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ABSTRACT
Motivated by the wide use of TCP for streaming in prac-
tice and the increasing availability of multipath between end
hosts, we study multipath live streaming via TCP in this pa-
per. We first design a simple and practical TCP-based multi-
path streaming scheme, namedDynamic MPath-streaming
(DMP-streaming), which dynamically distributes packets
over multiple paths byimplicitly inferring the available
bandwidths on these paths. To allow systematic performance
study, we develop an analytical model for DMP-streaming
and validate the model using extensivens simulation and In-
ternet experiments. We explore the parameter space of this
model and find that DMP-streaming generally provides sat-
isfactory performance when the aggregate achievable TCP
throughput is 1.6 times the video bitrate, with a few seconds
of startup delay. Last, we comment on the benefits of using
multipath versus single path for TCP-based streaming.

1. INTRODUCTION
The increasing availability of multipath between end

hosts has motivated a number of recent studies on mul-
tipath audio/video streaming (i.e., streaming over mul-
tiple network paths) [11, 3, 19, 22, 26]. All these studies
assume UDP as the transport protocol. Indeed, TCP
is conventionally regarded as inappropriate for multi-
media streaming, since its backoff and retransmission
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mechanisms may lead to long delays which violate the
realtime requirement of multimedia streaming.

In this paper, defying the conventional wisdom, we
study an approach that relies on TCP for multipath
streaming. This is motivated by the wide use of TCP for
streaming in practice and our earlier results on single-
path TCP streaming [31]. TCP streaming is widely
supported in commercial streaming products (e.g., Real
Media and Windows Media). Furthermore, recent mea-
surement studies have shown that, for both stored-video
and live streaming, a significant fraction of the traffic
(around or above 50%) uses HTTP/TCP [33, 28, 29].
In our earlier work [31], we studied the performance
of single-path TCP streaming and found that its per-
formance is generally satisfactory when the achievable
TCP throughput is roughly twice the media bitrate,
with a few seconds of startup delay. This result partly
explains why TCP streaming has been an attractive op-
tion in practice: such a bandwidth requirement can be
satisfied even for broadband home users (using cable
modem or ADSL technologies) for a large fraction of
streaming multimedia clips in the Internet today.

Motivated by the above observations, we focus on
multipath live streaming via TCP. More specifically, we
consider the scenario in which a video server generates
content in real time and streams it via TCP to a client
over K paths. These K paths may or may not share
bottleneck links. We seek to answer the following ques-
tions: Under what circumstances can multipath TCP-
based live streaming provide satisfactory performance?
What are the benefits from using multiple paths, com-
pared to using a single path, in TCP-based live stream-
ing?

Our paper answers the above questions and makes
the following main contributions:

• We design a simple and practical scheme, named
Dynamic MPath-streaming (DMP-streaming), for
multipath streaming via TCP. It dynamically dis-



tributes packets over the multiple paths (to ac-
commodate bandwidth fluctuations) by implicitly
inferring the available bandwidths on these paths.

• We develop an analytic model for DMP-streaming.
This model allows a systematic performance study,
a task that is difficult when using empirical mea-
surements or simulation alone. We validate this
model using extensive ns simulation and Internet
experiments. To the best of our knowledge, this is
the first analytical model on multipath streaming
via TCP.

• We systematically vary the parameters in this model
to explore the parameter space when using two
paths in DMP-streaming. We find that the perfor-
mance of DMP-streaming is not sensitive to path
heterogeneity. Furthermore, the performance is
generally satisfactory when the aggregate achiev-
able TCP throughput is 1.6 times the video bi-
trate, with a few seconds of startup delay.

Our results help answer the following two important
questions on TCP-based streaming: (i) If a video bi-
trate is satisfied by a single path, can two paths, each
with half of the achievable TCP throughput of the single
path, support the same video bitrate? When the access
link is the bottleneck, this question transforms to: can
a high bandwidth access link be replaced by two lower
bandwidth links while maintaining the same streaming
performance? (ii) If a video bitrate is satisfied by a sin-
gle path, can two such paths support videos with twice
the bitrate? When the access link is the bottleneck, this
question transforms to: if a user subscribes to two ac-
cess networks of similar bandwidths (e.g., ADSLs from
two different providers), can he/she view videos with
bitrates twice as those supported by a single access net-
work?

Our results indicate that the answer to both of the
above questions is: yes. This is because, multipath TCP
streaming provides satisfactory performance when the
ratio of the aggregate achievable TCP throughput over
the video bitrate exceeds 1.6, lower than the ratio of
2 in single-path TCP streaming [31]. Therefore, for
question (i), two paths, each with half of the achievable
TCP throughput of the single path, can support the
same (even higher) video bitrate supported by the single
path; for question (ii), two paths, each with the achiev-
able TCP throughput of the single path, can support
videos with twice (even more than twice) the bitrate
supported by the single path. Hence, in addition to eco-
nomical reasons (subscribing to multiple low-bandwidth
access links is cheaper than subscribing to a single high-
bandwidth access link [12]), it is also advantageous to
use multipath for TCP-based streaming due to perfor-
mance reasons.

The rest of the paper is organized as follows. Sec-
tion 1.1 summarizes related work. Section 2 describes
the problem setting. Sections 3 and 4 present DMP-
streaming and its analytical model respectively. Sec-
tions 5 and 6 describe validation of the model using
ns simulations and Internet experiments, respectively.
Section 7 explores the parameter space of the model.
Finally, Section 8 concludes the paper.

1.1 Related work
Multipath continuous media streaming is studied in [11,

3, 19, 22, 26, 15, 6]. In particular, [11, 26] demon-
strate the benefits of using multiple paths for contin-
uous media streaming. In [3, 19], coding techniques
(Multiple Description Codes) are applied to the video
streams to improve loss recovery. The study in [22] de-
termines the sending rate and the distribution of pack-
ets on the multiple paths to minimize loss rate at the
receiver. The work in [15] proposes a heuristic algo-
rithm for multipath video streaming that provides close
to optimal performance. The study in [6] proposes a
multipath streaming scheme suitable for cellular links.
All the above studies use UDP as the transport pro-
tocol. We study multipath streaming via TCP, which
is fundamentally different from UDP-based streaming
(e.g., a UDP-based streaming might not use error re-
covery and/or congestion control mechanisms; even if
it uses, the mechanisms are very different from those in
TCP). To the best of our knowledge, our work is the
first study on multipath streaming via TCP. Our per-
formance study focuses on wired networks (although
DMP-streaming can be applied to wireless networks).

Using TCP for multimedia streaming eliminates the
need for error-recovery at the application-level and au-
tomatically provides TCP-friendliness. Furthermore,
it is more likely to pass through firewalls in practice.
These advantages have motivated a number of studies
on TCP-based streaming. The studies of [27, 17, 8, 7]
focus on how to adapt the video bitrate to deal with
network bandwidth fluctuations. Our earlier work [31]
studied the performance of multimedia streaming using
TCP. A recent study [16] analytically determines the
proper receiver buffer size to ensure a prescribed video
quality for TCP streaming. All the above studies use
one TCP flow on a single path, while we use multiple
TCP flows in this paper.

The literature on TCP modeling is extensive. Much
of the TCP modeling focuses on TCP performance for
file transfers, assuming long-lived flows [20, 24, 23, 2, 10]
or short-lived flows [5, 21]. The study of [4] models TCP
congestion window to determine a TCP-friendly trans-
mission rate for UDP video flows. Our study differs
from the above in that we develop analytical models for
multipath TCP streaming, with a focus on multipath
and the timeliness of the packets.



Last, [13] points out several limitations of using TCP
over multiple paths for reliable data transfer when the
access network has high bandwidth fluctuations. Our
study is in the context of wired network (which has
relatively stable bandwidth) for multimedia streaming
(which can tolerate certain amount of packet loss).

2. PROBLEM SETTING
Suppose that a client is connected to a server using K

paths (K ≥ 2), indexed 1 to K. These paths are formed
using a multipath architecture (e.g., multihoming of the
end hosts). They may or may not share bottleneck links
(a special case is that they are the same path). We con-
sider live streaming, that is, the server generates video
content in real time and is only able to transmit con-
tent that has already been generated. The server opens
K TCP connections, one on each path, and stripes the
generated video packets using the multiple TCP flows
to the client. Each packet is associated with a packet
number (corresponding to the position, and hence the
playback time, of the packet) so that packets from the
multiple paths can be reassembled at the receiver. The
client allows a startup delay, τ , that is on the order of
seconds, a common practice in commercial streaming
products. All packets arriving earlier than their play-
back times are stored in the client’s local buffer, which is
assumed to be sufficiently large so that no packet is lost
at the client side. This assumption is reasonable since
modern machines are equipped with a large amount of
storage.

We consider a constant bit rate (CBR) video, moti-
vated from measurement results that most videos streamed
over the Internet are CBR [18]. Let µ denote the play-
back rate of the video (in packets per second). For
simplicity, all packets are assumed to be of the same
size. For analytical tractability, we assume continuous
playback at the client. A packet arriving later than
its playback time is referred to as a late packet. A
late packet typically leads to a glitch during playback.
Therefore, we use the fraction of late packets, i.e., the
probability that a packet is late, as our performance
metric. Strictly speaking, the fraction of late packets
does not correspond directly to viewing quality, since
human perception tolerates occasional glitches in the
playback. However, we are not aware of any quanti-
tative metric that directly corresponds to the viewing
quality perceived by a human. We therefore use the
fraction of late packets to roughly measure streaming
performance.

We next describe two characteristics of live stream-
ing. The first is on the number of early packets (i.e.,
packets arriving earlier than their playback times); the
second is on the TCP throughputs on the multiple paths.

2.1 Number of early packets in live streaming
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Figure 1: Illustration of multipath live stream-
ing via TCP. In this example, K = 2, solid and
dashed curves represent packet arrivals from the
first and the second path respectively.

Fig. 1 illustrates multipath live streaming via TCP.
The video server generates packets at the constant rate
equal to the playback rate of the video (i.e., µ packets
per second). For ease of exposition, we assume that
packets are generated from time 0, starting with packet
number 0. Let G(t) denote the number of packets gen-
erated at the server by time t. Then G(t) = µt. At the
client side, let B(t) denote the number of packets played
back by the client by time t. Then B(t) = µ(t − τ),
t ≥ τ . Observe that G(t) − B(t) = µτ . Since only
packets that are generated can be transmitted, the to-
tal number of packets arriving at the client by time t is
at most G(t). Therefore, the number of early packets
is at most G(t) − B(t) = µτ at any time t. This char-
acteristic is to be used in our model for multipath live
streaming via TCP in Section 4.

2.2 TCP throughputs in live streaming
Let σk denote the average achievable TCP through-

put (in packets per second) on path k, which is the
throughput achieved by a backlogged TCP source, i.e.,
a source always having data to transmit. Let σ′k denote
the average TCP throughput (in packets per second)
on path k in live streaming. Then σ′k ≤ σk because
the TCP source on the k-path may not always have
data to send (data are generated in real-time and only
generated packets can be transmitted). Furthermore,∑K

i=1 σ′k ≤ µ since the packet generation rate is µ.

3. SCHEME FOR MULTIPATH STREAM-
ING VIA TCP

In live-streaming, to reduce the number of late pack-
ets, the server needs to transmit the generated packets
to the client as fast as allowed by the TCP flows on
the multiple paths. This is because, network conges-
tion may cause the aggregate TCP throughput to be



At the video server:
Generate packets
Place the generated packets into server queue

At a TCP sender:
If (it can send packets) {

if (it obtains access to the server queue) {
do {

Fetch packets from the head of the server queue
} till (it cannot send or the server queue is empty)

}
}

Figure 2: DMP-streaming: actions of the video
server and the TCP senders.

occasionally lower than the video playback rate; buffer-
ing as many packets as possible can compensate this
adverse effect. A key question in multipath streaming
is: given the multiple paths, which path should a packet
be assigned to?

Intuitively, a desired streaming scheme allocates pack-
ets over the multiple paths dynamically according to
their current network bandwidths and allocates more
packets on paths with higher throughputs (as in existing
UDP-based schemes, e.g., [25]). Furthermore, it should
avoid explicitly probing for bandwidth on each path (so
no probing traffic is generated). We develop a TCP-
based streaming scheme that satisfies the above de-
sired properties and name it Dynamic MPath-streaming
(DMP-streaming). We next describe this scheme in de-
tail.

Our DMP-streaming scheme is summarized in Fig. 2.
The server places the generated video packets into a
queue, referred to as server queue. In the server queue,
packets with earlier playback times are placed at the
head of the queue. The TCP senders on each of the
paths can fetch packets from the server queue. How-
ever, at a certain point of time, only one TCP sender is
allowed to access the server queue (this can be achieved
through a locking mechanism). More specifically, when
a TCP sender can send data, it first obtains the access
to the server queue, and then fetches packets from the
head of the server queue until it cannot send any more
packets (i.e., this TCP sender is blocked) or when no
packet is inside the server queue. At that time, it re-
leases its lock on the server queue so that another TCP
source can access the server queue.

We now demonstrate that DMP-streaming has the
desired properties that are described earlier. First, it
clearly allocates packets in a dynamic manner over the
multiple paths (each TCP source fetches packets dy-
namically from the server queue). Second, it allocates
more packets to the paths with higher achievable TCP
throughputs by implicitly inferring the achievable TCP
throughputs on these paths. This can be explained as
follows. In the current implementation of TCP, a TCP

sender places packets in the its sending buffer before
transmitting them into the network. The TCP sender
cannot send any more packets (i.e., the TCP sender
blocks) when the sending buffer is full. Therefore, once
the TCP sending buffers on the multiple paths become
full after the initial transient period, a path with a
higher achievable TCP throughput drains packets from
its sending buffer faster and fetches more packets from
the server queue. Therefore, a TCP source on a path
with a higher achievable throughput sends a larger frac-
tion of the packets.

As we can see, DMP-streaming is extremely simple
— it takes advantage of the congestion control mecha-
nisms in TCP to adapt to bandwidth fluctuations in the
network paths. It can be used when the multiple TCP
flows share or do not share bottleneck links (a special
case is that they share the same path). Furthermore, it
is also applicable to stored-video streaming. We focus
on using DMP-streaming for live streaming in this pa-
per; its performance for stored-video streaming is left
as future work.

4. ANALYTICAL MODEL
We develop a continuous-time Markov model for DMP-

streaming. As we shall see, this model allows us to sys-
tematically vary the various parameters to explore the
performance of DMP-streaming (Section 7). In the fol-
lowing, we first provide an overview of our model and
then describe our model in detail.

4.1 Overview of the model
Our model assumes a single TCP flow on each path

from the server to the client. It is developed by con-
sidering the data production and consumption at the
client-side buffer: the multiple TCP connections from
the server to the client produce (transmit) packets and
store them in the client-side buffer; the client starts to
consume (i.e., play back) packets in the buffer from time
τ at a constant rate of µ packets per second. We add
the constraint that a producer stops producing packets
when there are Nmax = µτ early packets in the buffer.
This follows from an earlier observation that the num-
ber of early packets in the client-side buffer never ex-
ceeds Nmax = µτ (see Section 2.1).

One challenge in modeling multipath TCP streaming
is that, although packets from each path arrive in order,
packets from the multiple paths may arrive out of order.
For instance, suppose that packet i is lost by a TCP flow
and a later packet, packet j (j > i), is sent successfully
by another TCP flow. Then packet j may arrive at the
client earlier than packet i and this leads to out-of-order
packets at the receiver. One way to deal with out-of-
order packets is to include the packet number of each
packet in the model. However, this will make the state
space of the model prohibitively large and render the



model intractable. On the other hand, as confirmed by
our simulation and experimental results (in Sections 5
and 6), out-of-order packets only have a negligible effect
on the fraction of late packets in DMP-streaming. In
other words, playing back packets in their arriving order
only causes a negligible error. Therefore, in our model,
we only keep track of the number of early packets and
play back packets as if they were in order. The reasons
why the effect of out-of-order packets is negligible can
be explained by considering the following two cases. In
both cases, we consider an arbitrary packet, i, arriving
on path k.

• Case 1: packet i is not late (i.e., it arrives earlier
than its playback time). Suppose packet j (j > i)
arrives earlier than packet i. Then when playing
back packets in their arriving order, packet j is
played back as packet i. This case, however, does
not cause an error to the fraction of late packets
(since neither of packets i and j is late).

• Case 2: packet i is late (i.e., path k is congested).
In particular, suppose a sequence of n packets on
path k are late (n ≥ 1). If there are out-of-order
packets and packets are played back in their ar-
riving order, packets from another path may be
played back as these n packets and this causes an
error. However, when this happens, we expect n
to be very small and hence the error is negligi-
ble. This is because DMP-streaming reduces the
number of packets sent on a path when the path
becomes congested. Since the startup delays are
much longer than the round-trip times of the TCP
flows (a few seconds versus a few hundred millisec-
onds), we expect the number of packets sent on a
congested path to have been reduced significantly
(i.e., n is small) when late packets occur.

4.2 Model for DMP-streaming
Let (X1(t), . . . , XK(t), N(t)) represent the state of

the model for DMP-streaming at time t, where Xk(t) is
the state of the k-th TCP flow and N(t) is the number
of early packets in the client’s local buffer at time t,
k = 1, . . . , K, t ≥ 0. The state transition of the model
is governed by the state transitions of the various TCP
flows and the packet consumption event. In the follow-
ing, we first describe the state transition for each TCP
flow. We then describe the evolution of N(t) and how
to obtain the fraction of late packets from the model.

The state transitions of the different TCP flows are
independent of each other. For the k-th TCP flow, its
state at time t, Xk(t), is a tuple containing five compo-
nents, i.e., Xk(t) = (Wk(t), Ck(t), Lk(t), Ek(t), Qk(t)),
where Wk(t) is the window size; Ck(t) models the de-
layed ACK behavior of TCP (it changes from 0 to 1
or from 1 to 0 after a state transition); Lk(t) is the

number of packets lost in the previous round; Ek(t) de-
notes whether the connection is in a timeout state and
the value of the back-off exponent; Qk(t) indicates if a
packet being sent in the timeout phase is a retransmis-
sion (Qk(t) = 1) or a new packet (Qk(t) = 0). The
transition rate from one state to another state depends
on these two states and the parameters of this TCP
flow, including its RTT, loss rate and timeout value.1

Due to space limits, a detailed description of the state
transition rate for each TCP flow is found in [32].

We now describe how the number of early packets,
N(t), evolves over time. The state of the Markov chain
changes under two types of events: (1) when any of
the TCP flows makes a transition, (2) when a packet is
consumed (played back) from the client’s local buffer.
The first type of events increases N(t) while the second
type of events decreases N(t). To satisfy the constraint
that N(t) ≤ Nmax = µτ in live streaming (see Sec-
tion 2.1), a TCP flow does not make a transition if the
current number of early packets is Nmax. Let E(t) de-
note the event that triggers the transition at time t.
Let E(t) = P denote that a transition of a TCP flow
triggers the transition at time t. Similarly, let E(t) = C
denote that a packet consumption triggers the transi-
tion at time t. Then considering these two conditions,

• Condition 1 (E(t) = P): Suppose the k-th TCP
flow triggers the transition. Then the number of
early packets, N(t), is increased by Sk(t) (not ex-
ceeding Nmax = µτ), where Sk(t) is the number
of packets that the k-th TCP flow transmits suc-
cessfully at the transition (details in [32]).

• Condition 2 (E(t) = C): then the number of early
packets, N(t), is reduced by 1.

Note from the above that, in our model, a flow with
a higher achievable throughput contributes more early
packets, and hence captures the property of DMP-streaming
that such a flow transmits a larger fraction of packets.

For sufficiently long videos, we obtain the fraction of
late packets from the stationary distribution of N(t) as

f = lim
t→∞

P (N(t) < 0 | E(t) = C). (1)

We numerically solve for the stationary distribution of
N(t) using TANGRAM-II modeling tool [9].

The above model assumes that loss events over the
multiple paths are independent. This is true when the
TCP flows do not share bottleneck links. When the
TCP flows share bottleneck links, as long as the losses
in the TCP flows are not significantly correlated, our
model may still provide accurate results. We validate
1Our assumption on loss process follows [23, 10]. That is,
packet losses in different RTTs are independent and packet
losses in the same RTT are correlated (if a packet is lost, all
remaining packets until the end of the RTT are lost). Last,
the effect of lost ACKs is regarded as negligible.



Config. FTP HTTP Prop. Delay B.w. Buffer
flows flows (ms) (Mbps) (pkts)

1 9 40 40 3.7 50
2 9 40 1 3.7 50
3 19 40 40 5.0 50
4 5 20 1 5.0 30

Table 1: Configurations of the bottleneck link.

our model when the TCP flows share and not share
bottleneck links in Section 5.

5. MODEL VALIDATION USING NS

In this section, we validate our model for DMP-streaming
using ns. We use K = 2, i.e., two TCP flows are used
for live streaming. In the following, we first describe
our methodology for validation and then describe the
validation results.

5.1 Methodology
We refer to the TCP flows that are used to stream

video as video streams. The network is simulated as fol-
lows. Each video stream traverses a path with a bottle-
neck link. This bottleneck link is also used by multiple
FTP and HTTP flows (referred to as background flows).
We simulate four different configurations for the bottle-
neck link on a path, by varying the delay, bandwidth
and buffer size at the link and the number of back-
ground flows traversing that link. These configurations
are listed in Table 1.

For the video stream (via TCP) on the k-th path, let
pk, Rk and Rk

TO denote respectively the loss probabil-
ity, the round-trip time (RTT), and the first retrans-
mission timer. We further define TOk

= Rk
TO/Rk; TOk

reflects the variation of the RTTs. In all cases, the
video streams uses TCP Reno. We are interested in the
steady-state behavior of multipath streaming and set
the video length to 10, 000 seconds. The startup delay
ranges from 4 to 10 seconds.

In each setting, we make 30 runs. Let fm and fs

denote the average fraction of late packets from the
model and the simulation respectively. We say that
the model and the simulation match well if one of the
following two conditions is satisfied: fm falls within
the confidence interval obtained from the simulation,
or 0.1 < fm/fs < 10. The reason for the second con-
dition is as follows. When fm and fs lie within the
same order of magnitude of each other, we regard that
they correspond to similar viewing quality (the qual-
ity is classified as either satisfactory or unsatisfactory
since our ultimate goal is to determine the conditions
under which TCP provides satisfactory streaming per-
formance).

In the following, we first consider independent paths,
that is, the multiple paths used by the video streams do

r11 r12

r21 r22

background 
flows

video
server

video
client

background 
flows

Figure 3: Validation setting for independent
paths in ns: the video server spreads the video
over two paths to the client. Packet losses are
caused by buffer overflows on the bottleneck
links from router rk1 to rk2, k = 1, 2.

Setting p1 p2 R1 R2 TO1 TO2 µ
(ms) (ms) (pkts ps)

1-1 0.023 0.023 210 210 1.6 1.6 50
2-2 0.037 0.036 150 150 1.7 1.7 50
3-3 0.053 0.053 200 200 1.9 1.9 30
4-4 0.034 0.035 80 80 3.0 3.3 80

1-2 0.023 0.036 210 150 1.6 1.7 50
1-3 0.023 0.053 210 200 1.6 1.9 40
2-3 0.036 0.053 150 200 1.7 1.9 40
3-4 0.049 0.032 200 80 1.9 3.0 60

Table 2: Model validation for independent
paths (including both homogeneous and hetero-
geneous paths) in ns.

not share a bottleneck link. We then consider correlated
paths where the multiple paths share bottlenecks.

5.2 Independent paths
For independent paths, we use the topology shown in

Fig. 3. A video server streams a video to a client via
TCP over two paths. On path k, the link (rk1, rk2) is
the bottleneck link, where packets are lost due to buffer
overflow, k = 1, 2. The link from the video server to rk1

(and the link from rk2 to the video client) has propa-
gation delay of 10 ms and bandwidth of 100 Mbps. We
validate our model for several combinations of bottle-
neck link configurations shown in Table 1. In particular,
we consider homogeneous paths where the two paths use
the same configuration, and heterogeneous paths where
the two paths use different configurations.

5.2.1 Independent homogeneous paths

We consider 4 different settings with homogeneous
paths, one for each configuration of the bottleneck link
in Table 1. When both paths use configuration i, we
denote the setting as Setting i-i, i = 1, . . . , 4. The
parameters of the video streams are averaged over 30
simulation runs, as listed in Table 2. The playback rate
of the video is 30, 50 or 80 packets per second and each
packet is 1500 bytes. Therefore, the bandwidth of the
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Figure 4: Validation results for independent homogeneous paths (Setting 2-2).
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Figure 5: Validation results for independent heterogeneous paths (Setting 1-2).

video is 360, 600 or 960 Kbps.
In each setting, we validate that the effect of out-

of-order packets can be ignored (an assumption in our
model) and compare the fraction of late packets from
our model and the simulation. Due to space limits, we
only present the results for Setting 2-2; the results for
other settings are similar [32]. We fist validate that
the effect of out-of-order packets is negligible (see Sec-
tion 4.1). From the simulation trace, we obtain the
fraction of late packets when playing back packets in
their arriving order and that according to their play-
back times. Fig. 4(a) is a scatter-plot of these two
quantities. We observe a close match and thus vali-
date that the effect of out-of-order packets is negligible.
Fig. 4(b) depicts the fraction of late packets from the
model and the simulations (using the actual fraction of
late packets). The 95% confidence intervals are from 30
simulation runs. We observe a good match between the
model and the simulation.

5.2.2 Independent heterogeneous paths

We consider 4 different settings with heterogeneous
paths by pairing two different configurations for the bot-
tleneck links listed in Table 1. When the two paths use
configuration i and j, we denote the setting as Setting
i-j, i, j = 1, . . . , 4, i 6= j. The parameters of the video
streams are listed in Table 2. The playback rate of the

r1 r2

background 
flows

video
server

video
client

Figure 6: Validation setting for correlated paths:
the video server sends packets using two TCP
flows on the same path. Packet losses are caused
by buffer overflows on the link (r1, r2).

video is either 40, 50 or 60 packets per second. We next
only present the results for Setting 1-2; results for other
settings are similar [32]. Fig. 5(a) plots the fraction of
late packets when consuming packets in their arrival or-
der versus that according to their playback times. We
observe a close match for all the settings except one
with a low fraction of late packets (this mismatch might
be due to insufficient number of samples). This again
validates that the effect of out-of-order packets can be
ignored. Fig. 5(b) depicts the fraction of late packets
from the model and the simulation. We again observe
a good match between the model and the simulation
results.

5.3 Correlated paths
For the case of correlated paths, we consider an ex-

treme case, namely, the video flows share the same path.
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Figure 7: Model validation using experiments over the Internet.

Setting p1 p2 R1 R2 TO1 TO2 µ
(ms) (ms) (pkts ps)

1 0.022 0.022 210 210 1.6 1.6 50
2 0.037 0.037 150 150 1.7 1.7 50
3 0.053 0.053 200 200 1.9 1.9 30
4 0.036 0.036 80 80 3.0 3.3 80

Table 3: Model validation for correlated paths
in ns.

The topology is show in Fig. 6. The link (r1, r2) is the
bottleneck link traversed by the video flows and back-
ground flows. We consider four settings, each with the
bottleneck link configured using a configuration listed
in Table 1. If a setting uses configuration i, we refer
to it as Setting i, i = 1, . . . , 4. The parameters of the
video streams are averaged over 30 simulation runs, as
listed in Table 3. As expected, the parameters of the
two TCP streams are similar. The validation results are
similar to those for independent homogeneous paths in
Section 5.2.1 (figures omitted due to space limits). This
demonstrates that our model is also applicable to cor-
rected paths as long as the loss processes of the two
paths can be regarded as independent, conforming to
the assumptions in our model. In the above settings,
packets from background flows are interspersed among
the packets of the two TCP streams, which reduces
the correlation of the loss processes of these two TCP
streams.

6. MODEL VALIDATION USING EXPERI-
MENTS OVER THE INTERNET

We have implemented DMP-streaming and validated
our model for DMP-streaming through experiments con-
ducted over the Internet. In each experiment, we use
tcpdump to capture the packet timestamps on each path.
The average loss rate, average RTT and timeout value of
each TCP flow are estimated from the tcpdump traces.
We use Linux-based machines for all experiments.

Having no access to multihomed machines, we emu-
late multipath streaming by streaming from a server to

two clients and then combining the traces at the two
clients. The video server is placed inside University of
Connecticut. The clients are chosen from nodes in Plan-
etlab [1]. We use both homogeneous and heterogeneous
paths. A setting with two homogeneous paths is created
by streaming from the server to two nodes that are con-
nected through ADSL in San Francisco, California. A
setting with heterogenous paths is created by streaming
from the server to one node in San Francisco, Califor-
nia and another in Hefei, China. The playback rate of
the video is 25 or 50 packets per second (under homo-
geneous paths) and 100 packets per second (under het-
erogenous paths). Each packet consists of 1448 bytes.
Therefore, the bandwidth of the video varies from 300
Kbps to 1.2 Mbps. We conducted 10 experiments from
July 21 to July 27, 2006 at randomly chosen times; each
experiment lasted for 3, 000 seconds.

Fig. 7(a) plots the fraction of late packets when play-
ing back packets in their arriving order and that accord-
ing to their playback times. We again see that they are
very close, and hence validate that the effect of out-of-
order packets is negligible. Fig. 7(b) presents a scatter-
plot showing the fraction of late packets obtained from
the measurements versus that predicted by the model.
The 45 degree line starting at the origin represents a
hypothetical perfect match between the measurements
and the model. Along the upper and lower 45 degree
lines, the fraction of late packets from the model is re-
spectively 10 times higher and lower than that from the
measurements. All but one scatterplot point fall within
the upper and lower 45 degree lines, indicating a match
between the model and the Internet experiments. When
the startup delay is 10 seconds, in 6 experiments, the
fraction of late packets is 0 (therefore are not shown in
the plot) while our model predictions are also 0 for 5 ex-
periments and 10−4 for one experiment. We speculate
that this single discrepancy between the model and the
experimental results is due to an insufficient number of
samples in the data trace.

7. EXPLORING THE PARAMETER SPACE
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Figure 8: Diminishing gain from increasing σa/µ
on performance, p = 0.02, TO = 4, µ = 25 packets
per second.

In this section, we explore the impacts of the various
parameters on the performance of DMP-streaming us-
ing the model developed in Section 4. Our goals are: (1)
identify conditions under which DMP-streaming leads
to a satisfactory performance; (2) compare DMP-streaming
and a static scheme to quantify the benefits from dy-
namic packet allocation in TCP-based multipath stream-
ing. We achieve the above goals by varying the para-
meters in the model for DMP-streaming. The reason
why we use the model (instead of simulation or empiri-
cal study) is that it allows us to systematically explore
the parameter space, a task that is difficult when using
other means.

The parameters of the TCP flows are set as follows.
The loss rate is varied from 0.004 to 0.04. The timeout
value is varied from 1 to 4, based on several measure-
ments in [24], and our measurements in Section 6 and
[31]. The RTT is in the range of 40 ms to 300 ms based
on measurement results that the median RTTs between
two sites on the same coast and the two coasts in the
US are 50 and 100 ms respectively [14]. Let σa denote
the aggregate achievable TCP throughput (in packets
per second) over all the paths. Then σa =

∑K
k=1 σk,

where σk is the achievable TCP throughput on the k-th
path. Throughout this section, we use K = 2; per-
formance study under larger number of paths is left as
future work.

In the following, we first consider homogeneous paths,
and then explore the impact of path heterogeneity. Af-
terwards, we discuss the benefits from using multiple
paths in TCP-based streaming. At the end, we com-
pare DMP-streaming to a static scheme.

7.1 Conditions for satisfactory performance:
homogeneous paths

We now consider homogeneous paths and determine
the conditions under which DMP-streaming leads to

satisfactory performance. A performance is said to be
satisfactory when the fraction of late packets is less than
10−4 for a startup delay of around 10 seconds. This is
because people can usually tolerate several seconds of
startup delay and studies show that video quality drops
when the packet loss rate exceeds 10−4 (e.g., [30]).

Intuitively, the performance of multipath TCP stream-
ing improves as the ratio of the aggregate achievable
TCP throughput over the playback rate, σa/µ, increases.
This is because, as σa/µ increases, packets accumulate
in the client’s local buffer faster relative to the playback
rate of the video.

We now vary the value of σa/µ from 1.2 to 2.0 to
identify the minimum value of σa/µ that leads to satis-
factory performance. For ease of notation, we drop the
index in the subscript and use p, R, TO and σ to de-
note respectively the loss rate, RTT, time-out value and
achievable TCP throughput on all the paths (since the
paths are homogeneous). Let σR denote the throughput
in one RTT. Then σR = σR and is determined by p and
TO. Because σa/µ = Kσ/µ = KσR/(µR), we vary the
value of σa/µ in one of the following two manners: (1)
fixing σR (by fixing p and TO) and µ, and varying the
RTT R; (2) fixing σR (by fixing p and TO) and R, and
varying the playback rate µ. In both manners, the loss
rate p is set to 0.004, 0.02 or 0.04; the timeout value TO

is set to 1, 2, 3 or 4.
We first present the results when varying σa/µ from

1.2 to 2.0 by fixing σR and µ, and varying the RTT R.
The playback rate µ is set to 25, 50 or 100 packets per
second. We observe a diminishing gain from increasing
σa/µ on performance. One example is shown in Fig. 8,
where p = 0.02, TO = 4, and µ = 25 packets per sec-
ond. As shown in this figure, the performance improves
dramatically as σa/µ increases from 1.2 to 1.4 and less
dramatically afterwards. Fig. 9(a) plots the required
startup delays so that the fraction of late packets is be-
low 10−4 when TO = 4 (the required startup delays for
lower TO’s are lower) and σa/µ = 1.6. (The result for
p = 0.004 and µ = 25 packets per second is omitted be-
cause its corresponding RTT is over 600 ms, too large
to represent a practical setting). We observe that the
required startup delay is around 10 seconds for all the
settings. This indicates that the performance of DMP-
streaming is satisfactory when σa/µ becomes 1.6.

We now present the results when varying σa/µ from
1.2 to 2.0 by fixing σR and R, and varying the play-
back rate µ. The RTT R is set to 100, 200 or 300 ms.
Fig. 9(b) plots the required startup delays so that the
fraction of late packets lies below 10−4 when TO = 4
(the required startup delays for lower TO’s are lower)
and σa/µ = 1.6. It shows that the required startup de-
lays are generally around 10 seconds except the settings
with a large RTT, high loss rate and timeout value (e.g.,
p = 0.04, TO = 4). For those settings, a higher σa/µ
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Figure 9: Homogeneous paths: required startup delay so that the fraction of late packets is below
10−4, TO = 4, σa/µ = 1.6.

(e.g., σa/µ = 1.8) is required to achieve a satisfactory
performance.

7.2 Conditions for satisfactory performance:
heterogenous paths

We identify the conditions for satisfactory performance
under heterogenous paths by exploring the impact of
path heterogeneity — once understanding the impact,
we can relate the conditions for homogenous paths to
those for heterogenous paths. More specifically, we com-
pare the performances of DMP-streaming under two
scenarios. In the first scenario, the paths are homo-
geneous. Let po, Ro, T o

O and σo denote respectively
the loss rate, RTT, timeout value and the achievable
TCP throughput on all the paths. In the second sce-
nario, the paths are heterogeneous. Let pe

k, Re
k, T e

Ok

and σe
k denote respectively the loss rate, RTT, timeout

value and the achievable TCP throughput on the k-th
path. We assume that a video with a playback rate µ is
streamed in both scenarios. To make a fair comparison,
we require that these two scenarios have the same aggre-
gate achievable TCP throughput, i.e.,

∑K
k=1 σe

k = Kσo.
Although heterogeneous paths may differ in any com-
bination of their parameters, to make the exploration
tractable, we focus on two types of heterogeneous paths
as follows, where γ represents the extent of path het-
erogeneity, referred to as heterogeneity factor :

• Case 1: the two paths only differ in their RTTs.
That is, pe

1 = pe
2 = po, T e

O1
= T e

O2
= T o

O, Re
1 =

γRo, Re
2 = Ro/(2 − 1/γ), γ > 1. In this case, the

aggregate achievable TCP throughputs under het-
erogeneous and homogeneous paths are the same
since σe

1 + σe
2 = σo(1/γ + 2− 1/γ) = 2σo.

• Case 2: the two paths only differ in loss rates,
that is, Re

1 = Re
2 = Ro, T e

O1
= T e

O2
= T o

O, pe
1 =

γpo, γ > 1, and pe
2 is set using the formula for

the achievable TCP throughput in [24] to obtain
the same aggregate achievable TCP throughput as
that under homogeneous paths.

We now report the results for the above two cases.
All the settings below use T e

O1
= T e

O2
= T o

O = 4. The
heterogeneity factor γ is set to 2 or 1.5. In Case 1, we
consider two loss rate settings, pe

1 = pe
2 = po = 0.01 or

0.04, representing relatively low and high loss rates. For
homogeneous paths, Ro = 150 ms. For heterogeneous
paths, when γ = 2, Re

1 = 300 ms and Re
2 = 100 ms;

when γ = 1.5, Re
1 = 225 ms and Re

2 = 112.5 ms. In Case
2, we consider two RTT settings, Re

1 = Re
2 = Ro = 100

ms or 300 ms, representing relatively low and high RTT.
For homogeneous paths, po = 0.02. For heterogeneous
paths, when γ = 2, pe

1 = 0.04 and pe
2 = 0.012; when

γ = 1.5, pe
1 = 0.03 and pe

2 = 0.014. For each setting of
the TCP parameters, the playback rate µ is set so that
σa/µ=1.4, 1.6 or 1.8. We therefore have (4+4)×3 = 24
different settings for heterogeneous paths. Fig. 10 plots
the required startup delay (so that the late loss rate
is below 10−4) under homogeneous paths versus that
under heterogeneous paths. We observe a close perfor-
mance under homogeneous and heterogenous paths for
all the settings. This indicates that the performance of
DMP-streaming is not sensitive to path heterogeneity.

To obtain additional insights on the impact of path
heterogeneity, we consider an extreme case where the
achievable TCP throughput on one path is close to
zero (e.g., when its loss rate is close to 1). In this ex-
treme case, DMP-streaming sends most of the packets
on the other path and becomes essentially a single-path
streaming. This extreme path-heterogeneity degrades
the performance of DMP-streaming since it requires
a higher σa/µ to achieve a satisfactory performance
(single-path streaming generally requires σa/µ = 2 for
a satisfactory performance). However, when the path
heterogeneity is less severe, we expect less impact from
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Figure 10: Impact of path heterogeneity.

path heterogeneity as suggested by the results earlier.

7.3 Discussion: DMP-streaming versus single-
path TCP-based live streaming

We have observed that DMP-streaming generally achieves
satisfactory performance when the aggregate achievable
TCP throughput is 1.6 times the video bitrate, with a
few seconds of startup delay. This requirement is lower
than that in single-path TCP-based streaming (which
generally requires that the achievable TCP through-
put to be twice as the video bitrate [31]). The rea-
sons for this lower requirement is that DMP-streaming
dynamically allocates packets onto the multiple paths
to take advantage of the path diversity provided by
multipath. We next illustrate this using a simple ex-
ample. Suppose single-path streaming uses a single
path P and DMP-streaming uses two paths P1 and
P2. All paths periodically alternates between a zero
and non-zero throughput, with the period of 10 sec-
onds. The non-zero throughput on path P is 2µ pack-
ets per second. The non-zero throughputs on paths P1

and P2 are x and (2µ − x) packets per second, respec-
tively, x ∈ (0, µ]. Therefore, the average throughput
of path P is µ packets per second, equal to the aggre-
gate throughput over paths P1 and P2. We show that,
for a startup delay of 5 seconds and playback rate of µ
packets per second, the average fraction of late packets
under DMP-streaming is lower than that under single-
path live streaming for all values of x ∈ (0, µ] (details
in [32]). This is because when paths P1 and P2 both
start with zero (or non-zero) throughput, the fraction of
late packets under DMP-streaming equals to that under
single-path live streaming. However, when this is not
the case (i.e., the two paths alternate to experience con-
gestion), DMP-Streaming intelligently sends packets to
the uncongested path when one path is congested, and
hence leads to a lower fraction of late loss.

7.4 Comparison with a static scheme
We now compare DMP-streaming and a static stream-

ing scheme which allocates packets statically onto mul-
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Figure 11: Performance comparison of DMP-
streaming and static-streaming, TO = 4.

tiple paths according to the average bandwidths (which
are obtained beforehand through measurement) of these
paths. Intuitively, DMP-streaming outperforms static-
streaming since the allocation under DMP-streaming is
according to the current network bandwidths. We next
demonstrate quantitatively that this is indeed the case.

For simplicity, we consider two homogeneous paths,
and let p, R and TO denote respectively the loss rate,
RTT and timeout value on both paths. Suppose a video,
with playback rate µ, is to be streamed over these two
paths. In this case, static-streaming assigns an equal
number of packets to the two paths. Without loss of
generality, we assume that it assigns odd numbered
packets to the first path and even numbered packets to
the second path. Then we can regard satic-streaming as
streaming two separate videos, each with playback rate
µ/2, over these two paths. We can therefore obtain the
fraction of late packets using our single-path streaming
model in [31].

We now compare the results from DMP-streaming
and static-streaming in the above scenario. The loss
rate p is set to 0.004, 0.02 or 0.04. The RTT R is 100,
200 or 300 ms. The timeout value TO is 4. The video
playback rate is varied such that σa/µ varies from 1.6 to
2. Fig. 11 plots the results from several representative
settings. We observe that, for the same setting, DMP-
streaming significantly outperforms static-streaming: it
requires a much lower startup delay for the fraction of
late packets to be below 10−4. This demonstrates the
importance of dynamic packet allocation in multipath
streaming.

8. CONCLUSIONS
In this paper, we designed a simple and practical

scheme, DMP-streaming, for multipath streaming via
TCP. We further developed an analytical model for DMP-
streaming and validated the model using extensive ns



simulation and Internet experiments. Using this model,
we explored the parameter space and found that the
performance of DMP-streaming is not sensitive to path
heterogeneity. Furthermore, the performance is gen-
erally satisfactory when the aggregate achievable TCP
throughput is 1.6 times the video bitrate, with a few
seconds of startup delay.
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