
Performance Evaluation 49 (2002) 129–146

Continuous-time hidden Markov models for
network performance evaluation�

Wei Wei∗, Bing Wang, Don Towsley
Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA

Abstract

In this paper, we study the use of continuous-time hidden Markov models (CT-HMMs) for network protocol and application
performance evaluation. We develop an algorithm to infer the CT-HMM from a series of end-to-end delay and loss observations
of probe packets. This model can then be used to simulate network environments for network performance evaluation. We
validate the simulation method through a series of experiments both innsand over the Internet. Our experimental results show
that this simulation method can represent a wide range ofreal network scenarios. It is easy to use, accurate and time efficient.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords:Continuous-time hidden Markov model; EM algorithm; Performance evaluation; Network simulation

1. Introduction

Simulation is a common approach to evaluate a network protocol or application. An event-driven
simulator requires the specification of the topology as well as the parameters of every component of the
simulated network. The setting of these parameters requires fine tuning and needs to be representative
of a real world scenario, which is a non-trivial task. Furthermore, simulation of very large networks can
be very difficult due to excessive memory and CPU time requirements. Consequently, there have been
considerable efforts to speed up event-driven simulation. For example,[1] provides a means to distribute
anns [2] simulation on several connected workstations. The scalable simulation framework (SSF) aims
to transparently utilize parallel processor resources and scale to very large collection of simulated entities
[3]. Fluid simulation is another speed up technique that makes simplified assumptions about the system
and is studied in[4,5]. Compared to a simulator, an emulation package has the advantage of using real
traffic generators. Dummynet[6] and NIST Net[7] are two such examples. Although still require users to
specify some parameters such as propagation delay and loss rate, they provide greater transparency: from

� This research was supported in part by the National Science Foundation under NSF grants ANI-0085848, ANI-9973092,
EIA-0080119 and by DARPA under contract F30602-00-2-0554. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.

∗ Corresponding author.
E-mail addresses:weiwei@cs.umass.edu (W. Wei), bing@cs.umass.edu (B. Wang), towsley@cs.umass.edu (D. Towsley).

0166-5316/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0166-5316(02)00122-0

130 W. Wei et al. / Performance Evaluation 49 (2002) 129–146

the user’s point of view, the network is a black box simulated by the emulator. The challenge here is how to
make the black box a good model of a real network. For instance, Dummynet uses an independent uniform
random loss model, which differs from the correlated loss observations made by several studies[8,9].

In this paper, we propose the use of a continuous-time hidden Markov model (CT-HMM) for network
performance evaluation. We infer a CT-HMM from delay and loss observations seen by a sequence
of probes sent from one end host to another end host. This CT-HMM can then be incorporated into a
simulator or an emulator to drive the simulation of a network protocol or application by providing losses
and delays to packets in the network at arbitrary points of time. By collecting probe traces in a wide
variety of network settings, one can construct a library of CT-HMMs, with each model representing a
particular network setting. A model can then be selected to simulate a network protocol or application
under a particular network environment. This simulation method can thus provide users with a simulation
environment representing a wide range ofreal network scenarios.

We carry out experiments innsand over the Internet to validate this simulation method. The experiments
allow us to validate the method in both controlled and real network environments. We demonstrate that
the CT-HMM is a good model of the network settings by showing that the behavior of a flow driven
by the model is similar to that of a flow in the original network. Here the flow can be governed by a
network protocol or an application. We validate using both TCP and a streaming video application. Our
experiments show that this simulation method is accurate, and time and space efficient. For a simulation
time of 3000 s, the running time using this method is around 2 min on a Pentium 4 regardless of the
complexity of the network (topology, number of flows, etc.) being simulated. A simulation of a similar
three-router scenario innscan take over 30 min.

Previous work on network modeling focuses on the loss behavior and uses discrete-time models[10–12].
Yajnik et al.[11] use akth order Markov model for the temporal dependence in packet loss. Salamatian and
Vaton[12] use a discrete-time HMM to model packet loss in network channels and show that the number
of states required is significantly less than using akth order Markov model. For the purpose of network
protocol or application simulation, the delay characteristics also have to be modeled. Furthermore, it is
necessary to assign a delay or a loss to a packet at an arbitrary point of time. This cannot be provided by
a discrete time model.

The rest of the paper is organized as follows. The inference of CT-HMM is described inSection 2.
Section 3provides numerical validation of the model.Section 4describes methodology for the validation.
Sections 5 and 6describe the validation of this simulation method innsand over the Internet, focusing on
TCP and a streaming video application, respectively. Finally,Section 7concludes the paper and describes
future work.

2. Inference of the CT-HMM

In this section, we assume that a network in steady-state can be modeled by a CT-HMM and describe
how the parameters of such a model can be inferred given a sequence of observations. These observations
are losses or delays seen by a sequence of probes sent from one end host to another end host in the
network. Because delays can take arbitrary non-negative real values, we discretize them into a finite set of
values. We shall refer to these values along with loss as a set of observation symbols. Let us suppose that
the network can be modeled as a CT-HMM withM distinct observation symbols andN hidden states.
Here, a hidden state cannot be observed directly but is reflected by the observations.

W. Wei et al. / Performance Evaluation 49 (2002) 129–146 131

Let {Z(t)}t≥0 be the CT-HMM that we wish to learn. Each stateZ(t) contains two components: the
hidden stateX(t) ∈ {1,2, . . . , N} and the observation symbolY (t) ∈ {1,2, . . . ,M}. That is,Z(t) =
(X(t), Y (t)). LetS = {1,2, . . . , N} × {1,2, . . . ,M}. The stochastic process{Z(t)}t≥0 takes values inS
and is governed by a single infinitesimal generator of sizeMN× MN. Denote this infinitesimal generator
asQ = [qij], whereqij ≥ 0, qii = − ∑

j 	=i qij , i, j ∈ S.
We develop a mechanism to infer the infinitesimal generatorQ, given the sequence of discrete-time

observations{Yt}T
t=1, whereT is the length of the sequence. The value ofYt is either an observation or

unknown, and the time difference between two adjacent observations is∆. Since the observations are at
discrete times, we start from a probability transition matrix reflected by the observations. LetP(∆) =
[pij (∆)] denote the probability transition matrix derived from the continuous-time Markov chain, where
pij (∆) is the probability that the Markov chain, currently in statei, is in statej after an additional time∆,
wherei, j ∈ S [13]. Without confusion, we letP representP(∆) in the rest of the paper for simplicity.
Our first step is to derive the probability transition matrixP from the observation sequence using an
expectation maximization (EM) algorithm. Our second step is to calculate the infinitesimal generatorQ

from the probability transition matrixP . We next describe these two steps in detail.

2.1. An EM algorithm to infer the discrete-time model

We consider a discrete-time model derived from the continuous-time Markov chain with the probability
transition matrixP and initial distributionπ . For convenience, letλ = (P, π). We next describe the
procedure to inferλ from a sequence ofT observations.

When the observation sequence is obtained by periodic probing, our algorithm to infer the parameterλ

is derived from the EM algorithm in[14] by representing the hidden state and the observation symbol as
a state. We refer to this as the complete-data EM algorithm. In some situations, it is impossible to obtain
a periodic probing sequence. For instance, if one of the hosts is behind a firewall, we may have to use
TCP probes, which cannot be guaranteed to follow a specified probing process. For this case, we assume
the existence of a minimum time interval∆ such that the intervals between observations are multiples of
∆. The probe sequence can then be regarded as a periodic sequence with period∆ with some missing
data points. We develop a missing-data EM algorithm to deal with this situation.

We next describe the missing-data EM algorithm; the complete-data EM algorithm being a special
case of it. The detailed derivation and description of the algorithms can be found in[15]. We first define
some notations conforming to those used in[14]. Let (i, j) represent a state with hidden componenti

and observation symbolj . An element in the transition matrixP is denoted asp(i,j)(k,l) representing
the probability of transition from state(i, j) to state(k, l). Defineαt(i, j) to be the probability of the
observation sequence up to timet and the state being in(i, j) at timet , givenλ. That is

αt(i, j) = P(Zt = (i, j), Y1 = y1, Y2 = y2, . . . , Yt = yt |λ).
Defineβt(i, j) to be the probability of the observation sequence from timet + 1 toT , given state being
in (i, j) at timet , givenλ. That is

βt(i, j) = P(Yt+1 = yt+1, . . . , YT = yT |Zt = (i, j), λ).

Defineξt (i, j, k, l) to be the probability of state being in(i, j) at timet and in(k, l) at timet + 1, given
the observation sequence andλ. Defineγt (i, j) to be the probability of being in state(i, j) at time t ,

132 W. Wei et al. / Performance Evaluation 49 (2002) 129–146

given the observation sequence andλ. That is

ξt (i, j, k, l) = P(Zt = (i, j), Zt+1 = (k, l)|Y1 = y1, Y2 = y2, . . . , YT = yt , λ)

γt (i, j) = P(Zt = (i, j)|Y1 = y1, Y2 = y2, . . . , YT = yT , λ).

We deriveξt (i, j, k, l) from αt(i, j) andβt+1(k, l) as follows:

ξt (i, j, k, l) = αt(i, j)p(i,j)(k,l)βt+1(k, l)∑N
i=1

∑M
j=1

∑N
k=1

∑M
l=1 αt(i, j)p(i,j)(k,l)βt+1(k, l)

. (1)

Observe thatγt can be calculated fromξt as

γt (i, j) =
N∑
k=1

M∑
l=1

ξt (i, j, k, l). (2)

The EM algorithm is an iterative algorithm in which each iteration consists of two steps: the expectation
step and the maximization step. During the expectation step, we compute the expected number of transi-
tions from state(i, j)and the expected number of transitions from state(i, j) to state(k, l)using the model
parameters obtained during the previous iteration. Denote these asn(i, j) andm(i, j, k, l), respectively.
During the maximization step, we calculate the new model parameters fromn(i, j) andm(i, j, k, l). The
iteration ends when the difference between the new model and the previous model parameters are less
than a certain threshold.

Without loss of generality, we assume the observation values forY1 andYT are known. Letyt be the
observation value forYt . We sayyt = u if the observation forYt is missing. In the expectation step,
we first calculateα andβ using the procedures as follows. The procedure to calculateαt(i, j), where
1 ≤ t ≤ T ,1 ≤ i ≤ N,1 ≤ j ≤ M, consists of the following steps:

(1) Initialization:

α1(i, j) =
{
π(i, y1), j = y1,

0, j 	= y1.

(2) Induction:

αt+1(i, j) =
{

0, yt+1 	= u, j 	= yt+1,∑N
k=1

∑M
l=1 αt(k, l)p(k,l)(i,j), otherwise,

wheret = 1,2,3, . . . , T − 1.

The procedure to calculateβt(i, j), where 1≤ t ≤ T ,1 ≤ i ≤ N,1 ≤ j ≤ M, contain the following
steps:

(1) Initialization:

βT (i, j) =
{

1, j = yT ,

0, j 	= yT .

W. Wei et al. / Performance Evaluation 49 (2002) 129–146 133

(2) Induction:

βt(i, j) =
{

0, yt 	= u, j 	= yt ,∑N
k=1

∑M
l=1p(i,j)(k,l)βt+1(k, l), otherwise,

wheret = T − 1, T − 2, . . . ,1.

Onceα andβ are obtained, we calculateξ and γ using (1) and (2). Then we calculaten(i, j) and
m(i, j, k, l) from γt (i, j) andξt (i, j, k, l) as follows:

n(i, j) =
T−1∑
t=1

γt (i, j), (3)

m(i, j, k, l) =
T−1∑
t=1

ξt (i, j, k, l). (4)

The new model parameter estimates are obtained in the maximization step as follows:

p̂(i,j)(k,l) = m(i, j, k, l)

n(i, j)
, (5)

π̂(i,j) = γ1(i, j). (6)

2.2. Obtain the infinitesimal generatorQ from the transition matrixP

We next describe a method to calculate the infinitesimal generatorQ from the transition matrixP . By
solving the Kolmogorov equations, we obtain the following relation betweenP andQ:

P = e∆Q. (7)

Therefore, when ln(P) exists,Q can be calculated as follows:

Q = 1

∆
ln(P). (8)

We extend the Taylor expansion ln(x) = ∑∞
n=1(−1)n−1(x − 1)n/n,0 < x < 2 to matrices and define

ln(P) =
∞∑
n=1

(−1)n−1 (P − I)n

n
, (9)

when the right-hand side of(9) converges, whereI is the identity matrix, we have

Q = 1

∆

∞∑
n=1

(−1)n−1 (P − I)n

n
. (10)

In this paper, we consider the complete metric space of matrices of sizeMN × MN with the maximum
absolute row sum norm as the metric[16]. We next state a theorem describing the convergence condition
of (9).

134 W. Wei et al. / Performance Evaluation 49 (2002) 129–146

Theorem 1. The right-hand side of(9) converges if∀i, pii > 1/2.

Proof. Definefn(P) = ∑n
i=1((−1)i−1(P − I)i)/i. We prove thatfn(P) converges whenn → ∞ by

showing thatfn(P) is a Cauchy sequence. First, because∀i, pii > 1/2, we have

‖P − I‖ = max
i

|pii − 1| +

∑
j 	=i

pij

= max
i
(1 − pii + 1 − pii) = 2 max

i
(1 − pii) = 2(1 − min

i
pii) < 1.

Without loss of generality, assumem ≤ n, then

‖fm(P) − fn(P)‖ =
∥∥∥∥∥

n∑
i=m+1

(−1)i−1(P − I)i

i

∥∥∥∥∥ ≤
n∑

i=m+1

‖(P − I)i‖
i

≤
n∑

i=m+1

‖P − I‖i
i

≤
n∑

i=m+1

‖P − I‖i = ‖P − I‖m+1
n−m−1∑
i=0

‖P − I‖i

≤ ‖P − I‖m+1
∞∑
i=0

‖(P − I)‖i = ‖P − I‖m+1

1 − ‖P − I‖ .

For anyε > 0, to satisfy‖P − I‖m+1/(1 − ‖P − I‖) < ε, we need ln(‖P − I‖m+1) < ln ε + ln(1 −
‖P − I‖). Therefore,

m >
ln ε + ln (1 − ‖P − I‖)

ln ‖P − I‖ − 1.

Hence,∀ε > 0, ∃N = �(ln ε + ln (1 − ‖P − I‖))/ ln ‖P − I‖� − 1, such that for allm, n > N ,
‖fm(P)−fn(P)‖ < ε. Therefore,fn(P) is a Cauchy sequence. Thus,fn(P) converges by the complete-
ness of the metric space. �

Note that the convergence condition ofTheorem 1is sufficient but not necessary. Our experiments show
that very often convergence holds even when the elements on the diagonal of matrixP are much less than
1/2. We next state a theorem which provides a more relaxed convergence condition thanTheorem 1.

Theorem 2. The right-hand side of(9) converges if∃c > 0 and δ > 0, such that there existsN =
N(P, δ, c) satisfying∀n > N, ‖(P − I)n‖ ≤ c/nδ.

Proof. Since∀n > N, ‖(P − I)n‖ ≤ c/nδ, we have∥∥∥∥∥
∞∑

n=N+1

(−1)n−1 (P − I)n

n

∥∥∥∥∥ ≤
∞∑

n=N+1

‖(P − I)n‖
n

≤
∞∑

n=N+1

c

n1+δ
.

Since
∑∞

n=1 1/n1+δ converges,
∑∞

n=1(−1)n−1((P − I)n/n) converges. �

W. Wei et al. / Performance Evaluation 49 (2002) 129–146 135

When the right-hand side of(9)does not converge, we approximate the infinitesimal generator by using

Q = 1

∆
(P − I). (11)

Our numerical and experimental validations show that the approximation is reasonably good.

3. Numerical validation of the model

In this section, we apply the model inference procedure to observation traces generated by known
CT-HMMs. After a model is inferred, we examine if it is close to the original model for validation. We
first describe the results from one model in detail. This model has two hidden states and three observation
symbols. Its infinitesimal generatorQ is shown below:

Q =

−4 2 1 1 0 0

1 −5 3 0 1 0

2 3 −6 0 0 1

2 0 0 −7 2 3

0 2 0 3 −8 3

0 0 2 2 5 −9

We use the model to generate a 1000 s long trace. Using sampling intervals of 1 and 100 ms, we obtain
observation sequencesO1 (of length 1,000,000) andO100 (of length 10,000), respectively. The sequence
O100 is used for model inference. The sequenceO1 is used to check the quality of the inferred CT-HMM,
as described later. Since we cannot observe the number of hidden statesN directly from the observation
sequenceO100, we explore the sensitivity of the models to the choice ofN . In particular, we considerN
in {2,3, . . . ,10} for model inference.

We observe that the inferred CT-HMM is not guaranteed to be exactly the same as the original model,
since the results of the EM algorithm are local maxima and the inference is from a discrete-time sample
of the original model. For example, the inferred infinitesimal generatorQ̂ whenM = 3 andN = 2 is
different from the original modelQ as shown below:

Q̂ =

−3.24 1.57 0.03 0.01 0.00 1.64

1.53 −4.44 0.05 0.01 0.00 2.85

2.07 0.00 −7.67 0.00 5.53 0.07

0.00 1.20 1.43 −4.56 1.93 0.00

0.00 2.81 3.49 3.00 −9.29 0.00

0.06 0.00 0.33 2.32 2.97 −5.67

However, the inferred models are very close to the original model in the following two senses. First,
inferred models generate sequences whose autocorrelation functions (ACFs) are very close to that of a
sequence generated by the original model.Fig. 1shows the ACFs of a sequence of length 10,000 generated
from the inferred models for various values ofN and that of the original sequenceO100. The lag is in

136 W. Wei et al. / Performance Evaluation 49 (2002) 129–146

Fig. 1. ACFs for the original and various models,M = 3.

multiples of 100 ms. The models forN = 4 and 6 are from(9) while the model forN = 9 is from the
approximation(11). We observe that the ACFs of these models are very similar to that of the original.

Second, symbols lying between observations can be estimated from an inferred model accurately. For
instance, we obtain the MLE sequence at the interval of 1 ms using the sequenceO100 and an inferred
model.1 Our results show that 82% of the MLE symbols match the observation symbols inO1. Moreover,
most of the MLE sequences for different values ofN are identical, demonstrating the similarity among
the inferred models.

We generate another nine models for further validation. Each model has two hidden states and three
observation symbols. The transition rates of each model are randomly chosen between 1 and 10. For
each model, we investigate the range ofN from 2 to 10 for a total of 81 experiments. Among them,(9)
converges for 62 cases. In the remaining 19 cases, the sum in(9) diverges mostly for high values ofN
(N ≥ 6). The reason why higher value ofN leads to divergent results can be explained as follows. The
number of states in the CT-HMM increases linearly withN . For large values ofN , the probability of
the process remaining in a given state after one transition tends to be very small. AlthoughTheorem 1is
not a necessary condition for convergence, very small values ofpii tends to lead to divergence in(9). We
obtain approximate models for the 19 divergent cases using(11). In the MLE sequences obtained from
the models, 82–90% of the MLE symbols match the observation symbols inO1. Furthermore, the MLE
sequences from the models for different values ofN are mostly identical.

We also examine the behavior of an inferred model of size smaller than the original model and observe
similar results as earlier. The details are in[15]. In summary, our numerical validation shows that, for
a given model, the models inferred by our algorithm for different values ofN are close to the original
model and close to each other.

4. Validation of the method

In this section, we describe the methodology used to validate our simulation method. The validation is
based on a series of experiments carried out innsand over the Internet. Inns, we investigate a variety of

1 The method to obtain MLE sequence is described in[15].

W. Wei et al. / Performance Evaluation 49 (2002) 129–146 137

Fig. 2. Model inference and validation.

settings characterized by different traffic and topologies. Over the Internet, we examine several settings
characterized by different delay and loss behaviors. We believe that these experiments show our approach
to be quite promising.

As shown in the model inference part ofFig. 2, in each experiment, we send probes from the source to
the destination along with atargetflow. The behavior of the target flow is governed by a network protocol
or an application. When necessary, probe packets are also sent along the backward direction of the target
flow. The observations of the forward and backward probes are used to infer CT-HMMs for the forward
and backward paths, respectively. The models are then used to generate end-to-end losses and delays for
packets in a flow, as shown in the model validation part ofFig. 2. We validate this simulation method by
comparing the behavior of the target flow in the original setting with the model-driven flow. Note that the
link controlled by the model represents the whole path in the original network. Hence the running time
required by our simulation method is independent of the complexity of the network being simulated.

The probes are either sent periodically with the spacing of∆or l∆, wherel is a geometrically distributed
random variable. We refer to these as periodic probing and geometric probing, respectively. For periodic
probing,∆ is set to 20, 50 or 100 ms. For geometric probing, letτ be the average inter-sending time. We
setτ to be 20, 50 or 100 ms and∆ to 1 or 10 ms. The random variablel thus has a geometric distribution
with the parameter of∆/τ . We next describe the experimental methodology in detail.

4.1. Loss and delay as symbols

The CT-HMM usesM symbols to represent the observed delay and loss sequence. One way to discretize
the delay and loss sequence is to use(M −1) symbols to represent delay and a single symbol to represent
loss. Another way is to combine loss and large delays into one symbol since large delays and loss are
usually closely related. We find that the first method requires very fine probing interval since the duration
of a loss behavior is shorter than the processing time of one packet. We therefore adopt the second
approach. More specifically, we divide the range of delay values intoM equal length bins. A delay
value falling in theith (1 ≤ i ≤ M) bin is represented by symboli. More formally, suppose we have a
probing observation sequence{dt}T

t=1. Let the minimum delay and the maximum delay bedmin anddmax,
respectively. We usedt = ∞ to denote that the observation att is a loss. We saydt = u if the observation
at t is missing. The interval [dmin, dmax] is divided intoM bins. The length of each bin is denoted asb.
Thenb = (dmax − dmin)/M. We convert the delay and loss observation sequence to a symbol sequence

138 W. Wei et al. / Performance Evaluation 49 (2002) 129–146

{yt}Tt=1 as follows:

yt =

M, dt = ∞,⌈
dt − dmin

b

⌉
, dmin ≤ dt ≤ dmax,

u, dt = u.

At the same time, we record the probability that symbolM corresponds to a loss. Note that, in this way, we
regard that loss is only correlated with the largest delay symbolM. In practice, the correlation of loss and
large delays may not be strong in some situations, for instance, when RED is used for queue management
in the routers. In[15], we extend the EM algorithm inSection 2.1so that there is a component of loss
associated with each symbol.

4.2. Mapping symbols to delay and loss values

Once a CT-HMM is inferred, we can determine an observation symbol for any point of time from
the model. For the purpose of simulation, this symbol has to be mapped back into delay or loss. When
mapping a symboli to delay or loss, ifi = M, we first decide if it is a loss according to the loss
probability in symbolM. If it is not a loss, we generate a delay for it according to the conditional
distribution of delays given that the symbol isi, which is obtained from the probing trace. The details are
in [15].

4.3. Usage of virtual probes in ns

For a given setting, we need to investigate the simulation results over a range of probing intervals.
In order to save time and space, and to make the results at different probing intervals comparable,
we use virtual probes to study a setting with a single link first. Unlike a real probe, a virtual probe
does not generate traffic. It records the loss or delay value at a certain point of time by analyzing the
ns traces. A virtual probe sees a loss if the packet before it is dropped. Otherwise, the delay seen by
the probe is calculated by keeping track of the enqueue time and processing time of all of the pre-
vious packets. This simulation method allows us to impose “probes” at a range of probing intervals
to discover the granularity of the probing required for a network setting. We, for instance, confirmed
that very fine probing intervals are required if loss is represented as a single symbol as described in
Section 4.1.

4.4. Measurement of one-way delay over the Internet

If the clocks at the sender and receiver are synchronized, the subtraction of the timestamp of a packet
at the receiver and the sender is the one-way delay. However, we do not have an external universal time
reference to synchronize the two clocks. Given this, we use the method proposed in[17] to remove
clock offset and skew. The resulting delay sequence represents the variable portion of the one-way delays
over the network. To obtain the actual delay value, a constant portion has to be added, which contains
the one-way transmission delay, propagation delay, and the minimum queuing delay experienced by the
probe packets during the chosen time period. We describe the estimation of this value when describing
the experiments (inSections 5.2 and 6).

W. Wei et al. / Performance Evaluation 49 (2002) 129–146 139

5. Experimental validations for TCP

In this section, we validate the simulation method through a series of experiments for TCP carried out
in nsand over the Internet. That is, in each experiment, we send probes along with a target TCP flow on
the forward and backward paths. The forward and backward probes are used to infer the models for the
forward and backward paths, respectively. The inferred models are then used to provide delay and loss
to packets along the forward and backward paths of the model-driven TCP flow.

The metrics we use areaverage loss rate, average throughput, andACF of the throughput sequence.
The average loss rate records the loss ratio of data packets from the TCP source. The average throughput
records the amount of data reaching the TCP sink from the source. The ACF of the throughput sequence
records the temporal dependence of throughput in the TCP flow.

5.1. Validation in ns

We next validate our simulation method through experiments under a variety of network settings in
ns. We study topologies containing a single link and multiple links. The traffic combinations include
infinite TCP sources only, infinite TCP sources with on–off UDP sources, and infinite TCP sources with
HTTP sources. The target TCP flow uses Reno or SACK. For all the settings we examined, the loss and
throughput predictions made by the model-driven simulation falls within 10% of those of the target TCP
flow in the original setting ifM andN are chosen properly. In the interest of space, we only describe results
for traffic combinations of TCP and HTTP sources with multiple links. More results are described in[15].

In this setting, we connect four routersr0, r1, r2 andr3 as shown inFig. 3. The bandwidth between
routerr0 andr1 is set to be 2 Mb. The bandwidth between the other consecutive routers (routerr1 to r2 and
routerr2 to r3) is set to be 5 Mb. The bandwidth for all the other links is set to be 10 Mb. The maximum
queue length and propagation delay between two consecutive routers are set to be 100 packets and 30 ms,
respectively. There are two types of TCP flows in this setting: flows traversing all the routers and flows
pass part of the routers. We call the first type of flowstraversingflows and the second type of flows
bypassflows. The number of traversing TCP flows from routerr0 to r3 and fromr3 to r0 are set to be 3
and 2, respectively. Each traversing flow starts from a TCP source connected to routerr0 (r3), with their
corresponding TCP sink connected to routerr3 (r0). Each bypass flow starts from a source connected

Fig. 3. TCP and HTTP sources with multiple links inns.

140 W. Wei et al. / Performance Evaluation 49 (2002) 129–146

Table 1
Number of bypass TCP flows in the multiple-link setting inns

>From→ to Number

r0 → r1 3
r0 → r2 1
r1 → r2 2
r1 → r3 2
r2 → r3 4
r1 → r0 1
r2 → r0 2
r2 → r1 3
r3 → r1 3
r3 → r2 2

to routerri and ends at another routerrj , where 0≤ i, j ≤ 3. The number of bypass flows along the
path from routerri to rj are listed inTable 1. The propagation delay between a TCP source or sink to
its corresponding router is uniformly distributed in [10,20] ms. There are 10 HTTP clients connected to
routerr0, with their corresponding HTTP servers connected to routerr3. The HTTP traffic follows the
empirical data provided byns. The propagation delay from an HTTP server or client to its corresponding
router is also set to be uniformly distributed in [10,20] ms.

We choose a traversing TCP flow fromr0 to r3 as the target flow and send probe packets with the TCP
flow along both the forward and backward directions at the probing interval of 20 ms. The target TCP
flow encounters a loss rate of 1.49% along the path ofr0 to r3 and its average throughput is 0.144 Mbps.
The errors of both throughput and loss rate of the model-driven TCP flow relative to the target TCP flow
are shown inTable 2. We observe that in general the performance of a model improves as the number
of states increases. The relative errors of the throughput and the loss rate fall within 17% for various
settings.

Fig. 4 compares the ACFs of the throughput of a model-driven TCP and the target TCP flow, where
lags are measured in seconds. The model used in the graph is inferred usingM = 3 andN = 2. The
figure demonstrates a good match of the two functions.

Table 2
Relative errors for TCP and HTTP sources with multiple links inns

Mf (=Mb) Nf (=Nb) Throughput error (%) Loss error (%)

3 2 −7.7 15.6
4 2 8.1 −0.0
5 2 17.0 1.9
2 3 −9.9 8.5
3 3 5.6 −10.7
4 3 9.3 −3.2
2 4 −3.9 1.7
3 4 −3.5 7.2

W. Wei et al. / Performance Evaluation 49 (2002) 129–146 141

Fig. 4. ACF of throughput for TCP and HTTP sources with multiple links inns.

5.2. Validation over the Internet

We next describe our validation of the simulation method over the Internet. Two tracesT1 andT2 are
shown inTable 3. Each trace is collected by a 1-hour run and contains two-way (along the forward and
the backward paths) traces. For both traces, the sender of the target TCP is at our site (UMass) and the
receiver is at University of Southern California (USC). The number of hops from UMass to USC is 20
and the number of hops from USC to UMass is 14. The measurement of one-way delays is described in
Section 4.4. We take half of the minimum round-trip time of the target TCP flows as the constant portion
to obtain the actual delays. To incorporate the models intonsand drive a TCP flow, we need to obtain
some key parameters used in the target TCP flow. We find that the target TCP flow uses TCP SACK by
the method described in[18]. Most of the packets in the target TCP flow (over 99%) are 1448 bytes. The
receiver window size changes over the session while it is fixed inns. We obtain a rough estimate of the
window size from[19] and finely tune it during the validation process. We next present the results for
tracesT1 andT2.

In traceT1, probes are sent at regular intervals∆ of 20 ms in the directions from UMass to USC and
from USC to UMass. We focus on a stationary segment of 300 s. On the route from UMass to USC,
the average loss rate and throughput of the target TCP flow are 1.51% and 0.214 Mbps, respectively, as
shown inTable 3. In ns, we set the one-way delay to be 100 ms and the window size to be 8.Table 4
summarizes the errors of throughput and loss rate of the model-driven TCP flows relative to the target TCP
flow for different settings of the models, where entries marked by∗ are obtained by the approximation
(11). We observe that, for this trace, the number of observation symbols as 2–3 and the number of hidden
states as 2–5 are sufficient to achieve good results. The comparison of the ACF of the throughput for the

Table 3
Two validation experiments for TCP over the Internet

Trace Time Probing Loss rate (%) Throughput (Mbps)

T1 03/08/02, 22:24 Periodic,∆ = 20 ms 1.51 0.214
T2 03/16/02, 14:06 Geometric,∆ = 10 ms,τ = 50 ms 0.41 1.578

142 W. Wei et al. / Performance Evaluation 49 (2002) 129–146

Table 4
Relative errors of throughput and loss rate for traceT1

Mf Nf Mb Nb Throughput error (%) Loss error (%)

2 3 2 2 −0.4 −12.0
2 4∗ 2 2 −4.2 8.0
2 5∗ 2 2 −5.6 9.4
3 3 3 2 −1.0 16.0
3 4∗ 3 2 2.9 −3.3
3 5∗ 3 2 3.1 −0.6
2 3 2 3 −0.3 10.1
2 4∗ 2 3 −4.7 −6.7
2 5∗ 2 3 −5.5 10.4
3 3 3 3 −0.6 11.0
3 4∗ 3 3 1.1 −9.0
3 5∗ 3 3 2.6 2.3

model-driven TCP and the target TCP flow is shown inFig. 5(a), where lags are measured in seconds and
the model is obtained by settingMf = 3, Nf = 5,Mb = 3, Nb = 2.

For traceT2 (seeTable 3), we use geometric probing on the forward and the backward paths with the
average probing intervalτ of 50 ms. Due to limitation in the time granularity of Linux, the minimum prob-
ing interval∆ is set to be 10 ms. We focus on a stationary segment of 1200 s and use the missing-data EM
algorithm in the model inference process. As shown inTable 3, the average loss rate in this trace is 0.41%,
significantly lower than in traceT1. The average throughput is 1.578 Mbps. Inns, we set the one-way delay
to be 43 ms and the window size to be 18. We cannot find a convergent solution for the model on the back-
ward path even forMb = 2 andNb = 2. The reason is that there are no losses on the backward path and the
delay variations are in a very short range (≤2 ms). We therefore use a constant delay (the average delay on
the backward path) for the backward direction. The errors of the model-driven TCP flow relative to the tar-
get TCP are shown inTable 5. The relative errors of throughput and loss rate of all the settings in the table

Fig. 5. ACFs of throughput for tracesT1 andT2. ACF of throughput for (a)T1 and (b)T2.

W. Wei et al. / Performance Evaluation 49 (2002) 129–146 143

Table 5
Relative errors of throughput and loss rate for traceT2

Mf Nf Throughput error (%) Loss error (%)

2 2 −0.1 −3.0
2 3 2.8 −12.4
2 4 2.4 −10.4
2 5 −0.6 0.3
2 6 −0.3 −1.1
2 7 −1.4 4.0
2 8 −1.5 3.6
2 9 1.4 −6.8

fall within 3 and 13%, respectively. We also observe good conformance of the model-driven TCP flow and
the target TCP from the ACFs of the throughput as shown inFig. 5(b), where lags are measured in seconds.

6. Validation for a streaming video application

In this section, we validate the simulation method using a streaming video application. We send probe
packets along with a streaming video application from one end host to another end host. The streaming
video application uses UDP and there are no acknowledgments along the backward path. Therefore, we
only need to infer the model along the forward path. Since streaming media applications are sensitive to
delays and losses, we use the following metrics:

• average loss rate, average delay and CV (coefficient of variation) of the delays;
• distribution of the delays;
• ACF of the delay and loss symbols.

The one-way delays from the sender to the receiver are obtained as described inSection 4.4. To calculate
the ACF of the delay symbols, the obtained variable portion of the one-way delay is sufficient. To calculate
the other delay metrics, we need to obtain the actual delay by adding a constant portion to the variable
portion. However, unlike with TCP, this constant portion does not affect the behavior of the application.
We estimate the constant portion roughly from the round-trip time reported byping packets. We send
ping packets lasting for 30 min before the experiments and take half of the minimum round-trip time to
be the constant portion.

We next describe an experiment from our site (UMass) to a site in Universidade Federal do Rio de
Janeiro (UFRJ), Brazil, which was carried out at 10:25 a.m. on 1 April 2002 and lasted for 1 h. The
number of hops from UMass to UFRJ is 14. We use a 200 Kbps CBR (constant bit rate) video. The frame
rate of the video is 25 frames per second. For this experiment, we use geometric probing with the average
probing intervalτ as 50 ms and the minimum time interval∆ as 10 ms. The constant portion of the delay
is estimated to be 78 ms.

We choose a 1200 s stationary segment from the video stream as the target stream and use the
missing-data EM algorithm in the model inference process. For the target stream, the average loss rate is
0.2%, the average delay is 99 ms and the CV of the delays is 0.12. The errors of delay and CV of delays
of the model-driven stream relative to the target stream are shown inTable 6, whereM is from 2 to 3 and

144 W. Wei et al. / Performance Evaluation 49 (2002) 129–146

Table 6
Relative error for a streaming video application

M N Delay error (%) CV error (%)

2 2 −2.1 −3.5
2 3 −2.0 1.9
2 4 −2.1 0.9
2 5 −2.0 1.8
3 2 −2.3 0.4
3 3 −2.4 −0.6
3 4 −2.4 −0.3
3 5 −2.2 −0.6

Fig. 6. Results for a streaming video application.

N is from 2 to 5. For various settings ofM andN , the delay errors are within 3% and the errors of CV
of the delays are within 4%. The loss rates for various settings are around 0.2%.

The delay cumulative distribution functions (CDFs) of the target video stream, probes and a model-driven
video stream are shown inFig. 6(a). We observe that the delay distribution of the model-driven stream is
almost identical to that of the probes. The difference in the delay distribution of the model-driven stream
and the target stream is caused by the different observations seen by the probes and the target stream.

We compare the ACFs of the delays of the target stream and model-driven stream for different settings
of M andN . We observe that, for the sameM, the ACF becomes closer to that of the target stream
asN increases.Fig. 6(b) shows the ACFs of the delay symbols of the target video stream and that of
model-driven streams. Each lag is 40 ms. The model is inferred by settingM = 3 andN = 4.

7. Conclusion and future work

In this paper, we explored the use of CT-HMMs for network protocol and application evaluation.
We develop a mechanism to infer a CT-HMM from a sequence of observations of probe packets. Our

W. Wei et al. / Performance Evaluation 49 (2002) 129–146 145

validations of this simulation method inns and over the Internet demonstrate that this method has the
potential to represent a wide range ofreal network scenarios. It is accurate, and time and space efficient.
We observe that for real network settings we examined, models of small size are sufficient to achieve
good results. As future work, we are pursuing the following directions: (i) examine the use of the model
in more real network scenarios; (ii) investigate how to use the probing trace in combination with the
CT-HMM to model transient behavior in the network.

Acknowledgements

We would like to thank J. Kurose, E.A. de Souza e Silva and the anonymous reviewers for their insightful
comments. We would also like to thank L. Golubchik, C. Papadopoulos and E.A. de Souza e Silva for
providing us accounts for the Internet experiments; W. Cheng, F.J. Silveira Filho, A. Lee, A. Papagapiou
and A.P. Couto Silva for their cooperations in the experiments. B. Melander laid the foundation for our
nsvalidations. D.R. Figueiredo, B. Liu, J. Padhye, T. Bu and H. Zhang helped us with thensand Internet
experiments. We would like to express our thanks to all of them.

References

[1] G. Riley, R. Fujimoto, M. Ammar, Parallel/Distributed NS.http://www.cc.gatech.edu/computing/compass/pdns/index.html.
[2] S. McCanne, S. Floyd, ns-LBNL Network Simulator.http://www-nrg.ee.lbl.gov/ns/.
[3] J.H. Cowie, Scalable Simulation Framework API Reference Manual, March 1999.
[4] Y. Guo, Time-stepped hybrid simulation (TSHS) for large scale networks, in: Proceedings of the IEEE INFOCOM, March

2000.
[5] B. Liu, D.R. Figueiredo, Y. Guo, J. Kurose, D. Towsely, A study of networks simulation efficiency: fluid simulation vs.

packet-level simulation, in: Proceedings of the INFOCOM, 2001.
[6] L. Rizzo, Dummynet: a simple approach to the evaluation of network protocols, ACM Comput. Commun. Rev. 27 (1)

(1997) 31–41.
[7] M. Carson, NIST Net.http://snad.ncsl.nist.gov/itg/nistnet.
[8] V. Paxson, End-to-end Internet packet dynamics, IEEE/ACM Trans. Network. 7 (3) (1999) 277–292.
[9] D. Rubenstein, J. Kurose, D. Towsley, Detecting shared congestion of flows via end-to-end measurement, in: Proceedings

of the ACM SIGMETRICS, June 2000.
[10] M. Yajnik, J. Kurose, D. Towsely, Packet loss correlation in the MBone multicast network, in: Proceedings of the IEEE

Global Internet, November 1996.
[11] M. Yajnik, S. Moon, J. Kurose, D. Towsley, Measurement and modelling of the temporal dependence in packet loss, in:

Proceedings of the IEEE INFOCOM, March 1999.
[12] K. Salamatian, S. Vaton, Hidden Markov modelling for network communication channels, in: Proceedings of the ACM

SIGMETRICS, June 2001.
[13] S. Ross, Stochastic Process, Wiley, New York, 1996.
[14] L. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE 77 (1989)

257–285.
[15] W. Wei, B. Wang, D. Towsley, Continuous-time hidden Markov models for network performance evaluation, Technical

Report 02-15, Department of Computer Science, University of Massachusetts, Amherst, 2002.
[16] I. Ryzhik, I.S. Gradshteyn, A. Jeffrey, Table of Integrals, Series and Products, sixth ed., Academic Press, New York, 2000.
[17] S. Moon, P. Skelly, D. Towsley, Estimation and removal of clock skew from network delay measurements, in: Proceedings

of the IEEE INFOCOM, March 1999.
[18] J. Padhye, S. Floy, On inferring TCP behavior, in: Proceedings of the ACM SIGCOMM, August 2001.
[19] M. Mathis, J. Semke, J. Mahdavi, The macroscopic behavior of the TCP congestion avoidance algorithm, Comput. Commun.

Rev. 27 (3) (1997).

http://www.cc.gatech.edu/computing/compass/pdns/index.html
http://www-nrg.ee.lbl.gov/ns/
http://snad.ncsl.nist.gov/itg/nistnet

146 W. Wei et al. / Performance Evaluation 49 (2002) 129–146

Wei Wei received the B.S. degree in applied mathematics from Peking University, Beijing, China, in 1992,
the M.S. degree in statistics from Texas A&M University, College Station, Texas, in 2000. Currently, he
is a Ph.D. student in the Department of Computer Science at University of Massachusetts, Amherst.

Bing Wang received her B.S. degree and M.S. degree in computer science from Nanjing University of
Science and Technology, China, in 1994 and the Chinese Academy of Sciences, China, in 1997, respec-
tively. She is currently a Ph.D. candidate in the Department of Computer Science at the University of
Massachusetts at Amherst. Her research interests include Internet technologies and applications, network
measurements and modeling.

Don Towsley is currently a Distinguished Professor at the University of Massachusetts in the Department of Computer Science.
His research interests include networking and performance evaluation. He has received the 1998 IEEE Communications Society
William Bennett Paper Award and three best conference paper awards from ACM SIGMETRICS. Last, he has been elected
Fellow of both the ACM and IEEE.

	Continuous-time hidden Markov models for network performance evaluation
	Introduction
	Inference of the CT-HMM
	An EM algorithm to infer the discrete-time model
	Obtain the infinitesimal generator Q from the transition matrix P

	Numerical validation of the model
	Validation of the method
	Loss and delay as symbols
	Mapping symbols to delay and loss values
	Usage of virtual probes in ns
	Measurement of one-way delay over the Internet

	Experimental validations for TCP
	Validation in ns
	Validation over the Internet

	Validation for a streaming video application
	Conclusion and future work
	Acknowledgements
	References

