
Cross-layer Network Bandwidth Estimation for Low-latency Live
ABR Streaming

Chinmaey Shende1, Cheonjin Park1, Subhabrata Sen2, Bing Wang1
1University of Connecticut 2AT&T Labs - Research

ABSTRACT
Low-latency live (LLL) adaptive bitrate (ABR) streaming relies criti-
cally on accurate bandwidth estimation to react to dynamic network
conditions. While existing studies have proposed bandwidth esti-
mation techniques for LLL streaming, these approaches are at the
application level, and their accuracy is limited by the distorted
timing information observed at the application level. In this paper,
we propose a novel cross-layer approach that uses coarse-grained
application-level semantics and fine-grained kernel-level packet
capture to obtain accurate bandwidth estimation. We incorporate
this technique in three popular open-source ABR players and show
that it provides significantly more accurate bandwidth estimation
than the state-of-the-art application-level approaches. In addition,
the more accurate bandwidth estimation leads to better bandwidth
prediction, which we show can lead to significantly better quality
of experience (QoE) for end users.

CCS CONCEPTS
• Information systems→Multimedia streaming.

KEYWORDS
ABR streaming; Low-latency live streaming; Bandwidth estimation.

ACM Reference Format:
Chinmaey Shende, Cheonjin Park, Subhabrata Sen, and Bing Wang. 2023.
Cross-layer Network Bandwidth Estimation for Low-latency Live ABR
Streaming. In Proceedings of the 14th ACM Multimedia Systems Conference
(MMSys ’23), June 7–10, 2023, Vancouver, BC, Canada. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3587819.3590990

1 INTRODUCTION
Bandwidth estimation, i.e., estimating the rate of data transfer from
a server to a client over a network setting, is important for many ap-
plications. One example is adaptive bitrate (ABR) streaming, where
a client estimates the dynamic network bandwidth and adapts to
it to maximize its QoE. In traditional ABR steaming, while band-
width estimation is often necessary, accurate bandwidth estimation
is not very critical—the client can buffer future content ahead of
time, which can be tens of seconds for Video on Demand (VOD)
and 10-15 seconds for live streaming. The buffer thus provides a
cushion for the application, e.g., even if a bandwidth drop is not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0148-1/23/06. . . $15.00
https://doi.org/10.1145/3587819.3590990

predicted accurately, the client can play back the content that is
already prefetched in the buffer.

New applications, however, have drastically changed the above
landscape. One example is low-latency live (LLL) streaming, which
requires very low target latency (e.g., the playback cannot fall be-
hind the live edge more than 5 seconds), for live sports and other
live events such as online journalism, education, and virtual reality.
To meet the low latency requirement, the state-of-the-art technique
is usingMPEG CommonMedia Application Format (CMAF) [8] cou-
pled with HTTP/1.1 chunked transfer encoding (CTE) [23]. CMAF
enhances the traditional media packaging by introducing very short
decodable units, called chunks. Specifically, the origin server pro-
vides multiple tracks of the video that are encoded at different
bitrate/quality levels, each divided into multiple segments, and each
segment is further divided into chunks (e.g., a segment is a few
seconds long, while a chunk is tens to hundreds of milliseconds
long). The chunks in a segment can be transferred using CTE before
the segment is fully encoded. Similarly, the client can decode and
play back a chunk without waiting to receive the full segment.

Even with CMAF and CTE, high-quality LLL streaming is ex-
tremely challenging, evidenced by recent grand challenges orga-
nized by academia and industry [4, 64]. Specifically, assuming a
target latency Δ (e.g., Δ = 1 or 3 seconds), the amount of prefetched
content is at best ahead of the playback by Δ, and hence the buffer
becomes a much less effective cushioning mechanism. Instead, the
application needs accurate realtime bandwidth estimation in or-
der to react to the dynamic network conditions. The traditional
bandwidth estimation method, which simply estimates the band-
width as the number of bytes downloaded over a period of time
divided by the duration of the time period, does not work for LLL
streaming and can end up underestimatiing the available network
bandwidth [12]. This is because the data transfer can be source-
constrained: when the data transfer of one chunk is completed, the
next chunk may still be in the process of being generated at the
server, not ready to be transferred.

Existing studies have proposed bandwidth estimation techniques
for LLL streaming (see §7). All these techniques are at the appli-
cation level, by instrumenting the application, and use different
heuristics to decide what data and time periods should be used to
handle the idle periods in chunked-based data transfer. Such ap-
proaches are easy to implement since application-level information
is easily accessible. However, we argue that they have fundamental
limitations: timing information observed at the application level
does not reflect the network bandwidth accurately, since it is subject
to various end-system impacts (e.g., buffering, specific handling
of TCP packets). Therefore, it is challenging to obtain accurate
bandwidth estimation using an application-level approach.

In this paper, we propose a novel cross-layer approach that com-
bines kernel-level packet capture and application semantics for

https://doi.org/10.1145/3587819.3590990
https://doi.org/10.1145/3587819.3590990

MMSys’23, June 7-10, 2023, Vancouver, Canada C. Shende et al.

accurate bandwidth estimation. In addition to LLL streaming, this
approach can be used for many other low-latency applications such
as teleconferencing, cloud gaming, and augmented reality, that use
mechanisms similar to ABR streaming to react to network dynamics.
Our study makes the following main contributions:
•We propose a novel direction of cross-layer bandwidth estimation
(§2) and develop one such technique for LLL streaming (§3). This
technique, called Cross-layer Bandwidth Estimation (CLBE), does not
introduce any additional probing traffic to the network. It combines
fine-grained kernel-level packet capture that provides high-fidelity
network bandwidth information with coarse-grained application-
level semantics to estimate network bandwidth accurately.
• We incorporate CLBE in three popular open-source ABR players,
dash.js [17], ExoPlayer [27], and Shaka Player [28] that support
LLL streaming (§4). Using a wide range of settings (§5), we demon-
strate that CLBE provides significantly more accurate bandwidth
estimation than state-of-the-art application-level approaches (§6).
Even for highly dynamic cellular network bandwidth scenarios,
74%-78% of its bandwidth estimation errors are within 10%, while
for the state-of-the-art application-level approaches, only 10-17% of
the errors are within 10%. When coupling the accurate bandwidth
estimation from CLBE with the bandwidth prediction modules in
these three players, the prediction is much more accurate than that
of the original players: 70%-73% of the prediction errors are within
20%, while even for the best prediction in the original players, only
24%-46% of the prediction errors are within 20%.
• We demonstrate that incorporating CLBE in the three players
can lead to significantly better QoE than the original players (§6).
The improvement includes less low-quality segments, and/or lower
stall duration and live latency.

In this paper, we focus on improving bandwidth estimation, the
first step of the logic flow that precedes bandwidth prediction and
ABR logic, since it is very important—inaccurate information at the
beginning of the flow will be hard to correct in the later stages. In
addition, being the first step, a new bandwidth estimation technique
can be easily incorporated in existing ABR players (see §4). While
our results demonstrate that just the more accurate bandwidth esti-
mates from CLBE already leads to QoE improvements, the overall
QoE is a function of the overall end-to-end ABR streaming pipeline.
Since bandwidth estimation by the player is only one (albeit impor-
tant) component of the pipeline, further QoE gains beyond what
we observe may be possible with suitable improvement to other
components, e.g., bandwidth prediction and ABR adaptation logic.

We acknowledge that it may be difficult to capture packet timing
information at the kernel level on some systems. Another question
is how to make such kernel-level timing information available to
multiple applications without incurring significant system over-
head. In §6.4, we use CLBE as a concrete use case to advocate the
need for the OS to expose kernel-level packet information as a
service to the application, which can enable accurate bandwidth
estimation that is needed by many applications.

2 CROSS-LAYER APPROACH
2.1 High-level Overview
Fig. 1 illustrates two scenarios of packet transmission from a server
to a client. Fig. 1(a) shows a network-constrained scenario, where

Server
Packets

Client

12345 12345

Arrival times
(at kernel)

Internet Network
Stack

12345

Arrival times
(at application)

(a)

(b) 12345

application
idle period

no application
idle period

Internet 12345 12345Network
Stack

Arrival times
(at kernel)

Arrival times
(at application)

Figure 1: Kernel-level and application-level bandwidth measure-
ment. (a) network-constrained. (b) source-constrained.

the network bandwidth constrains the rate of the data transfer.
Specifically, the application-level content is divided into a sequence
of back-to-back packets and sent from the server to the client. At
the client, we illustrate the arrival times observed at the kernel
and application levels. For the arrival times at the kernel level, the
interval between two adjacent packets is affected by the available
network bandwidth from the server to the client and can be used for
bandwidth estimation. Specifically, for a packet of length 𝐿, if the
time interval of its arrival and the next packet is 𝑑 , then it provides
a sample of the available network bandwidth as 𝐿/𝑑 . A sequence of
𝑛 packets can provide up to 𝑛 − 1 samples for network bandwidth
estimation, which can be further processed (e.g., smoothed, filtered)
for more accurate and robust bandwidth estimation. In contrast,
the arrival times observed at the application level can be distorted
by various factors, e.g., buffering, TCP options, and TCP built-in
mechanisms. The intermediate APIs (e.g., Fetch API [3]) that are
used by the application can further distort the timing information.
As a result, using the time interval between two adjacent packets
observed at the application level will only provide distorted esti-
mates of network bandwidth. On the other hand, a coarse-grained
bandwidth estimation can be obtained as 𝑛𝐿/𝑇 at the application
level, where 𝑛𝐿 is the size of the downloaded content (i.e., 𝑛 packets,
each of length 𝐿) and 𝑇 is the total downloading time.

Fig. 1(b) shows a source-constrained scenario, where in addition
to network bandwidth, the source (or server) further constrains the
data transfer rate. For instance, the data is generated on the fly, and
hence there can be an application-level idle period between two
sequences of back-to-back packets. In this case, at the client, even at
the kernel level, one cannot simply use 𝐿/𝑑 as a bandwidth estimate
since the inter-arrival time, 𝑑 , can be affected by both the available
network bandwidth and application idle period. Similarly, at the
application level, one also needs to identify application idle periods
and exclude them in bandwidth estimation to avoid underestimating
the network bandwidth.

Summarizing the above two scenarios, we argue for a new cross-
layer approach that combines kernel-level and application-level
approaches for bandwidth estimation. (i) While the kernel-level
approach by itself can obtain fine-grained bandwidth estimation
in the network-constrained scenarios, in the source-constrained
scenarios, it is challenging to identify the application idle periods
solely based on kernel-level packet capture. (ii) The application-
level approach by itself is limited by the distorted signals that are
observed at the application layer, which are affected by many fac-
tors not related to the available network bandwidth. As a result,

Cross-layer Network Bandwidth Estimation for Low-latency Live ABR Streaming MMSys’23, June 7-10, 2023, Vancouver, Canada

(a) CMAF Chunk-based
server clientHTTP Req.

HTTP chunked transfer Res.

HTTP chunk 1, pkt1 (len)
HTTP chunk 1, pkt2

HTTP chunk 1, last pkt

HTTP chunk 2, pkt1 (len)

HTTP chunk 2, pkt2
...

...

idle
period

Player
buffer
level

Playback
rate control

ABR
logic

Network
bandwidth
prediction

Identifying
application
idle periods

Network
bandwidth
estimation

(b) LLL ABR streaming player

Figure 2: Data transmission patterns of CMAF chunk-based LLL
streaming and player diagram.

the bandwidth estimation can be coarse-grained and inaccurate,
even if application idle periods are identified successfully. Combin-
ing application-level semantics and kernel-level information can
provide a more reliable estimation methodology.

2.2 LLL ABR Streaming
As mentioned earlier, to meet the low-latency requirement in LLL
streaming, the current approach uses CMAF chunk-based packag-
ing and HTTP CTE. Fig. 2(a) illustrates the data transfer in such
scenarios. Whenever a CMAF chunk is encoded, the server trans-
mits the chunk to the client using HTTP CTE, without waiting
for the entire segment to be encoded. As a result, there can be an
application idle period between two CMAF chunks. In addition, in
DASH LLL streaming, there is no application-level information that
directly marks the beginning and end of the chunked transfer [33].
If we ignore the application idle period between two consecutive
CMAF chunks, the estimated bandwidth will just be equal to the
average encoding bitrate of the segment, which can significantly
underestimate the network bandwidth. Accurate bandwidth estima-
tion is, however, crucial for LLL streaming. Specifically, as shown
in Fig. 2(b), the estimated historical network bandwidth is fed to
the network bandwidth prediction module in a player to predict
future bandwidths, which will be input to the ABR logic and may
further affect the playback rate of the player. Overestimation of
network bandwidth can lead to over prediction of future network
bandwidth, leading to undesirable stalls and/or lower playback rate
for the player to catch up with the target live latency. Conversely,
underestimation can lead to lower video quality than what can be
supported by the network. In settings with high network band-
width variability, such as cellular networks, the adverse impact of
inaccurate bandwidth estimation can be particularly acute.

Existing bandwidth estimation approaches for LLL streaming
work at the application level, and use various heuristics to resolve
the above challenges. For instance, the approaches in [10, 40, 62]
parse the incoming data and use the CMAF format to identify CMAF
boundaries. Other approaches identify the application idle periods
as the periods where the estimated network bandwidth is lower
than an average value (e.g., as in Shaka player, see §4.1). As we
shall show later, due to the distorted signals and coarse-grained
information at the application level, these existing approaches do
not provide accurate bandwidth estimation.

In contrast to existing approaches, we develop a novel tech-
nique, cross-layer bandwidth estimation (CLBE), for LLL streaming.

Time

HTTP
chunk 1

s1,1

s1,2s1,3

s1,4

t1,1 t1,2t1,3
δ1,1

s2,1

s2,2

s2,3

…s3,1

s3,2

sN,1

sN,2

sN,3
s4,3s4,1

s4,2

HTTP
chunk 2

HTTP
chunk 3

HTTP
chunk 4

HTTP
chunk N

Application idle period

Figure 3: Illustration of the packets in HTTP chunks, which may or
may not coincide with CMAF chunks. The small packets in yellow
are length-packets and the packets in blue are CMAF data packets.
The largest packets are of size MTU.

Time
chunk i-1 chunk i

si-1,1

si-1,2
si-1,3

si,1

si,2

si-1,1

si-1,2
si-1,3

chunk i-1

si,1

chunk i

(a) (b) (c)

chunk i
si-1,2

si,1 si+1,2

chunk i-1

si-1,1 si+1,1

chunk i+1

si-1,3

chunk i-1 chunk i

si-1,1

si-1,2

si-1,3

si,1

si,2

si-1,1

si-1,2
si-1,3

chunk i-1

si,1

chunk i

(d) (e) (f)

chunk i
si-1,2

si,1 si+1,2

chunk i-1

si-1,1 si+1,1

chunk i+1

si-1,3

Figure 4: Top row: examples where the length-packet in HTTP
chunk 𝑖 is merged with the last packet in HTTP chunk 𝑖 − 1. Bottom
row: examples where the length-packet in HTTP chunk 𝑖 is merged
with the next packet in the same chunk.

Specifically, CLBE combines the undistorted signals captured at the
kernel level with the application semantics for accurate network
bandwidth estimation, as detailed below.

3 OUR APPROACH: CLBE
In this section, we describe our cross-layer approach, CLBE, for
network bandwidth estimation in LLL streaming. Our description
below considers source-constrained scenarios where data transfer
uses HTTP CTE, which is the typical case for LLL streaming. If
CTE is not used, which can be identified through the HTTP header
lines, then the bandwidth estimation can just follow the traditional
approach (see §2.1)1.

3.1 Identifying Application Idle Periods
Consider the transfer of a segment that contains multiple CMAF
chunks from the server to the client. As mentioned earlier, each
CMAF chunk is transferred to the client using HTTP CTE when it
is created, without waiting for the next CMAF chunk to be ready.
Therefore, the transfer of a segment contains a number of HTTP
chunks. Following the HTTP CTE specification [23], each HTTP
chunk starts with a small length-packet (it is of a few bytes, including
a hexadecimal number that represents the number bytes in the
HTTP chunk), followed by 𝑘 ≥ 0 packets with the size of the
1CLBE can obtain accurate network bandwidth estimation for both CTE and non-CTE
downloads, as confirmed by our measurement results.

MMSys’23, June 7-10, 2023, Vancouver, Canada C. Shende et al.

maximum transfer unit (MTU), and ends with a packet with size
no more than MTU. This pattern is because the server will push all
the data that is ready to be sent to the client as fast as possible to
the TCP socket (with the TCP PUSH flag on), and then to the client
to satisfy the realtime requirement of LLL streaming. The data is
divided into packets with sizes no more than the MTU imposed by
the underlying link layer of the network.

Fig. 3 illustrates the above process. It shows 𝑁 HTTP chunks
in one video segment, where the packets belonging to one HTTP
chunk are enclosed in a curly bracket in the figure, while the gap
between two adjacent HTTP chunks represents an application idle
period. In the figure, let 𝑠𝑖, 𝑗 and 𝑡𝑖, 𝑗 denote the size and arrival time
of the 𝑗th packet in HTTP chunk 𝑖 , and hence 𝛿𝑖, 𝑗 = 𝑡𝑖, 𝑗+1 − 𝑡𝑖, 𝑗
denotes the inter-arrival-time of packets 𝑗 and 𝑗 + 1 for chunk 𝑖 .
Note that an HTTP chunk may contain one or multiple CMAF
chunks (e.g., when multiple CMAF chunks are already generated
at the server when being requested, they can be sent together
in one HTTP chunk). Our bandwidth estimation approach only
needs to consider HTTP chunks, and identify the boundary of the
HTTP chunks—the time between two adjacent HTTP chunks is
an application idle period, which will be excluded in bandwidth
estimation. Unlike the approaches in [10, 40, 62], our approach uses
HTTP-level information and does not rely on the flags in CMAF
packaging (e.g., moof and mdat), and hence is generally applicable
to scenarios with HTTP CTE, not limited to CMAF data.

In Fig. 3, for ease of illustration, each length-packet (in yellow)
is marked as a standalone packet. In practice, due to various tim-
ing conditions, the length-packet in an HTTP chunk may not be
standalone. Specifically, the length-packet of the 𝑖th HTTP chunk
can be merged with the previous data packet, i.e., added to the end
of the last packet in the (𝑖 − 1)th HTTP chunk, which can hap-
pen when these two HTTP chunks are transferred close together
in time. Conversely, the length-packet in an HTTP chunk can be
merged with the next data packet in the same chunk. The above
two scenarios are illustrated in the top and bottom rows of Fig. 4,
respectively.
Identify HTTP chunk boundaries.We next present a method
that uses the timing and size information of the packets captured
at the kernel level to identify HTTP chunk boundaries. Consider
the packets in a segment, where the beginning of a segment is
identified as the first packet after an HTTP GET request, and the
end of a segment is identified as the one before the next HTTP GET
request. All the packets with payload of 0 are ignored. We identify
the beginning of the first HTTP chunk in a segment as the one
right after the HTTP GET request. Since this HTTP chunk contains
the first frame of the segment (i.e., an I-frame), it is typically large,
with one or multiple packets of size MTU, followed by one with
size no more than MTU. We then wait until we see a packet size
increase, i.e., when seeing a packet 𝑠𝑛 that is larger than 𝑠𝑛−1. We
then set 𝑠𝑛 to be the beginning of the next chunk; if 𝑠𝑛−1 is a not
length-packet (identified by the length of the packet), we set 𝑠𝑛−1
to be the end of the previous chunk, otherwise, we set 𝑠𝑛−2 (if it
exists) to be the end of the previous chunk.

As an example, in Fig. 3, we identify 𝑠1,2 and 𝑠1,4 as respectively
the first and last packets in HTTP chunk 1, 𝑠2,2 and 𝑠2,3 as respec-
tively the first and last packets in HTTP chunk 2, 𝑠3,2 as both the

first and last packets in HTTP chunk 3, and so on. (Here we slightly
abuse notation and use 𝑠𝑖, 𝑗 to represent both a packet and the size of
that packet.) The sequence of identified packets in an HTTP chunk
will be used to estimate the network bandwidth in §3.2. Note that
in the above, the length-packet in an HTTP chunk is not included
in the sequence of identified packets, which is intentional, since
small-size length-packets can lead to higher measurement noises
in bandwidth estimation.

The above example in Fig. 3 is for the cases where length-packets
are standalone packets (which happens to 72%-93% of the HTTP
chunks in our experiments). We now consider the special cases
where a length-packet is merged with the previous or next data
packet, as illustrated in top and bottom rows of Fig. 4, respectively.
Fig. 4(a)-(c) have the same setting for chunk 𝑖 − 1, and only differ
in the setting for chunk 𝑖 . In Fig. 4(a), both chunks 𝑖 − 1 and 𝑖 are
larger than MTU. We see packet size increases from 𝑠𝑖−1,1 to 𝑠𝑖−1,2,
and then from 𝑠𝑖−1,3 to 𝑠𝑖,1, and hence {𝑠𝑖−1,2, 𝑠𝑖−1,3} is identified
as a set of packets in chunk 𝑖 − 1, and 𝑠𝑖,1 is identified as the first
packet in chunk 𝑖 , which is correct. Fig. 4(b) differs from (a) in that
chunk 𝑖 is smaller than MTU. In this case, we still see an increase
in packet size from 𝑠𝑖−1,3 to 𝑠𝑖,1, and again identify the packets in
chunk 𝑖 − 1 correctly. Fig. 4(c) differs from (b) in that 𝑠𝑖,1 ≤ 𝑠𝑖−1,3,
and hence does not shows an increasing trend. In this case, we find
an increasing trend from 𝑠𝑖+1,1 to 𝑠𝑖+1,2, and hence 𝑠𝑖,1 is identified
as the last packet in chunk 𝑖 − 1, which is incorrect. This incorrect
decision, however, will not lead to a large estimation error, since
the reason why the length-packet in chunk 𝑖 is merged with the last
packet in chunk 𝑖 − 1 is that they are close to each other, and hence
the application idle period between chunks 𝑖 − 1 and 𝑖 is very short
in this case anyway. In Fig. 4(a)-(c), the size of chunk 𝑖 − 1 is larger
than MTU; the same results hold when the size of chunk 𝑖 −1 is less
than MTU as long as the size relationship between the last packet
in chunk 𝑖 − 1 and the first packet in chunk 𝑖 is consistent with
those in Fig. 4(a)-(c); we omit the illustrating figures for clarity.

Fig. 4(d)-(f) only differ from Fig. 4(a)-(c) in that they show three
cases where the length-packet of HTTP chunk 𝑖 is merged with the
next data packet. Similarly, we see that our method can identify the
HTTP chunk boundaries for all but the last case in Fig. 4(f).

Even when the boundary of an HTTP chunk is not identified
correctly, the impact will not last for more than a segment, since we
run the above method per segment, with the segment boundaries
identified using application semantics (i.e., HTTP messages). In
addition, since the packet capture is fine-grained and we use the
average value of multiple packets for bandwidth estimation, errors
from one packet or missing samples do not lead to noticeable impact
on the overall estimation error (see §6.1).
Alternative approach. Another approach for identifying HTTP
chunk boundaries is determining the length of each HTTP chunk
using the corresponding length-packet, and then keeping track of
the packet sizes until reaching the HTTP chunk size. We do not use
this approach in this paper because it requires parsing the packet
content (to determine the individual HTTP chunks), and hence
is more computationally intensive than the previous method. In
addition, it needs to identify and exclude retransmitted packets
(e.g., using the sequence numbers in the TCP packets), which will
introduce more overhead. On the other hand, this method can be

Cross-layer Network Bandwidth Estimation for Low-latency Live ABR Streaming MMSys’23, June 7-10, 2023, Vancouver, Canada

potentially more accurate than the previous method. Further study
of this approach is left as future work.

3.2 Bandwidth Estimation
Following the approach in §3.1, we identify a set of packets be-
longing to each HTTP chunk. Suppose 𝑘𝑖 packets are identified
in chunk 𝑖 . Recall that 𝑠𝑖, 𝑗 and 𝑡𝑖, 𝑗 denote the size (including the
application payload and the packet headers) and arrival time of
packet 𝑗 in chunk 𝑖 , and 𝛿𝑖 𝑗 = 𝑡𝑖, 𝑗+1 − 𝑡𝑖, 𝑗 denotes the inter-arrival
time of packet 𝑗 and 𝑗 + 1 in chunk 𝑖 . We refer to the first 𝑘𝑖 − 1
packets in chunk 𝑖 as valid packets for bandwidth estimation; the
𝑘𝑖 th packet is excluded since it may be followed by an application
idle period, which can skew the bandwidth estimation. In the case
of 𝑘𝑖 = 1, no valid packet is in that chunk.

With the above method for identifying valid packets, we now
consider a time interval with 𝑁 ≥ 1 HTTP chunks (e.g., the chunks
in a segment), identify all the valid packets for bandwidth estima-
tion, and then obtain the average network bandwidth estimation
for that interval, which is more robust to measurement noises than
the estimation from a single packet. Specifically, consider the size
and inter-arrival time pairs for all the valid packets in the 𝑁 HTTP
chunks, denoted as {(𝑠𝑖,1, 𝛿𝑖,1), (𝑠𝑖,2, 𝛿𝑖,2), . . . , (𝑠𝑖,𝑘𝑖−1, 𝛿𝑖,𝑘𝑖−1)}𝑁𝑖=1.
We use the following two methods to estimate the network band-
width for the interval. The first method obtains a sample of network
bandwidth estimation from each valid packet as 𝑐̂𝑖, 𝑗 = 𝑠𝑖, 𝑗/𝛿𝑖, 𝑗 ,
where 𝑖 = 1, . . . , 𝑁 , 𝑗 = 1, . . . , 𝑘𝑖 − 1, and then uses their average
as the estimated network bandwidth for the interval. The second
method estimates the network bandwidth as the total size of the
valid packets divided by the corresponding sum of the inter-arrival
times. Specifically, these two methods are represented as∑𝑁

𝑖=1
∑𝑘𝑖−1

𝑗=1 𝑐̂𝑖, 𝑗∑𝑁
𝑖=1 (𝑘𝑖 − 1)

and

∑𝑁
𝑖=1

∑𝑘𝑖−1
𝑗=1 𝑠𝑖, 𝑗∑𝑁

𝑖=1
∑𝑘𝑖−1

𝑗=1 𝛿𝑖, 𝑗

. (1)

Considering that small packets can lead to more noises in band-
width measurements, only the packets with sizes ≥ 𝐵 are used,
where 𝐵 is a threshold value (we use 𝐵 = 50 bytes for the rest of the
paper). We find that these two methods lead to similar results; the
results in the rest of the paper are obtained using the first method.
For network bandwidth traces that change faster than what we use
(i.e., faster than one second), one may develop other time-weighted
method for more accurate bandwidth estimation.

4 INCORPORATING CLBE IN THREE PLAYERS
We implemented CLBE in three open-source players, dash.js
(v4.0.0), ExoPlayer (v2.16.1), and Shaka (v3.3.1), that support LLL
streaming with DASH. We chose these three players since they are
popular state-of-the-art players: dash.js is the reference player
maintained by the DASH Industry Forum [2]; ExoPlayer has been
used by more than 140,000 apps in Google Play Store [26] for the
Android platform; and Shaka player has been used by more than
1,600 websites [55]. In addition, these three players differ signif-
icantly in their bandwidth estimation and prediction, as well as
rate adaptation and playback rate control, and hence represent dif-
ferent points in the design space. Since the focus of this work is
on bandwidth estimation, our implementation only modifies the
bandwidth estimation module in each player, with no change to

the existing prediction algorithm, ABR logic and the playback rate
control mechanism.

4.1 Bandwidth Estimation and Prediction
For all three players, we developed a new CLBEmodule at the client
that estimates the network bandwidth combining live kernel-level
packet capture and application semantics. The estimated network
bandwidth values are then transmitted in real time using Web-
Socket protocol [7] to the bandwidth prediction module of each
player. Specifically, we implemented the CLBE module on top of
two alternative packet capture and processing tools, pyshark [5]
and Scapy [6]. Our measurements show that Scapy provides lower
and more consistent latency than pyshark. The results henceforth
are obtained by building the CLBE module on top of Scapy.
dash.js. The existing bandwidth estimation in dash.js is based
on the techniques proposed in (LoL [40] and LoL+ [10]). It includes
three steps. (i) It uses the Fetch API to track the download progress
of a CMAF chunk, parses the chunk payload to identify the begin-
ning and ending times of each chunk download based on the format
of CMAF chunks. (ii) After that, it uses chunk filtering rules to de-
cide whether to store the measurements for a CMAF chunk. (iii) At
the end of a segment, it computes the segment throughput based
on the chunks that passed the filtering process. The bandwidth
prediction in dash.js uses a sliding window average of the band-
width estimation of the past 𝑘 segments, where 𝑘 is dynamically
determined based on the variability of the past network bandwidth.
In addition, it times the average value by a factor (default as 0.9) to
obtain a more conservative prediction value.

To incorporate CLBE, we modified ThroughputHistory.js to add
a WebSocket to receive the estimated bandwidth values from our
CLBE module and append these values to the sliding window buffer.
We further modified LoLpRule.js to read the latest 𝑘 bandwidth
estimations from the buffer, and feed them to the sliding-window
average algorithm to predict the bandwidth for the next segment.
ExoPlayer. In ExoPlayer, bandwidth is estimated on a per segment
basis, as the amount of data downloaded divided by the duration of
the downloading. To handle application idle periods, it uses a binary
flag to indicate whether the network bandwidth is fully utilized
or not, and the bandwidth estimate is only updated when this flag
is true. For CTE-based transfer, this flag is set to false, causing no
update to bandwidth estimation. The bandwidth prediction uses a
SlidingPercentile algorithm [21]. It predicts the bandwidth based on
a sliding window of past download rate observations, and then can
calculate any percentile (the default is 0.5) over a sliding window
of weighted values. To reduce the risk of rebuffering, it sets the
predicted network bandwidth to be 70% of the predicted value.

We modified DefaultBandwidthMeter.java in ExoPlayer to add
a WebSocket to receive the estimated bandwidth values from our
CLBE module, and then push these values to the buffer for Sliding-
Percentile algorithm to predict network bandwidth for the next
segment, regardless of the value of the binary flag described earlier.
Shaka. In Shaka Player, network bandwidth is estimated at short
intervals (tens to hundreds of ms). It uses a discarding mechanism
to exclude the application idle periods. Specifically, if the amount
of data downloaded in the interval is below a pre-specified thresh-
old (16K bytes), then the network bandwidth estimation for the

MMSys’23, June 7-10, 2023, Vancouver, Canada C. Shende et al.

interval (i.e., the amount of data downloaded divided by the in-
terval) is discarded. Otherwise, it is used to update the current
network bandwidth estimation using Exponential Weighted Mov-
ing Average (EWMA). The EWMA-based bandwidth estimation is
used directly as the predicted network bandwidth. We modified
NetworkingEngine class in Player.js to add a WebSocket to receive
the estimated bandwidth values from our CLBE module and append
the values to the buffer to be used by the EWMA algorithm. Since
the EWMA algorithm takes bandwidth estimates at short intervals,
the CLBE module for Shaka also estimates network bandwidth at
short intervals (approximately every 200 ms).

4.2 ABR Logic and Playback Rate Control
Althoughwe did notmodify the ABR logic and playback rate control
mechanisms in the three players, we briefly describe them below
since they affect the final QoE (§6.3). (i) dash.js. The ABR logic is
a learning-based algorithm based on [10, 40]. The playback speed
control algorithm determines a playback speed (e.g., 0.7 to 1.3× the
normal speed). By default, segment replacement [56] is enabled in
dash.js. We disabled it for LLL streaming to accommodate the low
latency requirement. (ii) ExoPlayer. Its ABR logic is essentially a
rate-based algorithm that selects the trackwith the bitrate below the
predicted network bandwidth, while taking account of additional
factors including buffer level and past track selection. The playback
rate control module adjusts the playback rate from 0.97 to 1.03
by default. (iii) Shaka Player. Its ABR logic is also rate-based.
In addition, Shaka does not incorporate a playback rate control
mechanism to adjust the playback rate.

5 EVALUATION SETUP
Our evaluation is trace-driven, using real videos and network band-
width traces that represent a wide range of network conditions.
5.1 Video and Encoding
We use two videos, Big Buck Bunny (BBB) [1] and a city sightseeing
video (NYC), for the evaluation. Both videos are encoded as constant
bitrate (CBR) encoding (often used in LLL streaming), using the
H.264 codec, at 30 frames per second, segment length of 0.5 sec,
and CMAF chunk duration is set to the frame duration (i.e., 33 ms).
Both videos are encoded into 5 tracks, with the average encoding
bitrate of 0.2, 0.4, 0.7, 1.0, and 2.1 Mbps for BBB, and 0.2, 0.4, 0.7, 1.0,
and 2.6 Mbps for NYC. The resolutions of the tracks are 240p, 360p,
480p, 480p, and 720p, respectively. For both videos, the peak to
average ratio of all the tracks measured per segment duration (i.e.,
0.5 s) is 1.7, while the ratio at a coarser grain of 1 second is around
1.2-1.3 for BBB and 1.4 for NYC. BBB was used in Twitch grand
challenge [4] and existing literature [29, 36, 40] with three tracks of
bitrate 0.2, 0.6 and 1 Mbps; we use more tracks and a wider range
of encoding bitrate to represent more realistic scenarios in practice.
For each track, we encode the raw video using FFmpeg [22] with the
following configuration settings: vbvbuffer set to half the average
encoding btrate, zero-latency, no B frames, with ultra-fast preset
and high profile to be suitable for LLL streaming.

5.2 Network Bandwidth Profiles
Synthetic traces. These include simple constant-bandwidth pro-
files, as well as Cascade and Intra-Cascade profiles from the Twitch
grand challenge [4]. The Cascade profile is 150 seconds long, with

5 bandwidth values as 1.2, 0.8, 0.4, 0.8, and 1.2 Mbps, each lasting
for 30 seconds. The Intra-Cascade profile is 135 seconds long, with
9 bandwidth values in the step of 0.2 Mbps as 1.0, 0.8, 0.6, 0.4, 0.2,
0.4, 0.6, 0.8, and 1.0 Mbps, each lasting for 15 seconds.
Real-world traces. These include one trace of average bandwidth
1.31 Mbps collected between a Twitch player and server every five
seconds [10], as well as 10 cellular traces, taken randomly from
40 hours of traces that we collected from two commercial LTE
networks (when stationary, walking, or driving). In the cellular
traces, the network bandwidth was recorded every second from a
well-provisioned server to a phone. Since the bitrate of the video
tracks varies from 0.2 to 2.6 Mbps, we scale the bandwidths of
these network traces so that the average bandwidth is 1.5 (in the
middle of the track bitrates) or 4.0 Mbps (around 1.5× the top-track
bitrate) to emulate heavily and lightly loaded network conditions,
respectively. The coefficient of variation of the traces varies from
0.27 to 0.85.
5.3 Experimental Setup
We set up a server on a desktop computer that does live encoding
and packaging of the video stream, and sends the encoded content to
a DASH live server. To ensure that the encoding has low latency, we
follow the setup in [4] that emulates live encoding by pre-encoding
the various tracks and sending the pre-encoded video to the DASH
server in real time. The client is a laptop computer for dash.js and
Shaka Player, and an Android phone for ExoPlayer. An intermediate
computer is between the server and client, and uses Linux tc [41]
to emulate the network bandwidth along the server-client path
as per the specific bandwidth profile trace. Specifically, we use
Hierarchical Token Bucket in tc and set two parameters burst
and cburst to maintain the spacing between adjacent packets. The
CLBEmodule runs on the client for the modified dash.js and Shaka
Player; for the modified ExoPlayer, since the client is an Android
phone, the CLBE module runs on the intermediate computer. We
use Network Time Protocol (NTP) to synchronize the time of all the
three computers to the server and ensure that the time difference is
within 20 ms (shorter than 1 frame duration). At the client, we turn
off Generic Receive Offload (GRO) [16] option to allow accurate
timing capture at the packet level. Similarly, for the intermediate
computer, since it is on the path from the server and client, we
turn off GRO for its receiving network interface, and turn off TCP
Segmentation Offload (TSO) [15] for its sending network interface.

6 EVALUATION RESULTS
We next present the evaluation results. For both dash.js and Ex-
oPlayer, we set the target latency Δ = 1 or 3 seconds; for Shaka,
we use its default values for the low latency mode, which tries to
make the live latency as small as possible. In the interest of space,
we only present the results for the NYC video; the results when
using the BBB video are consistent.

6.1 Bandwidth Estimation Results
Constant bandwidth. This is the simplest type of bandwidth
profile. To further simplify the scenario, we configure the server to
serve a single video track to the client, so no ABR rate adaptation
is involved. We vary the track to explore the impact of track bitrate
on bandwidth estimation errors. In addition, for a given track with
bitrate 𝑏, we set the network bandwidth to be either slightly above

Cross-layer Network Bandwidth Estimation for Low-latency Live ABR Streaming MMSys’23, June 7-10, 2023, Vancouver, Canada

(a) dash.js, Δ = 1 s. (b) ExoPlayer, Δ = 1 s. (c) Shaka, default Δ. (d) CLBE, Δ = 1 s.
Figure 5: Bandwidth estimation for constant bandwidth profiles (represented by dashed black lines).

(a) dash.js and CLBE. (b) ExoPlayer and Shaka.
Figure 6: Bandwidth estimation for Intra-Cascade profile.

(a) dash.js and CLBE. (b) ExoPlayer and Shaka.
Figure 7: Bandwidth estimation for Twitch profile.

the track bitrate (as 𝑏/0.7) or significantly higher than 𝑏. Fig. 5
shows the results for two extreme cases: when using the lowest
bitrate track (track T1, 0.2 Mbps) and the network bandwidth is 0.4
or 3 Mbps; and when using the highest bitrate track (track T5, 2.6
Mbps) and the network bandwidth is 3 or 5 Mbps; the results for
other tracks show similar trend.

We see that dash.js overestimates the network bandwidth by
15% to 31%. ExoPlayer estimates the network bandwidth as the
default value (3.3 Mbps, determined based on the connection type
and country code), regardless of the the actual bandwidth. This is
because the transmission uses HTTP CTE in most cases, and hence
the bandwidth is deemed as not fully utilized and the bandwidth
estimation is not updated. Shaka fails to obtain accurate bandwidth
estimation under low bandwidth (0.4 Mbps), since the number of
bytes downloaded in an interval is below the pre-specified thresh-
old, and hence the estimation remains at the default value of 1 Mbps.
When the network bandwidth is 3 Mbps, the bandwidth estimation
is more accurate. However, for the low bitrate track (T1), the esti-
mation stays at the default 1 Mbps, and only changes to close to 3
Mbps after around 50 sec. In contrast to these methods, CLBE leads

to accurate bandwidth estimation in all the cases, demonstrating
the advantage of our cross-layer approach.
Slow- and medium-varying traces. Fig. 6 shows the bandwidth
estimation of the various approaches under the Intra-Cascade pro-
file, with Δ = 1 s, except for Shaka. While dash.js keeps track of
the changes in the bandwidth profiles, there is significant overesti-
mation at places. In contrast, CLBE closely tracks the changes in the
network bandwidth, with low estimation errors. ExoPlayer keeps
track of the bandwidth decrease at the beginning of the bandwidth
profile, where ExoPlayer falls behind the target latency, leading to
standard (instead of CTE) HTTP downloading. When the network
bandwidth increases later on, the bandwidth is not fully utilized,
and hence ExoPlayer does not update its bandwidth estimation,
causing underestimation. Shaka has an almost constant bandwidth
estimation, since the network bandwidth is low and the threshold
for sufficient data downloading is not met.

Fig. 7 shows the results under the Twitch bandwidth profile. We
again see that dash.js overestimates the bandwidth, while CLBE
obtains accurate estimation. ExoPlayer leads to significant underes-
timation most of the time due to lack of bandwidth updates. Shaka
keeps track of the bandwidth profile changes when the network
bandwidth is high, while has significant overestimation when the
network bandwidth is low (from 100 to 150 seconds).

We obtain relative estimation error as (𝑏𝑖 − 𝑏𝑖)/𝑏𝑖 for segment
𝑖 , where 𝑏𝑖 and 𝑏𝑖 are the ground-truth and estimated bandwidth
for the duration of downloading segment 𝑖 . For Cascade, Intra-
Cascade and Twitch profiles, 97%-99% of the relative estimation
errors obtained by CLBE are within ±10%. In contrast, only 5%-29%
of the relative estimation errors by dash.js are within ±10%.
Fast-varying cellular traces. The first four subplots in Fig. 8
show the cumulative distribution function (CDFs) of the bandwidth
estimation error of CLBE and those in the original dash.js and
ExoPlayer, when the average network bandwidth is 1.5 or 4 Mbps,
and the target latency Δ = 1 or 3s. The last subplot in Fig. 8 is for the
original Shaka Player, which does not allow explicit specification of
target latency. Consistent with our earlier observations, dash.js
tends to overestimate, ExoPlayer tends to underestimate, while
Shaka has more accurate bandwidth estimation when the network
bandwidth is high than when it is low. Although the bandwidth
estimation in dash.js is significantly more accurate than that in
ExoPlayer and Shaka, it still substantially lags behind CLBE. For
CLBE, 74%-78% of its bandwidth estimation errors are within ±10%
and 88%-91% of its errors are within ±20%, while for dash.js, only
10%-17% of the errors are within ±10% and 24%-46% of the errors

MMSys’23, June 7-10, 2023, Vancouver, Canada C. Shende et al.

(a) Avg. bw 1.5 Mbps, Δ = 1 s. (b) Avg. bw 1.5 Mbps, Δ = 3 s. (c) Avg. bw 4 Mbps, Δ = 1 s. (d) Avg. bw 4 Mbps, Δ = 3 s. (e) Shaka, default target latency.

Figure 8: Bandwidth estimation errors for 10 cellular traces.

are within ±20%. Overall, CLBE achieves high accuracy even under
highly dynamic cellular network conditions.

6.2 Bandwidth Prediction Results
We compare the accuracy of network bandwidth prediction in the
original players and the modified players when they incorporate
CLBE. The relative prediction error is calculated per segment, ob-
tained as the actual bandwidth subtracted by the predicted band-
width, and divided by the actual bandwidth.

In the following, we only present the bandwidth prediction re-
sults under the highly dynamic cellular traces, where accurate pre-
diction is significantly more challenging than for other scenarios.
The first four subplots in Fig. 9 compare the prediction errors in the
original dash.js and ExoPlayer and those in the modified players
with CLBE (we only show the results when running CLBE in the
modified dash.js player; the results for the other two modified
players are similar). The last subplot in Fig. 9 shows the prediction
errors in the original Shaka Player. We see that the original dash.js
player tends to overpredict and the original ExoPlayer tends to un-
derpredict the bandwidth. The original Shaka player also has large
prediction errors, particularly when the network bandwidth is low.
The CLBE-based prediction is significantly better than that in the
original players. Specifically, in the various settings, 70%-73% of the
CLBE-based prediction errors are within ±20%, while even for the
original dash.js, which provides more accurate prediction than
the original ExoPlayer and Shaka Player, the accuracy is much
lower (only 24%-46% of the errors are within ±20%).

6.3 QoE Results
We compare the QoE of the original and modified players. Specif-
ically, we use the following commonly used objective metrics to
measure QoE: (i) quality of played back segments, measured us-
ing a state-of-the-art perceptual quality metric, VMAF [38]. Since
humans are sensitive to low-quality segments, we particularly quan-
tify the percentage of low-quality segments, i.e., the segments with
VMAF below 60 (considered as fair and below-fair quality). (ii) re-
buffering duration, measured as the total amount of rebuffering/stall
in a video session. (iii) live latency, i.e., the latency relative to the live
edge for each segment, (iv) playback rate: we measure the percent-
age of the segments with playback rate deviating from the normal
speed, and for them, the average deviation from the normal speed.

Under the synthetic traces, for all three players, the modified
player with CLBE leads to track selection that matches the band-
width profile much better than the original player. Fig. 10 shows an
example for the Cascade profile. The top plot is the bandwidth pro-
file. The three lower plots are track selection for the three players;
each plot shows the track selections by the original and modified

players. We next focus on the results under real-world network
bandwidth profiles, i.e., the Twitch and cellular network profiles.
Table 1 shows the various QoE metrics for the three players, where
in each cell, the results for both the original and modified players
are shown side-by-side.

QoE for dash.js. For both the original and modified players,
for the same network bandwidth profile, allowing a larger target
latency leads to higher quality and lower stall duration. For the
Twitch profile, when target latency Δ = 1 s, the modified player has
much less low-quality segments compared to the original player
(64% vs 86%), with slightly higher stall duration; when Δ = 3 s, the
performance of the two players is similar. For both Δ values, the
75th percentile of the live latency of the two players is close to the
target latency (not shown in the table). Both players have moderate
amount of deviation from the normal playback rate.

For the fast varying cellular network profiles (bandwidth varying
per second), compared to the original player, the modified player
achieves higher quality with similar stall duration in all of the four
bandwidth and target latency settings except for one setting (i.e.,
the average bandwidth is 1.5 Mbps and Δ = 1 s) where their perfor-
mance is similar. The quality improvement is the most significant
when the average bandwidth is 4 Mbps and Δ = 3 s (the percentage
of low-quality segments is 12% lower, 21% vs 33%), with no stalls.

To gain further insights, we investigate the performance of an
“oracle” player, which knows the ground-truth future network band-
width when making track decisions. Specifically, when making a
track decision at time 𝑡 for the next segment, it knows the band-
width for [𝑡, 𝑡 + 0.5], where 0.5 s is the segment duration. Figures 11
and 12 plot the VMAF and stall duration for the three player variants
under the 10 cellular network traces. We see that the oracle player
leads to visibly better quality than CLBE in one setting (average
bandwidth 4 Mbps, Δ = 1 s) and slightly better quality in another
setting, with lower or compatible stall duration. When the average
bandwidth is 1.5 Mbps and Δ = 1 s, even the oracle player has sig-
nificant rebuffering in two traces due to sudden bandwidth drops
(even choosing the lowest track still causes rebuffering). When the
average bandwidth is 1.5 Mbps and Δ = 3 s, the oracle player has
slight rebuffering (0.45 s), again due to sudden drop in bandwidth.

Overall, our results show CLBE leads to benefits in QoE. The gap
between CLBE-based player and the oracle player also indicates
the room of further improvement by combining CLBE with more
accurate bandwidth prediction techniques.

QoE for ExoPlayer. As shown in Table 1, for the Twitch band-
width profile, the modified player achieves significantly better qual-
ity (the percentage of low-quality segments is 48% lower than that
of the original player for both Δ = 1 and 3 s), at the cost of larger

Cross-layer Network Bandwidth Estimation for Low-latency Live ABR Streaming MMSys’23, June 7-10, 2023, Vancouver, Canada

(a) Avg. bw 1.5 Mbps, Δ = 1 s. (b) Avg. bw 1.5 Mbps, Δ = 3 s. (c) Avg. bw 4 Mbps, Δ = 1 s. (d) Avg. bw 4 Mbps, Δ = 3 s. (e) Shaka, default target delay.

Figure 9: Bandwidth prediction error for 10 cellular traces.
Table 1: QoE results. The two numbers in each cell represent the results from the original player and the modified player with CLBE (in green).

Avg. network
bw. (Mbps)

Target
latency (s)

Low-qual.
segs (≤ 60) (%)

Stall
duration (s)

Live latency
(90%ile) (s)

Playback rate
deviation (%)

Avg. playback
rate deviation

da
sh

.j
s

Twitch 1 86, 64 2.5, 3.6 5.8, 5.7 31.1, 26.5 0.24, 0.26
Twitch 3 54, 53 0.0, 0.0 7.6, 8.2 30.4, 26.8 0.28, 0.33

Cellular (1.5) 1 78, 72 1.1, 1.0 1.0, 1.0 6.9, 6.3 0.17, 0.17
Cellular (1.5) 3 69, 68 0.0, 0.0 3.1, 3.1 3.4, 1.4 0.18, 0.3
Cellular (4.0) 1 49, 43 0.2, 0.3 1.0, 1.0 2.2, 2.2 0.14, 0.16
Cellular (4.0) 3 33, 21 0.0, 0.0 3.1, 3.1 1.1, 0.4 0.2, 0.26

Ex
oP

la
ye
r

Twitch 1 99, 51 8.6, 13.9 9.6, 14.0 100.0, 88.9 0.03, 0.03
Twitch 3 99, 51 2.7, 0.0 2.0, 13.2 19.6, 0.0 0.02, 0.03

Cellular (1.5) 1 93, 76 1.7, 3.0 2.7, 3.9 33.9, 47.5 0.02, 0.02
Cellular (1.5) 3 93, 76 1.6, 1.6 2.5, 2.0 36.1, 33.9 0.02, 0.01
Cellular (4.0) 1 76, 57 0.7, 0.7 1.8, 1.5 18.4, 17.6 0.01, 0.01
Cellular (4.0) 3 76, 54 0.7, 0.9 1.6, 1.6 19.7, 20.2 0.01, 0.01

Sh
ak
a Twitch Default 11, 44 28.4, 8.9 42.1, 16.3 0.0, 0.0 N/A, N/A

Cellular (1.5) Default 41, 52 36.4, 3.2 79.5, 8.5 0.0, 0.0 N/A, N/A
Cellular (4.0) Default 19, 16 3.7, 2.3 21.3, 7.2 0.0, 0.0 N/A, N/A

Figure 10: Selected tracks in the original and modified players for
Cascade profile.

rebuffering and/or live latency. For the cellular network traces,
the modified player leads to 14% to 20% less low-quality segments
across the four bandwidth and target latency settings, with compa-
rable or larger stall duration and generally lower live latency. The
percentage of playback rate deviation is high for both the original
and modified players in several settings. On the other hand, the
extent of deviation is low due to the tight rate limit (0.97 to 1.03) in
ExoPlayer. We also observe that ExoPlayer does not take advantage
of the larger target latency—the live latency when Δ = 3 s is only
1.3 or 1.4 s, significantly lower than the target.

QoE for Shaka. Shaka does not use playback rate control and
does not catch up with the live edge even when the live latency
is large. Table 1 shows that the original player has high live la-
tency, particularly when the network bandwidth is low, while the

Figure 11:QoE of dash.js, cellular networkwith average bandwidth
1.5 Mbps, Δ = 1 and 3 s in the top and bottom rows, respectively.

modified player has significantly lower live latency. Specifically, in
one setting, the 90th percentile live latency of the modified player
is close to 10× lower than that of the original player. In addition,
the modified player has 1.4 to 33.2 seconds less stall than the orig-
inal player, at the cost of more low-quality segments under low
bandwidth settings.

6.4 Summary and Discussion
We have shown that, compared to state-of-the-art application-level
approaches, CLBE leads to significantly more accurate bandwidth

MMSys’23, June 7-10, 2023, Vancouver, Canada C. Shende et al.

Figure 12: QoE for dash.js, cellular network with average band-
width 4.0Mbps, Δ = 1 and 3 s in the top and bottom rows, respectively.

Bandwidth
estimation

Application
semantics

Operating
System

src IP, dst IP
src port #, dst port #

Application 1

pkt size and
timing info

Bandwidth
estimation

Application
semantics

Application n

…

pkt size and
timing info

src IP, dst IP
src port #, dst port #

Figure 13: OS provides kernel-level packet size and timing infor-
mation to applications as a service.

estimation and prediction, which can lead to improved QoE. Note
that since the overall QoE is a function of the overall end-end ABR
streaming pipeline (including bandwidth estimation, prediction
and ABR logic), further QoE improvements beyond what we ob-
serve in our evaluations may be possible if these other important
components were also suitably modified.

To support CLBE and other applications that need kernel-level
packet capture, we advocate that the OS provides an API so that
applications can obtain clean timing signals directly. Fig. 13 illus-
trates one way that the OS can provide such a service. An applica-
tion sends a 4-tuple (source and destination IP addresses and port
numbers) to the OS. The OS then returns a sequence of relevant
kernel-level packet timing and size information to the application.
Such an API eliminates the need for individual applications to de-
velop kernel-level packet capture functionality. With such an API,
we can directly incorporate CLBE in each player, without the need
for either live packet capturing or using WebSocket to send the
bandwidth estimation to each player. In addition, there would be
no need to turn off aggregation mechanisms (GRO and TSO, see
§5.3) at the client. The NEAT socket API [19, 61] and Socket Intent
framework [20, 53] may be helpful in realizing the above API.

7 RELATEDWORK
LLL ABR streaming. The work in [43] highlights the benefits of
chunk-based CMAF for LLL streaming compared to the traditional
segment-based approach. The first work that studies network band-
width estimation with CMAF and HTTP CTE is ACTE [12, 13],
which was improved in LoL [40] and LoL+ [10]. The studies [62]
and [47] further improve the bandwidth estimation in LoL and LoL+

using more refined filtering rules. The above bandwidth estima-
tion techniques were adopted in the dash.js player that we use in
this paper. These techniques are at the application-level. Our work
differs from them in that we use a cross-layer approach.

Other aspects of LLL ABR streaming includes bandwidth pre-
diction, rate adaptation and playback rate control, which have
been studied in ACTE [12, 13], LoL and LoL+ [10, 40], QLive [62],
TightRope [58], and the study in [47]. The study [60] presents an
optimized delivery architecture for LLL streaming. LLL streaming
is also studied in [45, 49], which however are not for CMAF-based
content or use HTTP CTE. The studies in [31, 42, 46, 59, 63, 66]
present bandwidth prediction techniques for ABR streaming, not
targeting LLL streaming specifically. A recent study [11] presents a
data-driven approach for bandwidth prediction, with a focus on LLL
streaming. Our work focuses on accurate bandwidth estimation,
which is important for later steps of bandwidth prediction and rate
adaptation. We also show that due to the complex interplay be-
tween bandwidth prediction and ABR logic, even oracle bandwidth
prediction sometimes does not provide better QoE, highlighting
the importance of considering both components jointly.

Non-LLL streaming based rate adaptation has been studied ex-
tensively [9, 25, 30, 32, 34, 35, 39, 44, 51, 52, 57, 59, 63, 65], leading to
buffer-based, rate-based, learning-based, or hybrid schemes. These
schemes are not designed specifically for LLL streaming that has
only up to a few seconds of target latency. Our study focuses on
cross-layer bandwidth estimation and its benefits on LLL streaming.
We use the existing rate adaptation techniques in three popular
players, including both learning-based and rate-based techniques.
Cross-layer approach for streaming. Salsify [24] presents a
cross-layer approach that combines the transport protocol’s conges-
tion control with the video codec’s rate control into one algorithm
for real-time streaming. It builds on UDP-based WebRTC, very dif-
ferent from our focus of LLL ABR streaming, where congestion
control is by the underlying transport protocol (e.g., TCP) directly.
In addition, Salsify is not for bandwidth estimation as in our study.
The studies in [14, 37, 48, 54] present cross-layer approaches for
streaming, which are not for bandwidth estimation.
Packet-level bandwidth estimation.Many techniques have been
proposed for packet-level bandwidth estimation (see [18, 50] and
the references within). These techniques typically use small probing
packets to infer network bandwidth. Our study differs from them
in that we use the TCP packets in the application and a cross-layer
approach for bandwidth estimation for LLL streaming.

8 CONCLUSIONS
We proposed a cross-layer approach, CLBE, for network bandwidth
estimation in LLL streaming, and showed that it provides signif-
icantly more accurate bandwidth estimation and prediction than
the state-of-the-art application-level approaches, which leads to
better QoE. Our work points to the importance of combining appli-
cation semantics with packet-level timing information for accurate
bandwidth estimation.

ACKNOWLEDGEMENT
We thank the anonymous reviewers who gave valuable feedback
to improve this work. We also thank our shepherd, Thomas Zinner,
for his insightful suggestions and guiding us through the revisions.

Cross-layer Network Bandwidth Estimation for Low-latency Live ABR Streaming MMSys’23, June 7-10, 2023, Vancouver, Canada

REFERENCES
[1] Big buck bunny. https://peach.blender.org/download/.
[2] DASH Industry Forum. https://dashif.org/.
[3] Fetch API. https://tinyurl.com/5ksttkas.
[4] Grand Challenge on Adaptation Algorithms for Near-Second Latency. https:

//2020.acmmmsys.org/lll_challenge.php.
[5] pyshark. https://github.com/KimiNewt/pyshark.
[6] Scapy. https://github.com/secdev/scapy.
[7] The WebSocket protocol. https://datatracker.ietf.org/doc/html/rfc6455.
[8] Information technology–Multimedia application format (MPEG-A)–Part19: Com-

mon media application format (CMAF) for segmented media. Standard ISO/IEC
23000-19:2018, International Organization for Standardization and International
Electrotechnical Commission. https://www.iso.org/standard/71975.html, 2018.

[9] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett, B. Ribeiro,
J. Zhan, and H. Zhang. Oboe: Auto-tuning video abr algorithms to network
conditions. In SIGCOMM, 2018.

[10] A. Bentaleb, M. N. Akcay, M. Lim, A. C. Begen, and R. Zimmermann. Catching
the Moment with LoL+ in Twitch-Like Low-Latency Live Streaming Platforms.
IEEE Transactions on Multimedia, 2021.

[11] A. Bentaleb, A. C. Begen, S. Harous, and R. Zimmermann. Data-driven band-
width prediction models and automated model selection for low latency. IEEE
Transactions on Multimedia, 23, 2020.

[12] A. Bentaleb, C. Timmerer, A. C. Begen, and R. Zimmermann. Bandwidth predic-
tion in low-latency chunked streaming. In Proc. of ACM NOSSDAV, 2019.

[13] A. Bentaleb, C. Timmerer, A. C. Begen, and R. Zimmermann. Performance analysis
of ACTE: a bandwidth prediction method for low latency chunked streaming.
ACM TOMM, 2020.

[14] Y. Cho, C.-C. J. Kuo, R. Huang, and C. Lima. Cross-layer design for wireless video
streaming. In Proc. of IEEE GLOBECOM, 2010.

[15] G. W. Connery, W. P. Sherer, G. Jaszewski, and J. S. Binder. Offload of TCP
segmentation to a smart adapter, August 1999. US Patent 5,937,169.

[16] J. Corbet. JLS2009: Generic receive offload. https://lwn.net/Articles/358910/,2009.
[17] DASH Industry Forum. dash.js. https://goo.gl/XJcciV.
[18] C. Dovrolis, P. Ramanathan, and D. Moore. Packet-dispersion techniques and a

capacity-estimation methodology. IEEE/ACM Transactions on Networking, 12(6),
2004.

[19] T. Dreibholz. NEAT Sockets API. https://datatracker.ietf.org/doc/draft-dreibholz-
taps-neat-socketapi/.

[20] T. Enghardt, T. Zinner, and A. Feldmann. Using informed access network selection
to improve HTTP adaptive streaming performance. In ACM MMSys, 2020.

[21] ExoPlayer. Sliding percentile. https://goo.gl/FFtVr8, 2016.
[22] FFmpeg. FFmpeg Project. https://www.ffmpeg.org/, 2017.
[23] R. Fielding and J. Reschke. Hypertext Transfer Protocol – HTTP/1.1, RFC 7230.

https://datatracker.ietf.org/doc/html/rfc7230, 2014.
[24] S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby, and K. Winstein. Salsify:

Low-latency network video through tighter integration between a video codec
and a transport protocol. In Proc. of Networked Systems Design & Implementation
(NSDI), 2018.

[25] A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica, J. Jiang, V. Sekar, and H. Zhang.
C3: Internet-Scale Control Plane for Video Quality Optimization. In Proc. USENIX
NSDI, 2015.

[26] Google. ExoPlayer: Adaptive video streaming on Android - YouTube. https:
//tinyurl.com/58j8n3yb, 2014.

[27] Google. ExoPlayer. https://github.com/google/ExoPlayer, 2016.
[28] Google. Shaka Player. https://github.com/google/shaka-player, 2019.
[29] C. Gutterman, B. Fridman, T. Gilliland, Y. Hu, and G. Zussman. STALLION: video

adaptation algorithm for low-latency video streaming. In Proc. of ACM MMSys,
2020.

[30] T. Hoßfeld, C. S. Michael Seufert, T. Zinner, and P. Tran-Gia. Identifying QoE
optimal adaptation of HTTP adaptive streaming based on subjective studies.
Computer Networks, 81, April 2015.

[31] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari. Confused, timid,
and unstable: picking a video streaming rate is hard. In ACM IMC, 2012.

[32] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A buffer-based
approach to rate adaptation: Evidence from a large video streaming service. In
Proc. of ACM SIGCOMM, 2014.

[33] International Organization for Standardization. ISO/IEC DIS 23009-1.2 Dynamic
adaptive streaming over HTTP (DASH), 2012.

[34] J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, and H. Zhang. CFA: A Practical
Prediction System for Video QoE Optimization. In Proc. USENIX NSDI, 2016.

[35] J. Jiang, V. Sekar, and H. Zhang. Improving fairness, efficiency, and stability in
HTTP-based adaptive video streaming with FESTIVE. In CoNEXT, 2012.

[36] T. Karagkioules, R. Mekuria, D. Griffioen, and A. Wagenaar. Online learning for
low-latency adaptive streaming. In Proc. of ACM MMSys, 2020.

[37] J.-L. Kuo, C.-H. Shih, C.-Y. Ho, and Y.-C. Chen. A cross-layer approach for real-
time multimedia streaming on wireless peer-to-peer ad hoc network. Elsevier Ad
Hoc Networks, 11(1), 2013.

[38] Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, and M. Manohara. Toward A
Practical Perceptual Video Quality Metric. https://goo.gl/ptjrWv., 2016.

[39] Z. Li, A. Begen, J. Gahm, Y. Shan, B. Osler, and D. Oran. Streaming video over
HTTP with consistent quality. In ACM MMSys, 2014.

[40] M. Lim, M. N. Akcay, A. Bentaleb, A. C. Begen, and R. Zimmermann. When they
go high, we go low: Low-latency live streaming in dash.js with LoL. In Proc. of
ACM MMSys, 2020.

[41] Linux. tc. https://linux.die.net/man/8/tc, 2014.
[42] G. Lv, Q. Wu, W. Wang, Z. Li, and G. Xie. Lumos: towards Better Video Streaming

QoE through Accurate Throughput Prediction. In IEEE INFOCOM, 2022.
[43] T. Lyko, M. Broadbent, N. Race, M. Nilsson, P. Farrow, and S. Appleby. Evaluation

of CMAF in live streaming scenarios. In Proc. of ACM NOSSDAV, 2019.
[44] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming with

Pensieve. In Proc. of ACM SIGCOMM, 2017.
[45] K. Miller, A.-K. Al-Tamimi, and A. Wolisz. QoE-based low-delay live streaming

using throughput predictions. ACM TOMM, 13(1), 2016.
[46] Y. S. Nam, J. Gao, C. Bothra, E. Ghabashneh, S. Rao, B. Ribeiro, J. Zhan, and

H. Zhang. Xatu: Richer neural network based prediction for video streaming. In
Proc. of ACM SIGMETRICS, 2022.

[47] I. M. Ozcelik and C. Ersoy. Low-Latency Live StreamingOverHTTP in Bandwidth-
Limited Networks. IEEE Communication Letters, 25(2), 2021.

[48] H. B. Pasandi, T. Nadeem, H. Amirpour, and C. Timmerer. A cross-layer approach
for supporting real-time multi-user video streaming over WLANs. In Proc. of
ACM MobiCom, 2021.

[49] H. Peng, Y. Zhang, Y. Yang, and J. Yan. A hybrid control scheme for adaptive live
streaming. In ACM Multimedia, 2019.

[50] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy. Bandwidth estimation: metrics,
measurement techniques, and tools. IEEE Network, 17(6), 2003.

[51] Y. Qin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, B. Wang, and C. Yue. ABR streaming
of VBR-encoded videos: characterization, challenges, and solutions. In CoNext.
ACM, 2018.

[52] Y. Qin, R. Jin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, B. Wang, and C. Yue. A
control theoretic approach to ABR video streaming: A fresh look at PID-based
rate adaptation. In INFOCOM, 2017.

[53] P. S. Schmidt, T. Enghardt, R. Khalili, and A. Feldmann. Socket Intents: leveraging
application awareness for multi-access connectivity. In Proc. of ACM CoNext,
2013.

[54] E. Setton, T. Yoo, X. Zhu, A. Goldsmith, and B. Girod. Cross-layer design of ad
hoc networks for real-time video streaming. IEEE Wireless Communications, 12(4),
2005.

[55] SimilarTech Ltd. Facebook Video vs Shaka Player.
urlhttps://www.similartech.com/compare/facebook-video-vs-shaka-player, 2019.

[56] K. Spiteri, R. Sitaraman, and D. Sparacio. From theory to practice: Improving
bitrate adaptation in the dash reference player. In MMSys, 2018.

[57] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. BOLA: near-optimal bitrate adap-
tation for online videos. In INFOCOM. IEEE, 2016.

[58] L. Sun, T. Zong, S. Wang, Y. Liu, and Y. Wang. Tightrope walking in low-latency
live streaming: Optimal joint adaptation of video rate and playback speed. In
Proc. of ACM MMSys, 2021.

[59] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and B. Sinopoli. CS2P:
Improving Video Bitrate Selection and Adaptation with Data-Driven Throughput
Prediction. In Proc. of ACM SIGCOMM, 2016.

[60] F. Tashtarian, A. Bentaleb, A. Erfanian, H. Hellwagner, C. Timmerer, and R. Zim-
mermann. HxL3: Optimized Delivery Architecture for HTTP Low-Latency Live
Streaming. IEEE Transactions on Multimedia, 2022.

[61] F. Weinrank, K. Grinnemo, Z. Bozakov, A. Brunström, T. Dreibholz, P. Hurtig,
N. Khademi, and M. Tüxen. A NEAT Way to Browse the Web. In Proc. of the
ACM, IRTF and ISOC Applied Networking Research Workshop (ANRW), July 2017.

[62] P. K. Yadav, A. Bentaleb, M. Lim, J. Huang,W. T. Ooi, and R. Zimmermann. Playing
chunk-transferred DASH segments at low latency with QLive. In Proc. of ACM
MMSys, 2021.

[63] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis, and K. Winstein.
Learning in situ: a randomized experiment in video streaming. In Proc. USENIX
NSDI, 2020.

[64] G. Yi, D. Yang, A. Bentaleb, W. Li, Y. Li, K. Zheng, J. Liu, W. T. Ooi, and Y. Cui.
The ACM Multimedia 2019 Live Video Streaming Grand Challenge. In ACM
Multimedia, 2019.

[65] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-theoretic approach for
dynamic adaptive video streaming over HTTP. In SIGCOMM. ACM, 2015.

[66] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana, X. Jin, J. Rexford,
and R. K. Sinha. Can accurate predictions improve video streaming in cellular
networks? In HotMobile, 2015.

https://peach.blender.org/download/
https://dashif.org/
https://tinyurl.com/5ksttkas
https://2020.acmmmsys.org/lll_challenge.php
https://2020.acmmmsys.org/lll_challenge.php
https://github.com/KimiNewt/pyshark
https://github.com/secdev/scapy
https://datatracker.ietf.org/doc/html/rfc6455
https://www.iso.org/standard/71975.html
https:// lwn.net/Articles/358910/, 2009
https://goo.gl/XJcciV
https://datatracker.ietf.org/doc/draft-dreibholz-taps-neat-socketapi/
https://datatracker.ietf.org/doc/draft-dreibholz-taps-neat-socketapi/
https://goo.gl/FFtVr8
https://www.ffmpeg.org/
https://datatracker.ietf.org/doc/html/rfc7230
https://tinyurl.com/58j8n3yb
https://tinyurl.com/58j8n3yb
https://github.com/google/ExoPlayer
https://github.com/google/shaka-player
https://goo.gl/ptjrWv.
https://linux.die.net/man/8/tc

	Abstract
	1 Introduction
	2 Cross-layer Approach
	2.1 High-level Overview
	2.2 LLL ABR Streaming

	3 Our Approach: CLBE
	3.1 Identifying Application Idle Periods
	3.2 Bandwidth Estimation

	4 Incorporating CLBE in Three Players
	4.1 Bandwidth Estimation and Prediction
	4.2 ABR Logic and Playback Rate Control

	5 Evaluation Setup
	5.1 Video and Encoding
	5.2 Network Bandwidth Profiles
	5.3 Experimental Setup

	6 Evaluation Results
	6.1 Bandwidth Estimation Results
	6.2 Bandwidth Prediction Results
	6.3 QoE Results
	6.4 Summary and Discussion

	7 Related work
	8 Conclusions
	References

