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Abstract—Neighbor discovery is one of the first steps in configuring and managing a wireless network. Most existing studies on

neighbor discovery assume a single-packet reception model where only a single packet can be received successfully at a receiver.

In this paper, motivated by the increasing prevalence of multipacket reception (MPR) technologies such as CDMA and MIMO, we study

neighbor discovery in MPR networks that allow packets from multiple simultaneous transmitters to be received successfully at a

receiver. Starting with a clique of n nodes, we first analyze a simple Aloha-like algorithm and show that it takesQðn ln n
k Þ time to discover

all neighbors with high probability when allowing up to k simultaneous transmissions. We then design two adaptive neighbor discovery

algorithms that dynamically adjust the transmission probability for each node. We show that the adaptive algorithms yield a Qðln nÞ
improvement over the Aloha-like scheme for a clique with n nodes and are thus order-optimal. Finally, we analyze our algorithms in a

general multi-hop network setting. We show an upper bound of OðD ln n
k Þ for the Aloha-like algorithm when the maximum node degree is

D, which is at most a factor ln n worse than the optimal. In addition, when D is large, we show that the adaptive algorithms are order-

optimal, i.e., have a running time of OðDkÞ which matches the lower bound for the problem.

Index Terms—Wireless networks, ad hoc networks, multipacket reception, network management, neighbor discovery, randomized

algorithms

Ç

1 INTRODUCTION

NEIGHBOR discovery is one of the first steps in configur-
ing and managing a wireless network. The informa-

tion obtained from neighbor discovery, viz. the set of
nodes that a wireless node can directly communicate with,
is needed to support basic functionalities such as medium
access and routing. Furthermore, this information is
needed by topology control and clustering algorithms to
improve network performance [13], [20]. Due to its critical
importance, neighbor discovery has received significant
attention, and a number of studies have been devoted to
this topic (e.g., [10], [18], [27], [28], [30]). Most studies, how-
ever, assume a single packet reception (SPR) model, i.e., a
transmission is successful if and only if there are no other
simultaneous transmissions.

In contrast to prior literature, we study neighbor discov-
ery in multipacket reception (MPR) networks where packets
from multiple simultaneous transmitters can be received
successfully at a receiver. This is motivated by the increasing
prevalence of MPR technologies in wireless networks. For
instance, code division multiple access (CDMA) and multi-
ple-input and multiple-output (MIMO), two widely used
technologies, both support multipacket reception. Neighbor
discovery in MPR networks differs fundamentally from that

in SPR networks in the following manner. In a SPR network,
a node is discovered by each of its neighbors if it is the only
node that transmits at a given time instant; while in an MPR
network, a node can transmit simultaneously with several
other neighbors, and each of these nodes may be discovered
simultaneously by the receiving nodes.

We focus on randomized algorithms throughout, as (i.)
randomization is a powerful tool for avoiding centralized
control, especially in settings with little a priori knowledge
of network structure and (ii.) randomization offers extremely
simple and efficient algorithms for homogeneous devices to
carry out fundamental tasks like symmetry breaking.

We first consider clique topologies where all the nodes
are the neighbors of each other and, subsequently, general-
ize our algorithms and analysis to the multi-hop network
setting. For each algorithm presented in this paper, we ana-
lyze its performance in terms of neighbor discovery time, i.e.,
the time until each node discovers its respective neighbors.
This is a critical performance metric since faster neighbor
discovery leads to shorter delays to commence other net-
work operations.

Our main contributions are as follows:

� We first consider a clique of n nodes in which node
transmissions are synchronous and the number of
nodes, n, is known. Specifically, we analyze an
Aloha-like neighbor discovery algorithm, and show
that the neighbor discovery time is Qðln nÞ in an ide-
alized MPR network that allows an arbitrary number
of nodes to transmit simultaneously, and the neigh-
bor discovery time is Qð n ln n

k Þ when allowing up to k
nodes to transmit simultaneously. We next propose
two adaptive neighbor discovery algorithms, one
being collision-detection based, and the other being
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ID based. In both algorithms, a node becomes inac-
tive once it is discovered by its neighbors, allowing
the remaining active nodes to increase their trans-
mission probability. We show that these adaptive
algorithms are order-optimal, i.e., they achieve a
running time of QðnkÞ and are thus a Qðln nÞ factor
faster than the Aloha-like algorithm.

� We extend our algorithms to the cases where the
number of neighbors is not known beforehand or
nodes transmit asynchronously, and show that these
generalizations result in at most a constant or
Qðln nÞ factor slowdown in algorithm performance.

� For general network topologies, we first analyze the
performance of the Aloha-like neighbor discovery
algorithm, and show an upper bound of OðD ln n

k Þ in a
networkwith n nodes and themaximumnode degree
is D. In addition, when D is large, we show that the
adaptive algorithms are order-optimal, i.e., the neigh-
bor discovery time for these algorithms isOðDkÞ, which
matches the lower bound for the problem.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 presents the problem set-
ting. Section 4 describes an Aloha-like neighbor discovery
algorithm and its analysis. Section 5 describes two adaptive
neighbor discovery algorithms, and shows that they
improve upon the Aloha-like scheme by a ln n factor. Sec-
tion 6 extends our results to scenarios where a node has no
estimate of the number of its neighbors and node transmis-
sions are asynchronous. Section 7 presents analytical results
for general network topologies. Last, Section 8 concludes
the paper and presents future directions.

2 RELATED WORK

Our work is inspired by [27] that designs and analyzes sev-
eral randomized neighbor discovery algorithms in SPR net-
works. As we will see in this paper, the design and analysis
of neighbor discovery algorithms is substantially more chal-
lenging in the case of MPR networks as compared to the
SPR networks studied in [27]. Furthermore, our study gen-
eralizes the study of [27], viz., our results are for the case
where we allow up to k ð� 1Þ simultaneous transmissions,
and reduce to those in [27] by simply letting k ¼ 1.

Several other studies develop randomized/deter-
ministic neighbor discovery algorithms in SPR networks.
McGlynn and Borbash [23] propose birthday-like random-
ized neighbor discovery algorithms that require synchro-
nization among nodes. Tseng et al. [26] propose three
power-saving protocols to schedule asynchronous node
wake-up times in IEEE 802.11-based multi-hop ad hoc net-
works, and describe deterministic neighbor discovery
schemes in each of the three protocols. Zheng et al. [33]
provide a more systematic treatment of the asynchronous
wakeup problem and propose a neighbor discovery proto-
col on top of the optimal wakeup schedule that they
derive. Borbash et al. [5] propose asynchronous probabilis-
tic neighbor discovery schemes for large-scale networks.
Keshavarzian et al. [16] propose a deterministic neighbor
discovery algorithm. More recently, Dutta and Culler [10]
propose an asynchronous neighbor discovery and rendez-
vous protocol between a pair of low duty cycling nodes.

Khalili et al. [17] propose feedback based neighbor discov-
ery schemes that operate in fading channels. A recent
study [6] considers the problem of continuous neighbor
discovery where each node has partial knowledge of its
neighborhood. Our study differs from each of the above-
mentioned works in that we consider neighbor discovery
in MPR instead of SPR networks.

The algorithms proposed in [2], [3], [21], [22] use a
multiuser-detection based approach for neighbor discov-
ery. They require each node to possess a signature as well
as know the signatures of all the other nodes in the net-
work. Further, nodes are assumed to operate in a synchro-
nous manner. When a node receives transmission from
multiple neighbors, it determines which nodes are the
transmitters based on the received signal (or energy) and
the prior knowledge of the node signatures in the net-
work. Although these studies allow multiple transmitters
to transmit simultaneously, their focus is on using coher-
ent/noncoherent detection [2], [3], [21] or group testing
[22] to identify neighbors with a high detection ratio and
low false positive ratio, and do not provide analytical
insights on the time complexity of their schemes. In con-
trast, our study aims to understand the efficiency of differ-
ent neighbor discovery algorithms by deriving analytical
results on their time complexity. Further, from a practical
viewpoint, our approach does not require node signatures
and can operate in asynchronous systems.

There are numerous studies on neighbor discovery when
nodes have directional antennas (e.g., [15], [25], [28], [30]).
The focus in these works is on antenna scanning strategies
for efficient neighbor discovery. There have been several
recent proposals on neighbor discovery in cognitive radio
networks (e.g., [4], [19]). They determine the set of neigh-
bors for a node as well as the channels that can be used to
communicate among neighbors. In contrast, we assume
omni-directional antennas (or antenna arrays) and multi-
packet reception capabilities at each node.

3 PROBLEM SETTING

Consider a static network with n nodes indexed from 1 to n.
Each node has a unique ID (e.g., its MAC address or geo-
graphic location). Each node embeds its ID in the messages
it transmits to its neighbors. A node, x, is discovered by
another node, y, if and only if y successfully receives a mes-
sage from x. Each node has an omni-directional antenna (or
an antenna array). The radio at each node is assumed to be
half-duplex, i.e., a node can either transmit or receive pack-
ets, but not both at the same time. We assume that all nodes
have multipacket reception capabilities. That is, a node can
correctly receive packets from multiple transmitters simul-
taneously. This MPR capability can be provided through
smart antenna array techniques such as MIMO, or coding
techniques such as CDMA.

Similar to [11], [31], [32], we use a reception matrix to
model the MPR capabilities of nodes. Specifically, let �i;j
represent the probability that j packets are received success-
fully given that i packets are transmitted simultaneously. In
our context, since at most n packets can be transmitted
simultaneously at one point of time, the reception matrix is
of dimension n� ðnþ 1Þ, and is represented as
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�1;0 �1;1
�2;0 �2;1 �2;2

..

. ..
. ..

.

�n;0 �n;1 �n;2 � � � �n;n

0
BBB@

1
CCCA;

where all elements in the upper triangle (i.e., �i;j, 8j > i) are
zero by definition, and hence are omitted for clarity.

As an example, consider a CDMA system in which a
packet is transmitted with a randomly generated code and
is successfully received only if there are no more than two
simultaneous transmissions. Then for i ¼ 1; 2, we have
�i;i ¼ 1 and �i;j ¼ 0; 8j 6¼ i; for i > 2, we have �i;0 ¼ 1 and
�i;j ¼ 0, 8j > 0 since no packets can be received successfully
when there are more than two simultaneous transmissions.

In this paper, we consider an MPR model (henceforth,
called the MPR-k model), in which up to k simultaneous
packets can be decoded successfully at a receiver. The value
of k is fixed and is known beforehand. In practice, it is deter-
mined by the number of orthogonal codes when using
CDMA [31], or by the number of antennas in the case of
MIMO systems. For a given k, �i;i ¼ 1, when 1 � i � k and
�i;j ¼ 0; 8j 6¼ i. When i > k, �i;0 ¼ 1 and �i;j ¼ 0; 8j > 0. The
reception matrix is

0 1
0 0 1
..
. ..

. ..
.

0 0 0 � � � 1
1 0 0 � � � 0 0
..
. ..

. ..
.

1 0 0 � � � 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA

:

Note that SPR is a special case of MPR-k (i.e., when
k ¼ 1). Another special case of MPR-k is when k ¼ n� 1,
referred to as the idealized MPR model. It is of practical inter-
est in scenarios where the number of neighbors is close to
the amount of diversity provided by MPR technologies (i.e.,
the number of orthogonal codes in CDMA or the number of
antennas in MIMO).

We remark that the MPR-kmodel studied in this paper is a
simple generalization of the well-known collision channel
model studied in the case of SPR networks. In ourmodel, colli-
sions are the only source of packet errors. In practice, back-
ground noise contribute to errors as well (which can be
modeled by letting �i;0 > 0, when 1 � i � k in our reception
matrix). However, the main emphasis of our work is on pro-
viding useful insights for designing algorithms and under-
standing (to a first-order) their performance when deployed
in the realworld.We therefore choose amodelwhich is analyt-
ically tractable while ignoring some real-world aspects of
wireless channels such as channel noise and fading. We
emphasize, however, that the correctness of the algorithms
proposed in this paper is independent of the chosen model,
and should therefore be applicable in real-worldMPRsettings.

4 ALOHA-LIKE NEIGHBOR DISCOVERY ALGORITHM

In this section, we consider a simple Aloha-like neighbor
discovery algorithm and analyze it for the case of a clique.
We start with the simplifying assumptions that all nodes
know the clique size, n. Furthermore, we assume that time

is divided into slots, and that nodes are synchronized on
slot boundaries. These assumptions will be relaxed later, in
Sections 6.1 and 6.2.

The algorithm operates as follows. Each node transmits
with probability p and listens with probability 1� p in each
slot, where p is a parameter, the optimal value of which will
soon be determined. The transmission probability does not
change over time. The case where the transmission proba-
bility is allowed to change will be studied in Section 5.

In the following, we first determine the optimal transmis-
sion probability and then present an asymptotic analysis of
the Aloha-like neighbor discovery algorithm.

4.1 Optimal Transmission Probability

In an SPR wireless network, it is well-known that the opti-
mal value of p is 1=n. However, as we will see next, deriving
the optimal value of p in the MPR case is non-trivial.

Consider two arbitrary nodes, x and y. Let ps denote the
probability that x is discovered by y in a given time slot.
Thus, ps is the probability that x transmits, y listens, and
there are at most k� 1 other nodes transmitting. Therefore,

ps ¼ pð1� pÞ
Xk�1

i¼0

n� 2

i

� �
pið1� pÞn�2�i : (1)

To minimize the time to discover all neighbors, we need
to choose a p that maximizes ps. Let p

� denote this optimal
transmission probability, and let p�s denote the correspond-
ing value of ps. When k ¼ n� 1 (i.e., the idealized MPR
model), ps ¼ pð1� pÞ. It is easy to see that p� ¼ 1=2 and
p�s ¼ 1=4. Deriving the optimal transmission probability is
more challenging for general k. The following theorem pro-
vides analytical results for the optimal transmission
probability.

Theorem 1. Consider a clique of n nodes executing the Aloha-like
algorithm, where n is known. Under the MPR-k model, the
optimal transmission probability p� ¼ ak=n, where a ¼ 1 for
k ¼ 1, and

a 2
ð0:07; 6:38Þ; if k ¼ 2;
ð0:11; 4:17Þ; if k ¼ 3;
ð0:09; 3:55Þ; if k � 4:

8<
:

Proof. For k ¼ 1, i.e., the SPR case, it is clear a ¼ 1 since
p� ¼ 1=n. We next consider the three cases k ¼ 2, k ¼ 3,
and k � 4, respectively. For each case, we first derive a
lower bound on the optimal p�s , and then derive the con-
stants stated in the theorem. Note that since we are con-
sidering the MPR-k case, we have n � kþ 2.

Let B ¼ B1 þ � � � þBn�2, where Bx ¼ 1 when node x
transmits, and Bx ¼ 0 otherwise. Then B follows a Bino-
mial distribution, and (1) can be rewritten as

ps ¼ pð1� pÞPrðB < kÞ : (2)

Note that

p�s ¼ p�ð1� p�ÞPrðB < kÞ
< p�PrðB < kÞ ¼ ak

n
PrðB < kÞ :
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Using the tail bound for binomial distribution in [1,
Theorem A.1.13], we obtain

PrðB < kÞ < e�ððn�2Þp��kÞ2=2ðn�2Þp�

	 e�ðnp��kÞ2=2np�

¼ e�
ðak�kÞ2

2ak ¼ e�
kða�1Þ2

2a :

Hence,

p�s <
ak

n
e�

kða�1Þ2
2a : (3)

When k ¼ 2, ps ¼ pð1� pÞn�1 þ ðn� 2Þp2ð1� pÞn�2.
Taking p ¼ 1=ðn� 2Þ yields

ps ¼ 1

n� 2
1� 1

n� 2

� �n�2

1� 1

n� 2
þ 1

� �

� 1

e2ðn� 2Þ 1� 1

n� 2
þ 1

� �

� 1

e2ðn� 2Þ :

Since p�s denotes the optimal value of ps, we have

p�s �
1

e2ðn� 2Þ : (4)

Since p�s < p� ¼ ak=n ¼ 2a=n, it follows from (4) that

a >
n

n� 2

1

2e2
>

1

2e2
	 0:07 :

On the other hand, a simple numerical calculation
from (3) reveals that when a > 6:38, p�s < 1

e2ðn�2Þ, thus
contradicting (4). Hence, a 2 ð0:07; 6:38Þwhen k ¼ 2.

When k ¼ 3, ps ¼ pð1� pÞn�1 þ ðn� 2Þp2ð1� pÞn�2þ
n�2
2

� �
p3ð1� pÞn�3. Taking p ¼ 1=ðn� 3Þ yields

ps ¼ pð1� pÞn�3 ð1� pÞ2 þ ðn� 2Þpð1� pÞ þ n� 2

2
p

� �

� 1

e2ðn� 3Þ ð1� pÞ2 þ ðn� 2Þpð1� pÞ þ n� 2

2
p

� �

¼ 5n� 18

2e2ðn� 3Þ2 :

Since p�s denotes the optimal value of ps, we have

p�s �
5n� 18

2e2ðn� 3Þ2 : (5)

Since p�s < p� ¼ ak=n ¼ 3a=n, it follows from (5) that

a >
nð5n� 18Þ
6e2ðn� 3Þ2 �

5

6e2
	 0:11 :

On the other hand, a simple numerical calculation from

(3) reveals that when a > 4:17, p�s < 5n�18
2e2ðn�3Þ2, thus contra-

dicting (5). Hence, a 2 ð0:11; 4:17Þwhen k ¼ 3.
When k � 4. We first derive a lower bound on p�s by

letting p ¼ ðk� 3Þ=ðn� 2Þ. When p ¼ ðk� 3Þ=ðn� 2Þ, the
mean of the Binomial random variable, B, is ðn� 2Þp ¼
k� 3. Since the mean and the median are at most ln 2

apart [12], the median is in ½k� 3� ln 2; k� 3þ ln 2
.
Since k� 1 > k� 3þ ln 2, we have

PrðX < kÞ � 1=2 :

Since n � kþ 2, we have

p ¼ k� 3

n� 2
� k� 3

k
¼ 1� 3

k
:

Therefore,

1� p � 3

k
:

Summarizing the above, we obtain

p�s �
k� 3

n� 2
� 3
k
� 1
2
¼ 3ðk� 3Þ

2kðn� 2Þ : (6)

Since p�s < p� ¼ ak=n, it follows from (6) that

a >
3ðk� 3Þn
2kðn� 2Þk � 3ðk� 3Þ

2k2
� 3

32
	 0:09 :

We next derive a condition on the value of a that leads to
contradiction between (6) and (3), namely leads to

ak

n
e�

kða�1Þ2
2a � 3ðk� 3Þ

2kðn� 2Þ :

Simplifying the above, we are interested in an a that
leads to

ae�
kða�1Þ2

2a � 3ðk� 3Þn
2k2ðn� 2Þ : (7)

In (7), the left hand side is a decreasing function of k, and

hence the maximum value is ae�
4ða�1Þ2

2a . On the other hand,

as described earlier, the right hand side is larger than 0:09.

When a > 3:55, we have ae�
4ða�1Þ2

2a < 0:09, and hence a

contradiction. Therefore, we need a < 3:55. In summary,

we have shown that a 2 ð0:09; 3:55Þwhen k � 4. tu
We remark that even though Theorem 1 does not yield the

exact value of a (and consequently, that of p�), it nonetheless
yields a characterization of the optimal transmission probabil-
ity p�, which will be useful in the asymptotic analysis of the
running time of the Aloha-like algorithm (see Section 4.2.2).

4.2 Asymptotic Analysis

Let T be a random variable that denotes the neighbor dis-
covery time, i.e., the time until all n nodes have discovered
their respective neighbors. We next present an asymptotic
analysis of the neighbor discovery time in MPR networks.
In particular, we show that T ¼ Qðln nÞ under the idealized
MPR model, and T ¼ Qðn ln n

k Þ under the MPR-kmodel.

4.2.1 Idealized MPR

Recall that the idealized MPR model is a specific instance of
the MPR-k model where k ¼ n� 1. Under this model,
p� ¼ 1=2 and p�s ¼ 1=4. We show that there exist two con-
stants, c1 > c2 > 0, such that c2 ln n < T < c1 ln n with
high probability (abbreviated as w.h.p. henceforth), thus
implying that T ¼ Qðln nÞ.
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We first show that there exists a constant c1 > 0 such
that T < c1ln n w.h.p. Let Txy denote the time until node x
discovers a given neighbor y:

PrðTxy � tÞ ¼ 1� �1� p�s
�t ¼ 1� 3

4

� �t

:

That is,

PrðTxy > tÞ ¼ �1� p�s
�t ¼ 3

4

� �t

: (8)

For c1 ¼ �3=lnð3=4Þ, we have

PrðTxy > c1ln nÞ ¼ 3

4

� �c1lnn

¼ 1

n3
: (9)

Let Tx denote the time until x discovers all its neighbors.
Then,

PrðTx > tÞ ¼ Pr
�
max

y
Txy > t

	
�

Xn
y¼1;y 6¼x

PrðTxy > tÞ :

(10)

Combining (9) and (10) yields

PrðTx > c1ln nÞ � n PrðTxy > c1ln nÞ � 1

n2
: (11)

Recalling that T is the time until all n nodes have discovered
their respective neighbors, it follows that

PrðT > tÞ ¼ Pr
�
max

x
Tx > t

� �Xn
x¼1

PrðTx > tÞ : (12)

Combining (11) and (12), we obtain

PrðT > c1ln nÞ � n PrðTx > c1ln nÞ � 1

n
; (13)

where the right hand side approaches 0 as n ! 1.
We now prove that we can find another positive constant

c2 such that T > c2 ln n w.h.p. Note that to finish node dis-
covery by time t, each node must transmit at least once by
time t. Let T 0 be a random variable that denotes the time
when all the nodes have transmitted at least once. It is easy
to see that T � T 0:

PrðT 0 � tÞ ¼ ð1� ð1� p�ÞtÞn ¼ 1� 1

2

� �t
 !n

:

For c2 ¼ 0:5=ln 2, we obtain

1� 1

2

� �c2ln n
 !n

¼ ð1� n�0:5Þn � e�n0:5 ;

where the right hand side approaches zero as n ! 1.
Therefore, PrðT 0 � c2 ln nÞ ! 1 as n ! 1. Since T � T 0, it
follows that PrðT � c2 ln nÞ ! 1 as n ! 1.

4.2.2 MPR-k

Recall from Theorem 1 that under the MPR-k model, the
optimal transmission probability p� ¼ ak=n, where a is a

constant. We define a � b if limn!1a=b ¼ 1. Let fðpÞ repre-
sent the binomial sum term in (1), i.e.,

fðpÞ ¼
Xk�1

i¼0

n� 2

i

� �
pið1� pÞn�2�i :

Using the Poisson approximation for binomial distribution
[24] yields

fðpÞ � e��ðpÞXk
i¼0

�ðpÞi
i!

;

where �ðpÞ ¼ ðn� 2Þp. When p ¼ p�, �ðp�Þ ¼ akðn�2Þ
n � ak

i.e., �ðp�Þ is independent of n. Therefore, for a given
value of k, fðp�Þ can be considered to be a constant (i.e.,
independent of n). For convenience, let f ¼ fðp�Þ. There-
fore,

p�s ¼
ak

n
1� ak

n

� �
f :

Since 1� ak
n � 1, we have

p�s �
gk

n
; (14)

where g ¼ af is a constant. We next show that we can find
constants d1 > d2, so that d2n ln n

k < T < d1n ln n
k w.h.p., thus

implying T ¼ Qðn ln n
k Þ. From (8) and (14), we obtain

PrðTxy > tÞ ¼ 1� gk

n

� �t

:

Let d1 ¼ 3=g. Then,

Pr Txy >
d1n ln n

k

� �
¼ 1� gk

n

� �d1n ln n
k

� 1

n3
:

An analysis similar to the one for the idealized MPR case
yields

Pr T >
d1n ln n

k

� �
� 1

n
; (15)

where the right hand approaches 0 as n ! 1.
We now prove that we can find a constant d2 such that

T > d2n ln n
k w.h.p. As in the idealized MPR setting, let T 0

represent the time when all the nodes have transmitted at
least once. Thus, T � T 0:

PrðT 0 � tÞ ¼ 1� ð1� p�Þt� �n¼ 1� 1� ak

n

� �t
 !n

:

Let d2 ¼ 0:5=a. Then,

1� 1� ak

n

� �d2n ln n=k
 !n

¼ ð1� n�0:5Þn � e�n0:5 ;

where the right hand side approaches zero as n ! 1.
Therefore, PrðT 0 � d2n ln n

k Þ ! 1 as n ! 1. Since T � T 0,
we have PrðT � d2n ln n

k Þ ! 1 as n ! 1.
From the above, we conclude that T ¼ Qðn ln n

k Þw.h.p. For
k ¼ 1, i.e., the SPR case, we recover the Qðn ln nÞ result
derived in [27]. For values of k approaching n, we recover
the Qðln nÞ result derived under the idealized MPR setting.
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5 ADAPTIVE NEIGHBOR DISCOVERY

We next design two adaptive neighbor discovery schemes
that improve upon the Aloha-like scheme described in the
previous section. Both schemes utilize feedback information
from nodes to achieve faster discovery. One of the schemes
requires collision detection at nodes, i.e., the ability to dis-
tinguish between a collision and an idle slot, while the other
scheme only requires each node to transmit the IDs of the
discovered neighbors as feedback to other nodes. We will
show that both schemes achieve a factor ln n improvement
over the Aloha-like scheme in a clique setting.

Throughout this section, we assume a clique of n nodes.
Furthermore, we assume that n is known to each node and
that nodes transmit in synchronized slots. Both these
assumptions will be relaxed in subsequent sections.

5.1 Main Idea

The main idea behind our adaptive neighbor discovery
schemes is to provide feedback to the transmitting nodes
allowing them to stop transmitting once they have been dis-
covered by their neighbors. This in turn reduces channel
contention resulting in faster neighbor discovery. As we
will see, the use of feedback results in a ln n factor improve-
ment in running time over the Aloha-like algorithm.

In an SPR network, a successful transmission by a node is
received by all other nodes in the clique. The recipient
nodes signal the reception status to the transmitting node,
thus allowing it to drop out of neighbor discovery, i.e., stop
transmitting in the future. In contrast, since MPR capability
allows successful reception even in the presence of multiple
simultaneous transmissions, a node may be discovered by
some subset of its neighbors in the clique, while not being
discovered by the remaining subset of neighbors. This
occurs for instance under the MPR-k model, when two or
more (but fewer than k) nodes transmit simultaneously.
Each of the transmitting nodes is discovered by its neigh-
bors, but the transmitting nodes do not discover each other
(since nodes have half-duplex radios). We therefore require
each node to have m (m � 1) successful transmissions
before dropping out of the neighbor discovery process. We
next determine what the appropriate value ofm should be.

Lemma 1. Consider a clique of n nodes under the MPR-kmodel. A
node that has transmitted successfully form times is discovered
by all its neighbors with probability at least 1� ðk� 1Þm=nm�1.

Proof. Consider an arbitrary node x. Suppose that it has trans-
mitted successfully m times. Let Et

x denote the event that
node x transmits in slot t and the transmission is successful.
Given that the event Et

x occurs, the number of transmitters in
the tth slot is atmost k under theMPR-kmodel. Therefore,

Pr

Et

y j Et
x

� � k� 1

n
:

Let the m time slots in which node x transmits success-
fully be denoted t1; . . . ; tm. Since the transmissions in dif-
ferent slots are independent, it follows that

Pr

Et1

y ^ � � � ^ Etm
y j Et1

x ^ � � � ^ Etm
x

� � ðk� 1Þm
nm

: (16)

In other words, the probability that a node does not dis-
cover x after x has transmitted successfully m times is no
more than ðk� 1Þm=nm. For ease of notation, define Ex ¼
Et1
x ^ � � � ^ Etm

x . Then (16) can be rewritten as

Pr½Ey j Ex
 � ðk� 1Þm
nm

: (17)

Therefore

Pr½E1 _ � � � _ En�1 j Ex


�
Xn�1

r¼1

Pr½Er j Ex


� ðn� 1Þðk� 1Þm
nm

<
ðk� 1Þm
nm�1

:

Therefore,

Pr½:ðE1 _ � � � _ En�1Þ j Ex
 > 1� ðk� 1Þm
nm�1

:

In other words, the probability that node x is discov-
ered by all the neighbors after m successful transmis-
sions is at least 1� ðk�1Þm

nm�1 .
We can easily extend the above analysis to the case

where node x has transmitted successfully for more than
m times, and show that the above result still holds. tu
Lemma 1 confirms that when k is small compared to n

and m is sufficiently large, a node that has transmitted
successfully for m times is discovered by all its neigh-
bors w.h.p. Setting m ¼ 3 in Lemma 1, we observe that
the probability of a successful node being discovered by
all its neighbors after m successful transmissions is at
least 1� ðk� 1Þ3=n2, which is close to 1 for small k and
large n. For ease of presentation, we assume m ¼ 3
throughout our subsequent analysis. Of course, we can
employ a larger m, and all our results can be extended
in a straightforward manner.

Our adaptive neighbor discovery schemes proceed as
follows. We refer to a node that has dropped out of
neighbor discovery (i.e., remains in the listen mode) as
passive. Otherwise, the node is active. In the beginning, all
nodes are active. We divide time into phases. Phase r con-
tains wr ¼ Qðnr=kÞ slots, where nr is the number of active
nodes at the beginning of the rth phase. Each node exe-
cutes the Aloha-like scheme in the rth phase transmitting
with probability pr, a parameter that will be determined
in Theorem 2. At the end of a phase, all the nodes that
have transmitted successfully m times in the phase
become passive. We show in Theorem 2 that when wr

and pr are chosen appropriately, at least half of the active
nodes in a phase will become passive at the end of the
phase w.h.p. Therefore, the ðrþ 1Þ-st phase has at most
half as many active nodes as in the rth phase, each trans-
mitting with a higher probability than in the rth phase.
After log ln n phases, we show that at most n=ln n active
nodes are left. Thereafter, the remaining active nodes run
the Aloha-like scheme until termination.

The following theorem describes how wr and pr are cho-
sen to ensure at least half of the active nodes in the rth phase
become passive at the end of the phase w.h.p.
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Theorem 2. Let

wr; pr½ 
 ¼
hnr

2
;
1

nr

� �
; if k ¼ 2;

hnr

k� 2
;
k� 2

nr

� �
; if k � 3;

8>><
>>:

where h is a constant chosen such that

h � 85; if k ¼ 2;
115; if k � 3

�

Then,

Pr½nrþ1 < nr=2
 < e�nr=k; 8k � 2 :

The proof of Theorem 2 is based on defining a martingale
sequence [7] and then using the Azuma’s inequality [24, The-
orem 4.16] to establish the result.

Theorem 3 (Azuma’s inequality). Let the random variables
~Z0; . . . ; ~Zn form a martingale sequence i.e., E½ ~Zi j ~Z0; . . . ;
~Zi�1
 ¼ ~Zi�1 for all i ¼ 1; . . . ; n. Further, let j ~Zi � ~Zi�1j � k
for all i ¼ 1; . . . ; n. Then,

Pr½ ~Zn �E½ ~Zn
 � �
 � exp
�
� �2

2nk2

	
and

Pr½ ~Zn � E½ ~Zn
 � ��
 � exp
�
� �2

2nk2

	
:

We next present the proof of Theorem 2. Since all the
phases are similar, it is sufficient to prove the above for
phase 1; the proof for the rest of the phases is similar. For
ease of exposition, in the following, we drop the subscript
that represents the index of a phase, and simply prove the
following: Let

w; p½ 
 ¼
hn

2
;
1

n

� �
; if k ¼ 2;

hn

k� 2
;
k� 2

n

� �
; if k � 3;

8>><
>>:

where h is a constant as defined earlier (in Theorem 2).
Then,

Pr½jSj < n=2
 < e�n=k; 8k � 2;

where S denotes the set of successful nodes at the end of
phase 1.

Proof. We first consider the case of k � 3. Let random vari-
able Bt

x represents whether node x transmits or not
in slot t. Specifically, Bt

x ¼ 1 when node x transmits in
slot t and Bt

x ¼ 0 otherwise. Then E½Bt
x
 ¼ p. Setting

p ¼ ðk� 2Þ=n, note that for each t, E½Px B
t
x
 ¼ k� 2. The

random variable
P

x B
t
x is binomially distributed; it fol-

lows that the mean and median are separated by no
more than lnð2Þ 	 0:69 < 1 (see [12]) and thus, for each t,

Pr
X
x

Bt
x � k� 1

" #
� 1=2 :

Let random variable Ct
x denote whether node i transmits

successfully or not in slot t. Specifically, Ct
x ¼ 1 when

node i transmits successfully in slot t and Ct
x ¼ 0 other-

wise. Then

Pr


Ct

x ¼ 1
� ¼ Pr



Bt

x ¼ 1
� � Pr X

y6¼x

Bt
y � k� 1

" #
� p

2
:

(18)

In other words, when p ¼ ðk� 2Þ=n, a node can transmit
successfully with probability p=2. We now want to show
that at least half of the nodes can be successful at the end
of the phase w.h.p. Define that a node is successful if it
transmits successfully for at least three times.1 That is,Pw

t¼1 C
t
x � 3 for at least half of the i.

For convenience, for each i; t define

Pt
i ¼ min 3;

X
t0�t

Ct0
x

 !
; St ¼ 
x jPt

x ¼ 3
�
:

From the definition of S, it follows that S ¼ Sw. Reformu-
lating our goal above, we wish to show that for suffi-
ciently large w, Pr½jSwj < n=2
 � e�n=k. Note that Pt

x

represents node i’s “progress” towards being a success-
ful node (i.e., having three successful transmissions) up
to time t. Define Pt ¼Pi P

t
x, P

0 ¼ 0. Then Pt represents
the “progress” over all the nodes up to time t. Observe
that Pt � 5

2n ) jStj � n=2. So in the following we will
focus on establishing that, for sufficiently large w,

Pr½Pw < 5n=2
 � e�n=k : (19)

We prove the above using Azuma’s inequality. To that
end, define Zt to represent the “progress” of all the nodes
in time slot t. Specifically, define

Zt ¼ Pt � Pt�1 if jSt�1j � n=2;
k if jSt�1j > n=2:

�

Let Z ¼Pw
t¼1 Zt. Hence Z ¼ Pw � P 0 ¼ Pw, related to

our objective in (19). Observe that

E


Zt jCs

x; s < t
�
;

depends only on jSt�1j, the number of “saturated” nodes
(i.e., those that have already transmitted three times suc-
cessfully) up to slot t� 1. When jSt�1j � n=2, we have

E


Zt jCs

x; s < t
� ¼ X

x62St�1

Ct
x

� ðn� jSt�1jÞ � p=2
� ðk� 2Þ=4 :

When jSt�1j > n=2, we have

E


Zt jCs

x; s < t
� ¼ k :

In any case, E½Zt jCs
x; s < t
 � ðk� 2Þ=4. In preparation

for application of Azuma’s inequality, define

1. This corresponds to m ¼ 3; the proof below can be extended in a
straightforward manner for other values ofm.
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~Zt ¼ E


Z jBs

x; s � t
�
:

Observe that 2

E½ ~Zt j ~Zt�1
 ¼ ~Zt�1 and j ~Zt � ~Zt�1j � k; for all t :

That is, the sequence of random variables ~Z0; . . . ; ~Zw is a
martingale and satisfies the conditions specified in
Azuma’s inequality. Considering our objective in (19),
we have

Pr½Pw < 5n=2
 ¼ Pr½Z < 5n=2
 ¼ Pr½ ~Zw < 5n=2
 :
When w ¼ hn=ðk� 2Þ, we have E½ ~Zw
 ¼ E½Z
 �
wðk� 2Þ=4 ¼ hn=4. ApplyingAzuma’s inequality,we have

Pr½ ~Zw < 5n=2
 ¼ Pr ~Zw < E½ ~Zw
 � nðh� 10Þ
4

� �

� exp �n2ðh� 10Þ2ðk� 2Þ
32hnk2

 !
:

When k ¼ 3, the right hand side is no more than e�n=k

when h � 115. When k � 4, we have k=2 � ðk� 2Þ and
we obtain

Pr½ ~Zw < 5n=2
 � exp �nðh� 10Þ2
64hk

 !
:

When h � 83, it can be easily verified that the right hand
side is at most e�n=k.

We next prove the theorem for the remaining case of
k ¼ 2. The proof is similar to the case where k � 3. How-
ever, instead of (18), we have

Pr


Ct

x ¼ 1
� ¼ p ð1� pÞn�1 þ n� 1

1

� �
pð1� pÞn�2

� �

¼ 2

n
1� 1

n

� �n�1

� 2

ne
¼ 2p

e
:

Following similar steps as those for k � 3 and letting
w ¼ hn=2 and h � 85, it follows that

Pr½jSwj < n=2
 � Pr½Pw < 5n=2

� Pr½ ~Zw < 5n=2
 � e�n=k :

tu
Theorem 2 states that at least half of the active nodes at

the beginning of the rth phase become passive at the end
of the phase w.h.p. More importantly, the rth phase is of
duration linear in the number of active nodes nr in th phase,
which ensures that the total running time of the feedback-
based algorithms is Oðn=kÞ, thus yielding a ln n improve-
ment over the Aloha-like algorithm. To see this, recall
that the feedback-based algorithms contain two stages: the
first stage uses the adaptive scheme until there are fewer
than n

ln n active nodes; the second stage simply uses the

Aloha-like scheme. In the first stage, since each phase
reduces the number of active nodes by at least one half the
number at the start of the phase, the number of active nodes
in the rth phase, nr � n=2r�1. Furthermore, since the first
stage stops when there are fewer than n

ln n active nodes, it
contains at most log ln n phases. Therefore, the total run
time of the first stage is

Xlog ln n

r¼1

O
n

k2r�1

� 	
¼ O

n

k

� 	
:

The total run time of the second stage is the time to discover
the remaining n=ln n nodes using the Aloha-like scheme.
From the asymptotic results in Section 4.2.2, it is

Q
n

k ln n
ln

n

ln n

� 	
¼ Q

n

k

� 	
:

Combining the run time of the two stages, the neighbor dis-
covery time is Oðn=kÞ.

We next describe the feedback mechanism employed by
each of the two adaptive neighbor discovery schemes.

5.2 Collision-Detection Based Neighbor Discovery

In this scheme, a node uses the mechanism in [17], [27] to
know whether its transmission is successful or not. In par-
ticular, we assume that a node can distinguish between a
collision and an idle slot. We divide a slot into two sub-slots.
Nodes either transmit or listen in the first sub-slot. If a node
listens in the first sub-slot and can decode the received
packets successfully, then it deterministically sends a signal
in the second sub-slot; otherwise, it remains silent. A node
that transmits in the first sub-slot knows its transmission is
successful if and only if it hears a signal (or senses energy)
in the second sub-slot.

The collision-detection based scheme requires each node
to differentiate a collision from an idle slot, which may
not be feasible on certain hardware. The ID-based scheme
described next eliminates such a requirement.

5.3 ID-Based Neighbor Discovery

In the ID-based scheme, we require each node to record the
IDs of the nodes that it hears in each slot. When a node
transmits, it transmits its ID as well as the IDs of every node
from which it successfully received a message in any of
the past slots. The key challenge in the ID-based feedback
scheme is in devising an efficient scheme to encode node
IDs in the messages transmitted by nodes to ensure that the
message lengths remain bounded. A naive implementation
of the ID-based feedback scheme in which each node uses
the binary representation of the IDs, can lead to very long
message lengths. In particular, for the rth phase, since the
number of slots is wr, and given that a node can record up
to k IDs in a slot each requiring log n bits, each message is
Oðwrk log nÞ bits long. Thus, each message in the first phase
is Oðnk log nÞ bits long.

We next propose a novel message encoding scheme
that only requires a message length of Oðlog nÞ bits. In
this scheme, each node records the IDs of the nodes that
it hears in a slot. In particular, since a node can hear up
to k IDs in a slot (under the MPR-k model), for

2. The second of these two claims follows from the fact that if two
assignments to the Bt

x differ only among the fBs
xg for a particular s, the

value of Z can change by no more than k. See [1, Section 7.4] for a
detailed treatment.
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convenience, we require each node to record exactly k IDs
in each slot.3 If a node hears fewer than k IDs, the rest of
the IDs are padded as 0. As a special case, if a node trans-
mits in a slot, it records all the k IDs as 0. Fig. 1 shows an
example, where x‘ denotes the concatenation of the k IDs
recorded by node x in the ‘th slot. Note that the received
ID sequences at two nodes, x and y are identical in every
slot except the ones in which either x or y transmits (but
not both). For instance, in the example in Fig. 1, where
shaded slots represent the transmission slots, x1 ¼ y1;
x2 ¼ y2, and x4 ¼ y4, while x3 6¼ y3 (as y transmits in slot
3) and x5 6¼ y5 (as x transmits in slot 5).

Our encoding scheme takes advantage of the fact that the
received ID sequences at different nodes are similar in order
to achieve shorter message lengths. The main objective of
our encoding scheme is to allow each node x to transmit a
short encoded message such that a receiving node y can
decode this message to determine the time slots (in the past)
in which y’s transmissions were successful. We next
describe the encoding and decoding procedures in detail.

Consider an arbitrary phase, r. Suppose x transmits and
y listens in the tth slot. When x transmits, it transmits its ID
along with a coded vector, hx ¼ S

t
‘¼1v‘x‘, where x‘ is the

concatenation of the k IDs recorded at node x in the ‘-th
slot, and v‘ is a d-dimensional vector that is known to all
the nodes beforehand. Specifically, v‘ ¼ ð1; a‘; . . . ; ad�1

‘ Þ,
where a‘ is an element taken from a finite field Fq ¼
f0; 1; . . . ; q � 1g of the integers under addition and multipli-
cation modulo q;� q maxðnk;maxr wrÞ is a prime, and d
< q is a constant that will be determined in Theorem 4.
Intuitively, d is chosen so as to allow a recipient node to
solve a system of linear equations to decode messages trans-
mitted by x. When node y receives the message from x, it
obtains a vector hxy ¼ hx � gy, where gy ¼ S‘2C v‘y‘ and C
denotes the set of slots where y listens and does not hear x.
The following theorem shows that when d is chosen appro-
priately, node y can use hxy to recover the ID sequence
recorded at x (and hence determine the slots in which its
transmission is successful) w.h.p. In the example in Fig. 1,
node x transmits and node y listens in slot 5; y can deter-
mine if its transmission in slot 3 is successful after receiving
the coded vector from x in slot 5.

Theorem 4. Let d be a constant chosen such that

d � 170; if k ¼ 2;
460; otherwise:

�

Then, node y can recover the ID sequence recorded at x upon
receiving a coded vector hx from node x w.h.p.

Proof. Recall that we consider the scenario where node x
transmits and node y listens in slot t. Furthermore, C
denotes the set of slots where y listens and does not hear
x. Note that x and y record the same information for any
slot inC. That is because, in such a slot, if no more than k
nodes transmit, y knows that x must be listening as well,
and hence should have recorded the same information
for the slot; if there are more than k nodes transmitting,
then x and y still record the same information (i.e., a
sequence of zeros).

Let C denote the complement of C. That is, C repre-
sents the set of slots where either y transmits, or y listens
and hears x (i.e., x transmits). SupposeC contains ‘ slots,
denoted as i1; . . . ; i‘. Recall that hxy ¼ hx � gy. We next
prove that node y can decode xi1 ; . . . ; xi‘ from hxy w.h.p.,
and therefore, combining the decoded information for the
slots in C and the information for the slots in C (that y
knows), node y can recover the received ID sequence at x.

From the definition of hx and gy, we have

X‘
j¼1

vijxij ¼ hxy :

Writing the above in a matrix form yields

1 . . . 1
ai1 . . . ai‘
..
. ..

. ..
.

ad�1
i1

. . . ad�1
i‘

0
BBB@

1
CCCA

xi1
..
.

xi‘

0
B@

1
CA ¼ hxy : (20)

The matrix above is a Vandermonde matrix [14] of
dimension d� ‘. There exists a unique solution for
xi1 ; . . . ; xi‘ when the rank of the matrix is ‘. We next
show that this condition holds w.h.p. when d � d4prwre,
where pr and wr are set in accordance with Theorem 2.
Let Cx denote the set of slots in which node x transmits.
Similarly, let Cy denote the set of slots in which node y
transmits. Then, C � Cx [Cy since C represents the set
of slots in which either y transmits, or y listens and hears
x (i.e., x transmits). We further let Z be a random variable
that denotes the number of slots in which a node trans-
mits, and let m denote the expectation of Z. Since
the transmission probability in the rth phase is pr, and
there are wr slots in this phase, we have m ¼ prwr. From
Theorem 2, it follows that m is a constant. Using the tail
bound established in [1, Theorem A.1.12], we have

PrðZ � bmÞ < ðeb�1b�bÞm :
Letting b ¼ 2 yields

PrðZ � 2mÞ < e=4ð Þm	 0:68m;

which approaches 0. Therefore, we have jCxj � 2m and
jCyj � 2mw.h.p. Since

jCj � jCx [Cyj � jCxj þ jCyj � 4m;

it therefore follows that when d � d4prwre ¼ d4me,
d � jCj ¼ ‘w.h.p. Setting pr andwr to the values as defined

Fig. 1. An example illustrating the ID-based adaptive scheme. Node x
records the IDs of the nodes that it hears in slot ‘ as x‘, ‘ ¼ 1; . . . ; wr,
where wr is the number of slots in the rth phase. Similarly, node y
records the IDs of the nodes that it hears in slot ‘ as y‘, ‘ ¼ 1; . . . ; wr.
For ease of illustration, a slot is shaded when a node transmits in
that slot.

3. To ensure that the recorded ID sequences at all the receiving
nodes in a slot are the same, we also require the IDs be recorded in the
same order (increasing or decreasing).
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in Theorem 2, we have d � 2� 85 ¼ 170 when k ¼ 2 and,
d � 4� 115 ¼ 460when k � 3. Furthermore, note that

1 . . . 1
ai1 . . . ai‘
..
. ..

. ..
.

a‘�1
i1

. . . a‘�1
i‘

���������

���������
¼ Pj>uðaij � aiuÞ 6¼ 0;

since the left-hand side is the determinant of a square
Vandermonde matrix. Therefore, node y can solve the
system of linear equations in (20) to obtain xi1 ; . . . ; xi‘ . tu
The coded vector transmitted by a node contains d ele-

ments, where d is a constant defined in Theorem 4. Each ele-
ment has Oðmaxðlog wr þ k log n; 2k log nÞÞ ¼ Oðk log nÞ
bits. Therefore, the message length transmitted by each node
is dOðk log nÞ ¼ Oðk log nÞ bits, thus yielding a OðnÞ reduc-
tion over a naive ID-based scheme that transmits the binary
representation of all the IDs discovered in each time slot.
Finally, we remark that such a system of linear equations can
be solved extremely efficiently over finite fields [8], [9]; in
particular, Gaussian elimination still applies in this setting.

6 PRACTICAL CONSIDERATIONS

So far, we have assumed that each node knows the number
of its neighbors n and that nodes transmit in synchronized
slots. In this section, we relax each of these assumptions.

6.1 Unknown Number of Neighbors

We now describe how the neighbor discovery schemes
described in the previous sections can be extended to han-
dle the scenario where n is not known a priori. Our schemes
are similar in spirit to the algorithm proposed in [27] for the
case of SPR networks. The main idea is to keep doubling the
estimate for n until a stopping rule is satisfied.

6.1.1 Aloha-Like Scheme

The algorithm runs in stages. In the rth stage, each node runs
the Aloha-like scheme for a duration of wr slots with trans-
mission probability pr ¼ 1=2r. Based on our asymptotic
analysis in Section 4.2, we choose wr ¼ c1 ln 2r under the
idealized MPR model and wr ¼ d12

r ln 2r=k under MPR-k,
where c1 and d1 are constants, defined in Sections 4.2.1 and
4.2.2, respectively. Each node records the number of neigh-
bors that it discovers in the rth stage, denoted as nr, and
decides to terminate the neighbor discovery process in the
rþ 1-st stage if the stopping rule

nr � 2r�1 ^ nrþ1 � 2r; (21)

is satisfied.
With our choice of wr, a node correctly terminates at the

end of d log ne þ 1-st stage and discovers all its neighbors w.
h.p. This is because for this choice of wr, we have nd log ne ¼
n � 2d log ne�1 and nd log neþ1 ¼ n � 2d log ne w.h.p., which satis-
fies the stopping rule at the end of d log ne þ 1-st stage.

To verify the correctness of our stopping rule, we simu-
late the Aloha-like scheme under the idealized MPR
and MPR-k (for k ¼ 2 and 8) models for n ¼ 5; 10; 20; 50;
100; 200. For each setting, we repeat the simulation

100 times. We indeed find that each node terminates only
after discovering all its neighbors.

We next briefly describe the total neighbor discovery
time of the above scheme. Under idealized MPR, the neigh-
bor discovery time is

Xdlog ne

r¼1

c1 ln 2r ¼ Qðlog n ln nÞ :

Under MPR-k, the neighbor discovery time is

Xdlog ne

r¼1

d12
r ln 2r

k
¼ Q

n ln n

k

� �
:

From the above, we observe that not knowing n leads to at
most a log n factor slowdown under idealized MPR, and a
constant factor slowdown under the MPR-kmodel.

6.1.2 Adaptive Neighbor Discovery

Our extension for the adaptive neighbor discovery schemes
is similar to that for the Aloha-like scheme. More specifi-
cally, the schemes run in stages doubling the estimate for n
after each stage. In the rth stage, we assume there are 2r

neighbors and run the adaptive schemes as described in
Section 5. Therefore, each stage contains multiple phases
with the total run time of the rth stage being Oð2rþ1

k Þ.
We continue the stages until the stopping rule (21) is satis-
fied. Similar to the extension for the Aloha-like scheme, the
neighbor discovery stops in ðdlog ne þ 1Þ-st stage. We then
have a total run time that equals

Xdlog ne

r¼1

O
2rþ1

k

� �
¼ O

n

k

� 	
:

Again, we observe that not knowing n leads to a constant
factor slowdown.

6.2 Asynchronous Transmissions

Thus far, our discussion assumed a slotted time system
and that different nodes are synchronized on slot bound-
aries. We next relax this assumption. In particular, we
consider the following asynchronous model. We assume
that time is slotted and each slot is of duration t. How-
ever, the slot boundaries across different nodes are not
necessarily aligned.

We consider the asynchronous version of the Aloha-like
algorithm where each node transmits with probability p at
the beginning of a slot. Consider two arbitrary nodes, x and
y. Suppose node x transmits at time t. Let ps denote the
probability that x is discovered by y. Since the slot bound-
aries of nodes x and y are not aligned, node y cannot trans-
mit in the two adjacent slots that overlap with the interval
½t; tþ t
 in order to successfully receive x’s transmission.
The probability of this event is ð1� pÞ2. Then we may
expand ps as

ps ¼ pð1� pÞ2

�
Xk�1

i¼0

n� 2

i

� �
ð1� ð1� pÞ2Þið1� pÞ2ðn�2�iÞ : (22)
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Under the idealized MPR model, ps ¼ ð1� pÞ2p, and hence
the optimal transmission probability p� can be easily
obtained as p� ¼ 1=3. The corresponding optimal p�s is 4=27.
The results under the MPR-k model are summarized in the
following theorem.

Theorem 5. Consider the Aloha-like algorithm where nodes are
assumed to know n and node transmissions are asynchronous.
Under the MPR-k model, the optimal transmission probability
p� ¼ ak=n, where a 	 0:5 when k ¼ 1, and

a 2
ð0:03; 14:26Þ; if k ¼ 2;
ð0:06; 8:49Þ; if k ¼ 3;
ð0:05; 6:76Þ; if k � 4 :

8<
:

Proof. When k ¼ 1, i.e., the SPR model, setting the deriva-
tive of ps to zero, we obtain p� ¼ 1=ð2n� 1Þ 	 1

2n, and
hence, a 	 0:5. We next derive the results for the other
three cases: k ¼ 2, k ¼ 3, and k � 4. Similar to the proof
of Theorem 1, for each case, we first derive a lower
bound on the optimal p�s , and then derive the constants
stated in the theorem. Note that since we are considering
the MPR-k case, we have n � kþ 2.

Let B ¼ B1 þ � � � þBn�2, where Bx ¼ 1 when node x
transmits in one of the two adjacent slots, and Bx ¼ 0
otherwise. Then B follows a Binomial distribution, and
(22) can be rewritten as

ps ¼ pð1� pÞ2PrðB < kÞ : (23)

Note that

p�s ¼ p�ð1� p�Þ2PrðB < kÞ <
ak

n
PrðB < kÞ :

Using the left tail bound for Binomial distribution in [1,
Theorem A.1.13], we have

PrðB < kÞ < e�ððn�2Þð1�ð1�p�Þ2Þ�kÞ2=2ðn�2Þð1�ð1�p�Þ2Þ

	 e�ðnð1�ð1�p�Þ2Þ�kÞ2=2nð1�ð1�p�Þ2Þ

¼ e
�ðnp�ð2�p�Þ�kÞ2

2p�ð2�p�Þ ¼ e
�ðakð2�p�Þ�kÞ2

2akð2�p�Þ

¼ e
�kðað2�p�Þ�1Þ2

2að2�p�Þ < e�
kða�1Þ2

4a ;

where the last inequality follows by observing that 1 <
2� p� < 2. Hence,

p�s <
ak

n
e�

kða�1Þ2
4a : (24)

When k ¼ 2, letting 1� ð1� pÞ2 ¼ 1=ðn� 2Þ yields
p � 1=2ðn� 2Þ, and hence

ps � 1

2ðn� 2Þ 1� 1

n� 2

� �
1� 1

n� 2

� �n�2

þ 1

2ðn� 2Þ 1� 1

n� 2

� �n�2

� 1

2e2ðn� 2Þ 1� 1

n� 2
þ 1

� �

� 1

2e2ðn� 2Þ :

Since p�s denotes the optimal value of ps, we have

p�s �
1

2e2ðn� 2Þ : (25)

Since p�s < p� ¼ ak=n ¼ 2a=n, it follows from (25) that

a >
n

n� 2

1

4e2
� 1

4e2
	 0:03 :

On the other hand, a simple numerical calculation from
(24) reveals that when a > 14:26, p�s < 1

2e2ðn�2Þ, contra-
dicting (25). Hence a 2 ð0:03; 14:26Þwhen k ¼ 2.

When k ¼ 3, letting 1� ð1� pÞ2 ¼ 1=ðn� 3Þ yields
p � 1=2ðn� 3Þ, and

ps � 5n� 18

4e2ðn� 3Þ2 :

Since p�s denotes the optimal value of ps, we have

p�s �
5n� 18

4e2ðn� 3Þ2 : (26)

Since p�s < p� ¼ ak=n ¼ 3a=n, it follows from (26) that

a >
nð5n� 18Þ
6e2ðn� 3Þ2 �

5

12e2
	 0:06 :

On the other hand, a simple numerical calculation from
(24) reveals that when a > 8:49, p�s < 5n�18

4e2ðn�3Þ2, contra-
dicting (26). Hence a 2 ð0:06; 8:49Þwhen k ¼ 3.

When k � 4, let 1� ð1� pÞ2 ¼ ðk� 3Þ=ðn� 2Þ. Then
the mean of the Binomial random variable, B, is ðn�
2Þð1� qÞ ¼ k� 3. Since the mean and the median are at
most ln 2 apart [12], the median is in ½k� 3� ln 2; k�
3þ ln 2
. Since k� 1 > k� 3þ ln 2, we have PrðB <
kÞ � 1=2. Since n � kþ 2, it follows that

ð1� pÞ2 ¼ 1� k� 3

n� 2
� 1� k� 3

k
¼ 3

k
:

Further simplification yields

2p� p2 ¼ k� 3

n� 2
) p � k� 3

2ðn� 2Þ :

Summarizing the above and since p�s denotes the optimal
value of ps, we have

p�s � ps � k� 3

2ðn� 2Þ �
3

k
� 1
2
¼ 3ðk� 3Þ

4kðn� 2Þ : (27)

Since p�s < p� ¼ ak=n, it follows from (27) that

a >
3ðk� 3Þn
4kðn� 2Þk � 3ðk� 3Þ

4k2
� 3

64
	 0:05 :

We next derive the condition on awhich results in

ak

n
e�

kða�1Þ2
4a � 3ðk� 3Þ

2kðn� 2Þ ;

a contradiction stating that an upper bound of p� is no
more than a lower bound of p� (see (24) and (27)). The
above is equivalent to
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ae�
kða�1Þ2

4a � 3ðk� 3Þn
2k2ðn� 2Þ : (28)

In (28), the left hand side is a decreasing function of

k, and hence the maximum value is ae�
4ða�1Þ2

4a . On

the other hand, as described earlier, the right hand side

is larger than 0:05. When a > 6:76, we have ae�
4ða�1Þ2

4a <

0:05, leading to the contradiction in (28). Hence,

a 2 ð0:05; 6:76Þ when k � 4. tu
Following an analysis similar to that in Section IV-B, it is

straightforward to conclude that the asynchronous Aloha-
like algorithm is at most a constant factor slower than the
synchronous version.

Extension of the adaptive neighbor discovery schemes to
the asynchronous model is similar and is omitted here to
avoid repetition. We can also extend the asynchronous
schemes for the case when n is unknown by requiring each
node to embed its stage number in the messages, leading to
at most a factor of two slowdown compared to the synchro-
nous model.

7 THE MULTI-HOP NETWORK CASE

We next generalize the analysis of our neighbor discovery
from a clique setting to that of a multi-hop wireless net-
work. In particular, we first describe our problem formula-
tion, and then present upper bounds on neighbor discovery
time for the Aloha-like and adaptive algorithms under the
MPR-kmodel.

7.1 Problem Setting

We consider a multi-hop wireless network G ¼ ðV;EÞ,
where V denotes the set of nodes and E denotes the set of
directed edges, i.e., ðx; yÞ 2 E if node y is within x’s trans-
mission range. Let jV j ¼ n. Further, let D be the maximum
node degree inG. We say that an edge ðx; yÞ has been discov-
ered when node y successfully receives a transmission from
x (i.e., in this case, y discovers x). We are interested in deter-
mining an upper bound on the time T until all edges in E
have been discovered.

7.2 Aloha-Like Neighbor Discovery

The Aloha-like neighbor discovery algorithm in the general
network setting operates as follows. In each time slot, a
node transmits with probability ak=D and listens with prob-
ability 1� ak=D.

Consider a pair of nodes x and y such that ðx; yÞ 2 E. Let
ny denote the number of nodes within y’s transmission
range. The edge ðx; yÞ is discovered in a given time slot when
x transmits, y listens, and no more than k of y’s neighbors
transmit. From (14), we know that the probability pxy of link
ðx; yÞ being discovered in a given time slot is given by

pxy ’ gk

ny
;

where g is a constant. Noting that ny � D, we obtain

pxy � gk

D
:

Now, let ExyðtÞ denote the event that the link ðx; yÞ is not dis-
covered after t time slots. Thus,

P ðExyðtÞÞ ¼ ð1� pxyÞt

� 1� gk

D

� �t

� e�
gkt
D ;

where the last inequality follows from the well-known fact
that 1� x � e�x; 8x 2 R.

Let EðtÞ denote the event that at least one link in G is not
discovered by time t. Therefore,

P EðtÞð Þ � P
[

ðx;yÞ2E
ExyðtÞ

0
@

1
A

�
X

ðx;yÞ2E
P ðExyðtÞÞ

�
X

ðx;yÞ2E
e�

gkt
D ;

where the second inequality follows from the union bound.
Noting that there are at most n2 directed edges in a graph
with n nodes, we obtain

P EðtÞð Þ � n2e�
gkt
D :

Letting t ¼ 3D ln n
gk , we obtain

P EðtÞð Þ � n2e�3 ln n ¼ 1

n
:

Since g is a constant, we conclude that T ¼ OðD ln n
k Þw.h.p.

Since each node can receive at most k successful trans-
missions in each time slot, it follows immediately that a
lower bound on the running time of any neighbor discovery
algorithm under the MPR-k model is VðDkÞ. Given the upper
bound derived earlier, we conclude that the Aloha-like
neighbor discovery algorithm is at most a factor lnn worse
than the optimal.

In the light of the results above, an interesting question
that follows is whether we can close the ln n gap between
the lower and upper bounds via adaptive neighbor discov-
ery. We next show that this is indeed true when D is large.
Analysis of adaptive neighbor discovery for general D in a
general network setting appears non-trivial and is an inter-
esting future direction.

7.3 Adaptive Neighbor Discovery

We next consider adaptive neighbor discovery in a multi-
hop setting when D is large. More formally, we restrict our
analysis to the case when D ¼ n=c, where c is a constant. We
show that the neighbor discovery time is Oðn=kÞ ¼ OðD=kÞ,
which matches the lower bound for the problem.

Consider an arbitrary node x. We say that x’s trans-
mission in a given time slot is successful, if it is discov-
ered by all its neighbors that are listening in the slot. A
node knows whether its transmission is successful or not
based on feedback from other nodes. Specifically, we
divide a slot into three sub-slots. In the first sub-slot,
nodes either transmit or listen. If a node decodes the
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received packets successfully, then it deterministically
sends a signal in the second sub-slot; otherwise, it deter-
ministically sends a signal in the third sub-slot. A node,
x, that transmits in the first sub-slot knows its transmis-
sion is successful if and only if it hears a signal (or
senses energy) in the second sub-slot and does not hear
a signal in the third sub-slot. This is because hearing a
signal in the second sub-slot indicates that no more than
k of x’s neighbors have transmitted in the first sub-slot;
and not hearing a signal in the third sub-slot indicates
that all of x’s neighbors that listened in the first sub-slot
have discovered x.

The reason for having the additional third sub-slot when
compared to our algorithms for clique topologies is as fol-
lows. In a multi-hop network, nodes have different sets
(and numbers) of neighbors. One of x’s neighbors, y, may
not discover x even if it listens and no more than k of x’s
neighbors transmit, as k or more of y’s neighbors could be
transmitting in the same slot.

Thus, the probability that a neighbor of x does not dis-
cover x when x has a successful transmission is no more
than ðk� 1Þ=D, since there can be no more than k� 1 other
transmitters in x’s neighborhood when x’s transmission is
successful. Specifically, similar to Lemma 1, we have

Lemma 2. Consider a network with maximum node degree D
under the MPR-k model. A node that has transmitted success-
fully for m times is discovered by all its neighbors with proba-
bility at least 1� ðk� 1Þm=Dm�1.

The above Lemma indicates that when k is small com-
pared to D and,m is sufficiently large, a node that has trans-
mitted successfully for m times is discovered by all its
neighbors w.h.p.

We then use the same adaptive algorithm as described in
Section 5.1. Specifically, we divide time into phases, and clas-
sify nodes as active or passive nodes (initially all nodes are
active). In a phase, only active nodes transmit and passive
nodes listen. A node that has m successful transmissions
becomes passive at the end of the phase. From Theorem 2,
we conclude that at least half of the active nodes at the begin-
ning of the rth phase become passive by the end of the phase
w.h.p. To seewhy this is the case, we define a stronger notion
of successful transmission.We say that a node’s transmission
is strongly successful, if no more than k nodes transmit across
the entire network. It is obvious that a strongly successful
transmission is also a successful transmission. When phase
length and transmit probability are chosen as in Theorem 2,
it follows that at least half of the active nodes have at leastm
strongly successful transmissions, and hence at least m suc-
cessful transmissions, by the end of a phase. Therefore, at
least half of the active nodes will become passive. After
log ln n phases, we run the Aloha-like scheme until termina-
tion. Following the analysis in Section 5.2, we conclude that
the neighbor discovery time is Oðn=kÞ. Since D ¼ n=c, the
neighbor discovery time isOðD=kÞ.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we designed and analyzed randomized algo-
rithms for neighbor discovery for both clique and general
network topologies under various MPR models. For clique

topologies, we started with an Aloha-like algorithm that
assumes synchronous node transmissions and a priori
knowledge of the number of neighbors n. We showed that
the total neighbor discovery time for this algorithm is
Qðln nÞ under the idealized MPR model, and Qðn ln n

k Þ under
the MPR-k model. We further designed adaptive neighbor
discovery algorithms for the case when a node knows if its
transmission is successful or not, and showed that it pro-
vides a factor ln n improvement over the Aloha-like scheme.
We extended our schemes to accommodate a number of
practical scenarios such as when the number of neighbors is
not known beforehand and the nodes are allowed to transmit
asynchronously. We analyzed the performance of our algo-
rithms in each case and demonstrated at most a constant or
Qðln nÞ factor slowdown in algorithm performance. Finally,
we consider the general multi-hop network setting and show
that the Aloha-like scheme achieves an upper bound of
OðD ln n

k Þ w.h.p, at most a factor ln n worse than the optimal,
and the adaptive algorithm is order-optimal i.e., it achieves
an upper bound ofOðD=kÞwhenD is large.

We have used neighbor discovery time as the perfor-
mance metric throughout the paper. Another interesting
metric is energy consumption during the neighbor discovery
process. Energy consumption of the Aloha-like algorithm
can be directly derived from neighbor discovery time. Ana-
lyzing energy consumption of the adaptive algorithms in
more involved and is left as future work. Another interesting
direction of future work is extending our study to more gen-
eralized MPR models (e.g., accounting for fading, shadow-
ing and other random errors observed inwireless channels).
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