, in:
Proceedings of the IEEE INFOCOM, March 1999.
[12] K. Salamatian, S. Vaton, Hidden Markov modelling for network communication channels, in: Proceedings of the ACM
SIGMETRICS, June 2001.
[13] S. Ross, Stochastic Process, Wiley, New York, 1996.
[14] L. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE 77 (1989)
257-285.
[15] W. Wei, B. Wang, D. Towsley, Continuous-time hidden Markov models for network performance evaluation, Technical
Report 02-15, Department of Computer Science, University of Massachusetts, Amherst, 2002.
[16] I. Ryzhik, I.S. Gradshteyn, A. Jeffrey, Table of Integrals, Series and Products, sixth ed., Academic Press, New York, 2000.
[17] S. Moon, P. Skelly, D. Towsley, Estimation and removal of clock skew from network delay measurements, in: Proceedings
of the IEEE INFOCOM, March 1999.
[18] J. Padhye, S. Floy, On inferring TCP behavior, in: Proceedings of the ACM SIGCOMM, August 2001.
[19] M. Mathis, J. Semke, J. Mahdavi, The macroscopic behavior of the TCP congestion avoidance algorithm, Comput. Commun.
Rev. 27 (3) (1997).

http://www.cc.gatech.edu/computing/compass/pdns/index.html
http://www-nrg.ee.lbl.gov/ns/
http://snad.ncsl.nist.gov/itg/nistnet

146 W. Wei et al./ Performance Evaluation 49 (2002) 129-146

Wei We received the B.S. degree in applied mathematics from Peking University, Beijing, China, in 1992,
the M.S. degree in statistics from Texas A&M University, College Station, Texas, in 2000. Currently, he
is a Ph.D. student in the Department of Computer Science at University of Massachusetts, Amherst.

Bing Wang received her B.S. degree and M.S. degree in computer science from Nanjing University of
Science and Technology, China, in 1994 and the Chinese Academy of Sciences, China, in 1997, respec-
tively. She is currently a Ph.D. candidate in the Department of Computer Science at the University of
Massachusetts at Amherst. Her research interests include Internet technologies and applications, network
measurements and modeling.

Don Towsley is currently a Distinguished Professor at the University of Massachusetts in the Department of Computer Science.
His research interests include networking and performance evaluation. He has received the 1998 IEEE Communications Societ
William Bennett Paper Award and three best conference paper awards from ACM SIGMETRICS. Last, he has been elected
Fellow of both the ACM and IEEE.

	Continuous-time hidden Markov models for network performance evaluation
	Introduction
	Inference of the CT-HMM
	An EM algorithm to infer the discrete-time model
	Obtain the infinitesimal generator Q from the transition matrix P

	Numerical validation of the model
	Validation of the method
	Loss and delay as symbols
	Mapping symbols to delay and loss values
	Usage of virtual probes in ns
	Measurement of one-way delay over the Internet

	Experimental validations for TCP
	Validation in ns
	Validation over the Internet

	Validation for a streaming video application
	Conclusion and future work
	Acknowledgements
	References

