
DataPlanner: Data-budget Driven Approach to
Resource-efficient ABR Streaming

Yanyuan Qin
1
, Chinmaey Shende

1
, Cheonjin Park

1
, Subhabrata Sen

2
, Bing Wang

1

1
University of Connecticut

2
AT&T Labs - Research

ABSTRACT
Over-the-top video (OTT) streaming accounts for the majority of

traffic on cellular networks, and also places a heavy demand on

users’ limited monthly cellular data budgets. In contrast to much of

traditional research that focuses on improving the quality, we ex-

plore a different direction—using data budget information to better

manage the data usage of mobile video streaming, while minimiz-

ing the impact on users’ quality of experience (QoE). Specifically,

we propose a novel framework for quality-aware Adaptive Bitrate

(ABR) streaming involving a per-session data budget constraint.

Under the framework, we develop two planning based strategies,

one for the case where fine-grained perceptual quality information

is known to the planning scheme, and another for the case where

such information is not available. Evaluations for a wide range of

network conditions, using different videos covering a variety of

content types and encodings, demonstrate that both these strategies

usemuch less data compared to state-of-the-art ABR schemes, while

still providing comparable QoE. Our proposed approach is designed

to work in conjunction with existing ABR streaming workflows,

enabling ease of adoption.

CCS CONCEPTS
• Information systems→Multimedia streaming.

KEYWORDS
Adaptive Bitrate (ABR) streaming; Data budget; Resource efficiency.

ACM Reference Format:
Yanyuan Qin, Chinmaey Shende, Cheonjin Park, Subhabrata Sen, and Bing

Wang. 2021. DataPlanner: Data-budget DrivenApproach to Resource-efficient

ABR Streaming. In 12th ACM Multimedia Systems Conference (MMSys’21),
Sept. 28-Oct. 1, 2021, Istanbul, Turkey. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3458305.3459596

1 INTRODUCTION
Video streaming over cellular networks provides users convenient

streaming experience anytime anywhere. On the other hand, video

streaming is one of the most bandwidth consuming applications:

streaming just one-hour High Definition (HD) video can consume a

The work of Yanyuan Qin was done while he was a PhD student at the University of

Connecticut.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

MMSys’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8434-6.

https://doi.org/10.1145/3458305.3459596

significant portion of a user’s monthly data plan. In addition, video

streaming traffic imposes significant load on cellular networks.

Reducing the data usage of mobile video streaming while min-

imizing the impact on users’ QoE is the key to enable users to

consume more good-quality content within their specific monthly

data budgets. In addition, reduced data usage per session translates

to reduced load on cellular networks, and hence potentially better

QoE for other users sharing the same cellular infrastructure.

In this paper, we explore reducing data usage in the context of

ABR streaming, the de facto over-the-top video streaming technol-

ogy in industry, for the popular Video-on-Demand (VOD) use case.

In ABR streaming, for each video, the server creates a track ladder,
consisting of multiple independent tracks, each encoding the same

content, but differing in frame rate, encoding bitrate, resolution,

or perceptual quality. Each track is further divided into a series

of segments, each containing data for a few seconds’ (typically 2-

10 seconds) worth of playback. For each segment position in the

video, the encoding bitrates and hence the perceptual quality gen-

erally progressively increase from lower to higher tracks. During

streaming playback, the ABR client leverages an adaptation logic

to dynamically determine which quality variant (i.e., from which

track) to fetch for each segment position in the video. For good QoE,

the ABR streaming logic needs to account for and balance across

the conflicting goals of maximizing quality, minimizing rebuffering,

and minimizing quality changes [11, 22, 28, 33].

Existing approaches in industry to reducing data usage are either

service-based or network-based [37]. A service-based approach is

typified by a video service providing a user multiple options via

the client player user interface; users can choose an option with

a lower data usage at the cost of lower quality experience. The

selected option is mapped to a specific track in the track ladder, and

the ABR track selection during playback is constrained to selecting

from variants at or below that track (see §2). In a network-based

approach, a mobile network operator caps the maximum network

bandwidth available to a video session to a fixed value [3, 40].

Existing ABR adaptation schemes in literature (§7) focus mainly

on maximizing the video quality under the network bandwidth

constraints, and not on limiting data usage. One exception is [37],

which assumes a user specified target quality and proceeds to avoid

segments whose qualities exceeding the target quality, leading to

bandwidth savings. The approach, however, still does not provide

a user an explicit control of data usage. For the same target quality

specified by the user, the amount of data downloaded for one video

can be significantly higher than that for another video (see §2).

Overall, the existing solutions to limiting video streaming data

usage, however, may have difficulty in achieving a good balance

between QoE and associated data usage, as they variously do not

account for one or more important factors such as different video

https://doi.org/10.1145/3458305.3459596
https://doi.org/10.1145/3458305.3459596

MMSys’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey Y. Qin et al.

genres and encoding technologies, complexity and quality variabil-

ity across different scenes in a video track, and different QoE vs.

bitrate tradeoffs for different ABR track ladders. They also do not

consider overall data usage in the rate adaptation decision.

In contrast to these existing approaches, in this paper we explore

a different direction—using data budget information to better man-

age the data usage of mobile video streaming, while minimizing the

impact on users’ QoE. Specifically, we propose a novel framework

for quality-aware ABR video streaming involving a per-session data
budget constraint, which provides a knob to explicitly constrain

the amount of data that can be used for a streaming session. This

problem is challenging since we need to account for all the factors

discussed above. In addition, to be readily deployable, the tech-

nique needs to work in conjunction with existing ABR streaming

workflows. Our work resolves the above challenges and makes the

following main contributions:

• We present a client-based framework, DataPlanner (DP), for

incorporating per-session data budget into ABR streaming (§2).

DP dynamically rations data usage, accounting for the remaining

data budget and segments in a streaming session, and can be easily

retrofitted into existing ABR streaming workflows.

• Under the above framework, we develop two novel computation-

ally light-weight strategies (§3) for guiding ABR track selection:

DP-Q for the scenarios where per-segment perceptual quality is

known beforehand, andDP-T for the scenarios where such informa-

tion is not available. For the former case, the strategy determines

a target quality (and hence the respective target tracks) for the

remaining segments, while the latter strategy directly determines

the target tracks, taking account of the characteristics of state-

of-the-art variable bitrate (VBR) encodings, including H.264 [19],

H.265 [18] and VP9 [35].

•We evaluate the performance of integrating each of DP-Q and DP-

T with two existing state-of-the-art ABR schemes, RobustMPC [43]

and CAVA [36] (§4). In addition, we implement DP-Q and DP-T

in a popular open-source ABR player software, Exoplayer [15], on

the Android platform, which is widely used in commercial play-

ers [16] (§5). Evaluations across a wide range of cellular network

conditions, using different videos covering diverse content types,

codecs, and track ladder settings demonstrate that DP-Q and DP-

T can successfully balance QoE while satisfying the data budget

constraint—they achieve QoE that is close to that of running the

original ABR schemes in standalone mode, but with substantially

lower data usage. For instance, when the network bandwidth is

high and the data budget is relatively low, the original scheme uses

on average 93% and 90% more data than DP-Q and DP-T respec-

tively, but with comparable percentage of low-quality segments,

and higher rebuffering.

• Our results highlight the importance of designing DP schemes

carefully to avoid impacting QoE (§2 and §4). A naive application of

data-budget constraints as exemplified by a strawman scheme that

is similar to the current practice is not sufficient. While obeying

the data budget, it can lead to ABR adaptation decisions with sig-

nificant adverse QoE implications. In contrast, a carefully designed

DP scheme with the same data budget should be able to realize

significantly improved QoE, by considering both the data budget

and the QoE dimensions. Our designed DP schemes achieve much

better quality for segments with complex scenes than the straw-

man scheme: the quality is up to 16 points higher measured by

Video Multimethod Assessment Fusion (VMAF) phone model [24],

a state-of-the-art perception quality metric.

• Based on the evaluation results, we discuss two other practical

aspects related to data planning: (i) how to set per-session data bud-

get based on the video characteristics, and (ii) using DP strategies

in conjunction with network-based bandwidth caps to both deliver

good QoE and constrain data usage (§6).

2 MOTIVATION AND SOLUTION
FRAMEWORK

In this section, we first describe the benefits of introducing per-

session data budget in ABR streaming, and then the problem setting.

After that, we outline a simple strawman data planning strategy and

point out its limitations. Finally, we present a high-level framework

for quality-aware ABR streaming under a per-session data budget.

2.1 The Case for Per-session Data Budget
A per-session data budget allows a user to explicitly control the

amount of data consumed in a video streaming session. For the

user, it provides upfront clarity at the beginning of a session about

the estimated data usage for watching the particular video. This in

turn enables a user to better reason about and select the specific

data budget setting (e.g., select a higher or lower budget) for the

session in a more informed way, taking into account factors like

their remaining cellular data budget for the month, and how much

data they are willing to expend for the particular session (more

in §6). In addition, a per-session data budget opens the way for

the ABR streaming system to explicitly factor this constraint in

the track selection decisions throughout the session. A carefully

designed scheme would judiciously plan and ration the budget over

time, subject to varying available network bandwidths across the

session and varying content complexities across the video, while

steering the selection towards delivering good QoE.

A data-budget aware ABR scheme can also take advantage of the

diminishing gain in quality with increasing encoding bitrate that is

common across a wide range of codecs (e.g., H.264, H.265 and VP9)

and state-of-the-art ABR track ladders of commercial streaming

services (e.g., used by YouTube and Netflix) [9, 37]. Table 1 lists

seven H.264 and H.265 videos that are encoded by YouTube or by

us (see more details in §4.1). Fig. 1 plots the perceptual quality as

measured by the VMAF phone model [24] versus bitrate (in log

scale) for three VBR videos. The first two videos, ED (Elephant

Dream) and AF (American Football), are H.264 encoded animation

and sport videos, respectively, and the third one, BB (Basketball),

is an H.265 encoded sport video. They have 104, 135 and 136 seg-

ments, respectively, each of around 5-sec duration, and 6 tracks.

In Fig. 1, each point corresponds to a segment, the segments in

the same track are represented in the same color, and the black

curve shows the average quality versus average encoding bitrate

for each track. For all three videos, we clearly see that as the bitrate

reaches a certain level, increasing it further only leads to little im-

provement of perceptual quality—only a VMAF difference of 6 or

more is considered to be noticeable to a viewer [9, 34] and VMAF

DataPlanner: Data-budget Driven Approach to Resource-efficient ABR Streaming MMSys’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey

Table 1: Average bitrate (in Mbps) with the peak-to-average bitrate ratio in parenthesis for seven videos.

H.264 encodings H.265 encodings
BBB ED ToS AF AF BB FH

144p 0.10 (1.3) 0.10 (1.3) 0.09 (1.2) 0.29 (1.9) 0.24 (2.0) 0.16 (1.4) 0.14 (1.6)

240p 0.22 (1.3) 0.23 (1.3) 0.20 (1.1) 0.61 (1.9) 0.45 (2.0) 0.34 (1.4) 0.30 (1.7)

360p 0.34 (1.9) 0.39 (1.6) 0.34 (1.4) 1.06 (1.9) 0.74 (2.0) 0.58 (1.3) 0.56 (1.7)

480p 0.73 (1.8) 0.84 (1.6) 0.76 (1.3) 1.54 (1.9) 1.03 (2.0) 0.86 (2.0) 0.86 (1.8)

720p 1.37 (1.9) 1.62 (1.7) 1.42 (1.4) 2.51 (2.2) 1.58 (1.9) 1.39 (2.0) 1.51 (2.0)

1080p 2.42 (2.0) 2.86 (1.6) 2.31 (1.4) 4.15 (2.4) 2.51 (1.8) 2.24 (1.9) 2.67 (2.1)

10
0

25
0

50
0

10
00

25
00

50
00

10
00

0

Video Bitrate (Kbps)

0

20

40

60

80

100

V
M

A
F

(a) ED (H.264)

10
0

25
0

50
0

10
00

25
00

50
00

10
00

0

Video Bitrate (Kbps)

0

20

40

60

80

100

V
M

A
F

(b) AF (H.264)

10
0

25
0

50
0

10
00

25
00

50
00

10
00

0

Video Bitrate (Kbps)

0

20

40

60

80

100
V

M
A

F

(c) BB (H.265)

Figure 1: Perceptual quality and bitrate tradeoff. The seg-
ments in the same track are represented in the same color;
the six colors correspond to the six tracks. Triangles are for
Q1-Q3 segments (with simple scenes; see §3.2) and crosses
are for Q4 segments (with complex scenes).

values above 80 are considered as good quality [4, 25]. Take the

ED video as an example: many segments in track 3 (360p) have

VMAF values between 60 and 80 (considered as fair to good quality),

many segments in track 4 (480p) have VMAF values exceeding 80

(considered as good to excellent quality), and higher tracks (tracks

5 and 6) only have slightly higher VMAF values at the cost of signif-

icantly higher bitrate. Given the above characteristics of this video,

a data-budget aware ABR scheme would have a strong incentive to

prefer the track 4 variant of a segment over its track 5 variant due

to its marginally lower quality but significantly lower data usage.

While the specific bitrate vs. QoE tradeoff for track selection may

differ across different videos and different track ladder schemes, the

overall diminishing returns behavior shown in Fig. 1 holds through-

out. We describe how our DP framework and schemes incorporate

and utilize such trends in §3 and §6.

Last, while an earlier work [37] also aims to reduce data usage, it

assumes a target perceptual quality level and attempts to deliver the

ABR content at that quality. It does not provide an explicit control on

per-session data usage as in our approach. As an example, suppose

the target perceptual quality is VMAF 80. Then consider 8-min

long videos in Table 1, with the approach in [37], the data usage

is up to 29 MB and 258 MB for BBB and AF (H.264), respectively,

the latter being 9× as high as the former. In contrast, with our DP

approach, a user selects a per-session data budget, and the resultant

data consumption is bounded by that selected data budget.

Determining per-session data budget. In general, the data

budget for a particular session can be determined by a policy mech-

anism. Specifically, we envision a simple User Interface (UI) that

tells the user (i) the remaining cellular data for the month, and

(ii) some options to select from, e.g., excellent quality with 𝑥 MB

data consumption, good quality with 𝑦 MB data consumption, fair

quality with 𝑧 MB data consumption. The mapping of the choices to

the data budget values needs to account for the specifics of a video.

In particular, different videos have different content complexity; the

codecs and track ladder designs used to create the ABR tracks can

also lead to significantly different bitrates per track. For instance,

for the videos in Table 1, if the policy is to watch a 10-minute video

with a data budget of 75 MB (translates to an average bitrate of 1

Mbps), then it can be very limiting for certain videos, while not

being a significant constraint for others. In §6, we discuss creating

such data budget mappings based on insights from our evaluation

results, and highlight the differences of our mappings from existing

practice.

2.2 Problem Setting
Recall that in this paper, we focus on the popular VOD streaming

use case. At the origin server side, a typical VOD library consists

of videos from different genres and with different content complex-

ities (e.g., talking heads vs. fast-paced action), each converted into

a set of ABR tracks with different resolutions, frame rates, bitrates

or quality levels, using the ABR track ladder design adopted by

the particular streaming service. At the beginning of a streaming

session, the client downloads a manifest file from the server. Im-

portant information related to data-usage requirements, such as

track encoding bitrates, and per-track and per-segment sizes, can

be easily gleaned from a combination of (i) information already

included in the manifest file today in many cases, and (ii) additional

information that the server can either piggyback in the manifest

file or via an auxiliary information exchange [36, 37].

Let 𝐷 denote the data budget (in bytes) for the streaming session,

which is selected by the user when the session starts (see §2.1 and

§6). Our goal is to design data planning strategies so that the total
data consumed (application-level data) is bounded by 𝐷 , while still
maintaining good QoE.

One challenge is that commercial ABR client players tend to be

sophisticated software systems with complex inter-dependencies,

and vary in the extent of modifications/new feature additions that

are allowed.While some players like Exoplayer [15] are open-source

and therefore can be customized (this still involves deep technical

domain expertise and complex engineering), others (e.g., AVFoun-

dation [2]) are closed proprietary systems and limit modifications

to a few configuration changes via a few fixed APIs.

Given such ground realities, to be useful in practice, any data

planning strategy design needs to focus on being able to work in

conjunction with existing player platforms and ABR adaptation

logic, and still provide value. Our focus therefore is on designing

such plug-and-play data planning strategies that can be easily in-

serted into the existing streaming workflows. The role of such a

MMSys’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey Y. Qin et al.

Re
m

ai
ni

ng

da
ta

 b
ud

ge
t Session data budget

DP

Strawman

Time

DP

Strawman

Q
ua

lit
y

Ne
tw

or
k

ba
nd

w
id

th

Figure 2: Illustration of the limitations of the strawman
track-capping strategy.

strategy would then be to supplement and guide an ABR adaptation

scheme towards more desirable choices to optimize the overall QoE,

while adhering to the allocated session data budget 𝐷 .

2.3 Simple Strawman Strategy
Consider a video with 𝐾 tracks. Let 𝑆𝑘 denote the size (in bytes)

of track 𝑘 , i.e., the sum of the segments in that track, 𝑘 = 1, . . . , 𝐾 .

Given a session data budget 𝐷 , a simple strategy to satisfy the

constraint is to determine the highest track, 𝑘∗, such that the cor-

responding size 𝑆𝑘∗ ≤ 𝐷 , and limit the ABR track selection logic

to tracks 𝑘 = 1, . . . , 𝑘∗. Specifically, for a segment position, if the

selected track from an adaptation logic is 𝑖 , then the actual selected

track ismin(𝑘∗, 𝑖). This strategy, which we refer to as track-capping,
is similar to what many commercial players do. For instance, the

YouTube smartphone app provides an option “Play HD on Wi-Fi

only”, which only selects tracks with resolution no more than 480p

over cellular networks, even when the network bandwidth is signifi-

cantly higher. Similarly, Amazon Prime Video app provides multiple

options (“Data saver”, “Good”, “Better”, “Best”), which are realized

by capping the top track [37].

While the above strategy is easy to implement, it has two key

limitations: (i) it can lead to highly variable quality even under am-

ple network bandwidths, since segments in the same track can have

very different qualities (e.g., complex scenes have lower qualities

than simple scenes) [36, 37], and (ii) it does not use any leftover

data budget effectively, leading to poorer QoE than what can be

achieved for the same network conditions. Fig. 2 shows an example.

Suppose that the top track selected by the strawman scheme (based

on the data budget) is track 3. Initially, the network bandwidth is

high, above the bitrate of track 3, and hence track 3 is selected for

the first 40 segments. These segments, although are at the same

track level, are of significantly different quality (see Fig. 1). Later on,

the network bandwidth drops significantly, and the ABR logic can

only select track 2 for the next 10 segments, leading to significantly

lower data usage than what the strawman scheme has anticipated.

When the network bandwidth improves later on, the strawman

scheme still caps the top track to track 3, despite the much higher

remaining data budget than what it anticipated originally. As a

result, when the session ends, the total data usage is significantly

below the specified data budget. A more carefully designed DP

strategy should significantly outperform the strawman scheme (see

§2.4).

Bandwidth
prediction

Rate
adaptation

DataPlanner
(DP)

Play
back

Total data
budget

Segment
sizes

Segment
quality

ABR logic

Per-segment
target track

Consumed
data

Predicted
bandwidth Buffer

level

Selected
track

Figure 3: Framework of data-budget driven ABR streaming.
Per-segment quality and predicted network bandwidth are
optional inputs to DataPlanner (DP).

2.4 Proposed Data Planning Framework
Learning from the various limitations of the above strawman strat-

egy, we next design a planning-based ABR adaptation framework

that avoids such issues. The high level design is illustrated in Fig. 3.

This framework includes a component called DataPlanner (DP),

which interacts with the ABR logic at a client. While the ABR logic

runs after each segment is downloaded to determine the track for

the next segment, DP can run at a coarser time scale, e.g., every

time interval Δ or after every 𝑁 segments have been downloaded.

At the beginning of the streaming session, DP determines the target
track for each individual segment based on the total data budget

and per-segment size (it can also use per-segment quality if that

information is available; see discussion below). The target track 𝐿𝑖
for segment 𝑖 represents an upper bound on the rung in the ABR

track ladder that can be selected for that segment, which is then

used in conjunction with the core ABR logic to ensure that the

selected track for segment 𝑖 does not exceed 𝐿𝑖 to satisfy the data

budget constraint. Later on, each time DP runs, it calculates the

remaining data budget as the total data budget subtracted by the

amount of data that has been consumed until then, and dynamically
adjusts the target track for each remaining segment position.

The above framework differs from the strawman strategy (§2.3)

in two key aspects: (i) the target track for each segment is deter-

mined individually; at any instant, the planning approach conducts

its fine-grained per-segment target track selection decision by glob-

ally considering the sizes and complexities of all the remaining

video segments and the remaining data budget for the session, and

(ii) the planning process runs periodically, revisiting and changing

earlier decisions when appropriate, and so can better account for

changing network dynamics and remaining data budgets.

Fig. 2 shows that the DP strategy (i) leads to more consistent

quality when there is ample network bandwidth, and (ii) ramps

up the quality to take advantage of the remaining data budget

when it is higher than what was initially anticipated (e.g., due to

lower network bandwidths for earlier segments). Overall, it allows

a much better balance between data budget and quality than the

static strawman track-capping strategy.

In the above framework, as mentioned earlier, the per-session

data budget can be determined by a user through a simple UI based

on the remaining monthly cellular data and other considerations

(see more details in §6). We next discuss several other issues in a

DP strategy design:

• Using per-segment quality information or not? When per-

segment quality is available, the planningmodule can explicitly take

DataPlanner: Data-budget Driven Approach to Resource-efficient ABR Streaming MMSys’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey

account of the quality information to achieve similar quality across

the segments, while satisfying the data budget constraint. This is im-

portant since as mentioned earlier, for the state-of-the-art codecs,

segments within the same track can have highly variable qual-

ity [36, 37]. Therefore, per-segment quality provides finer-grained

information that can be used to balance the quality across the se-

lected segments. Ideally, this information can be exchanged as part

of the manifest file shared with the client. In the shorter term, this

can be achieved through an auxiliary information exchange. On the

other hand, most services today do not share such quality informa-

tion with the client. In such cases, the planning module cannot rely

on per-segment quality and needs to use the available information

around encoding bitrates and sizes for its decision process. In §3,

we develop two strategies, one uses per-segment quality, while the

other does not.

• Frequency of planning. One option is to run the data-budget

based planning periodically, after every Δ seconds. Another option

is to run it after every 𝑁 ≥ 1 segments have been downloaded. For

both methods, we need to decide how often to plan by choosing

Δ and 𝑁 , respectively. A low value of Δ or 𝑁 can lead to higher

computation overhead, while a very high value can lead to slow

reaction to the remaining data budget. We discuss the tradeoffs in

detail in §4.

• Interaction with ABR logic. The data-budget based planning

can influence the behavior of the ABR logic in two ways: (i) cap-
beforehand, i.e., restricting the set of tracks to be selected in the

ABR logic, or (ii) cap-afterwards, i.e., capping the selected track

after the ABR logic. In both cases, the capping is for each decision

made by the ABR logic (i.e., for each segment position), through

well-defined APIs. The implementation complexity of these two

approaches may differ, depending on the streaming system and the

APIs that are available to the data planning module. In addition,

they may lead to different performance, as we will explore in §4.

• Interaction with bandwidth prediction. An ABR logic may

take account of the predicted network bandwidth during rate adap-

tation. The planning module can then access the predicted band-

width through an API. It, however, may not choose to use the

predicted bandwidth in its decision making because: (i) bandwidth

prediction is only for a short-window, which is particularly true in

cellular networks where bandwidth changes rapidly, while plan-

ning based on data budget operates at a longer time scale, and (ii)

bandwidth prediction is already considered in the ABR logic, and

hence may not need to be considered in the planning module. Alter-

natively, the planning module may consider the joint constraint of

data budget and predicted network bandwidth. We take the former

approach of not considering the predicted network bandwidth in

the planning module, and leave the latter as future work.

3 DATA-BUDGET DRIVEN ABR STRATEGIES
In this section, we present two data-budget driven strategies for

ABR streaming. The first strategy is for scenarioswhere per-segment

perceptual quality information is available, while the second is for

scenarios where such information is not available. For ease of expo-

sition, our description below considers the beginning of a streaming

session with a video of 𝑛 segment positions and a session data bud-

get 𝐷 . The planning at each time 𝑡 in the middle of the session

considers the remaining outstanding segment positions 𝑛𝑡 < 𝑛 and

remaining data budget 𝐷𝑡 (which is 𝐷 subtracted by the amount

of data that has been consumed up to time 𝑡), and can be done

similarly.

3.1 DP with Per-segment Quality Information
When per-segment quality is available, we design a DP scheme

that leverages such information, called DP-Q. DP-Q finds a target
quality, 𝑞∗, so that when the quality of each segment is capped close

to 𝑞∗, the total data usage is close to, but below the data budget 𝐷 .

After finding 𝑞∗, DP-Q further determines the target track for each

segment 𝑖 (see below).

We next describe how to find 𝑞∗. For segment index 𝑖 , let 𝑞𝑖,ℓ
denote the quality of the variant at track ℓ , and 𝑠𝑖,ℓ denote the size

of this variant (in bytes). Given a quality 𝑞, for segment index 𝑖 ,

consider the variant whose quality is closest to 𝑞, and denote its

track level as 𝐿𝑖 (𝑞), i.e., 𝐿𝑖 (𝑞) = argminℓ=1,...,𝐾 |𝑞−𝑞𝑖,ℓ |, where𝐾 is

the number of tracks. In this way, we map a quality to a particular

track for each segment. Let 𝑆 (𝑞) = ∑𝑛
𝑖=1 𝑠𝑖,𝐿𝑖 (𝑞) . That is, 𝑆 (𝑞) is the

sum of the sizes of the variants at track 𝐿𝑖 (𝑞) for all 𝑛 segments,

which is the total data usage corresponding to quality 𝑞. Then, the

target quality 𝑞∗ is the maximum quality so that the total data usage

is below 𝐷 , i.e., 𝑞∗ = argmax𝑞 𝑆 (𝑞) ≤ 𝐷 . Once the target quality

𝑞∗ is determined, DP-Q determines the corresponding target track

for segment 𝑖 simply as 𝐿𝑖 (𝑞∗), which will be fed to the ABR logic

to limit the track selection for segment 𝑖 .

In the above, the target quality is deliberately kept the same for all

the segments being considered, in order to achieve amore consistent

viewing quality across the segments, which is desirable. The next

time DP-Q runs, it will repeat the above process, based on the

remaining data budget, for the remaining segments, to obtain a new

target quality, which may differ from the earlier target quality (e.g.,

due to a low network bandwidth condition earlier, the remaining

data budget turns out to be higher than what is anticipated). As a

result, the target track for a remaining outstanding segment may

differ from an earlier planned value.

DP-Q can use binary search to find the target quality efficiently,

as shown in Algorithm 1. In the algorithm, initially 𝑞𝑙𝑜𝑤 and 𝑞ℎ𝑖𝑔ℎ
represent the minimum and maximum quality of all the segments,

respectively. They are then adjusted based on whether 𝑆 (𝑞𝑚𝑖𝑑),
i.e., the total data usage corresponding to quality 𝑞𝑚𝑖𝑑 , is below or

above the data budget 𝐷 , where 𝑞𝑚𝑖𝑑 is the quality in the middle

of 𝑞𝑙𝑜𝑤 and 𝑞ℎ𝑖𝑔ℎ . If the difference of 𝑆 (𝑞𝑚𝑖𝑑) and 𝐷 is less than a

small positive value 𝛿2, 𝑞𝑚𝑖𝑑 is returned as the target quality, or

𝑞𝑚𝑖𝑑 is returned when 𝑞ℎ𝑖𝑔ℎ and 𝑞𝑙𝑜𝑤 differ by less than a small

positive value 𝛿1.

3.2 DP without Quality Information
When per-segment quality is not available, we develop aDP scheme,

called DP-T, based on using ABR track-level information available

in the manifest file obtained from the server (which is the only

information to gauge quality). Different from DP-Q, which first

determines a target quality and then per-segment target track, DP-

T directly determines the per-segment target track for each of the

remaining segments.

The main idea of DP-T is setting target tracks for complex scenes

(i.e., high-motion or high-complexity scenes) to a higher level than

MMSys’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey Y. Qin et al.

Algorithm 1: DP-Q: Find target quality via binary search.

Input: per-segment size, per-segment quality, data budget

𝐷 , minimum quality 𝑞𝑙𝑜𝑤 , maximum quality 𝑞ℎ𝑖𝑔ℎ
Output: target quality
while 𝑞ℎ𝑖𝑔ℎ − 𝑞𝑙𝑜𝑤 > 𝛿1 do

𝑞𝑚𝑖𝑑 = (𝑞𝑙𝑜𝑤 + 𝑞ℎ𝑖𝑔ℎ)/2
if |𝐷 − 𝑆 (𝑞𝑚𝑖𝑑) | < 𝛿2 then

return 𝑞𝑚𝑖𝑑
else if 𝑆 (𝑞𝑚𝑖𝑑) < 𝐷 then

recur for the right half, 𝑞𝑙𝑜𝑤 = 𝑞𝑚𝑖𝑑
else

recur for the left half, 𝑞ℎ𝑖𝑔ℎ = 𝑞𝑚𝑖𝑑

end
end
return 𝑞𝑙𝑜𝑤

1
Q2

2 3 4
Q1

5 6
Q4

7 8
Q3

1
Q2

2 3 4
Q1

5 6
Q4

7 8
Q3

1
Q2

2 3 4
Q1

5 6
Q4

7 8
Q3

Segment sizes Target tracks

Figure 4: Illustration on how DP-T determines per-segment
target track based on data budget.

those for the simple scenes (i.e., low-motion or low-complexity

scenes). This is based on the findings in existing studies [36, 37]:

(i) depending on scene complexity, segments in the same track

can have very different qualities, and (ii) even for VBR encoding

where complex scenes are encoded with more bits, the segments

with complex scenes still tend to have lower quality than those

with simple scenes in the same track. Therefore, allocating a higher

target track to a segment with complex scenes can help increase the

quality of the track version to be closer to the quality of a segment

with simple scenes. For VBR encoding, which is the primary focus of

this paper since it has many advantages over constant bitrate (CBR)

encoding [23] and has been widely adopted by industry [42], DP-T

uses the methodology in [36] to identify segments with complex

scenes. Specifically, it identifies the segments with sizes falling

in the largest quartile of all the segments in the track as those

containing complex scenes. These segments are referred to as Q4
segments (i.e., segments in the 4th quartile). The rest of the segments,

i.e., those falling into the lower three quartiles, referred to as Q1-
Q3 segments, are identified as the segments containing relatively

simpler scenes. Fig. 1 shows that Q4 segments (marked as crosses)

indeed tend to have lower quality than Q1-Q3 segments (marked

as triangles) in the same track.

DP-T works as follows. Consider 𝑛 segments and data budget

𝐷 . The segments have been classified as Q1, Q2, Q3 or Q4 at the

beginning of the streaming session based on their sizes. DP-T first

finds the highest track level ℓ∗ so that the total data usage is nomore

than 𝐷 , i.e.,
∑
𝑖 𝑠𝑖,ℓ∗ ≤ 𝐷 , where 𝑠𝑖,ℓ∗ is the size of the variant of the

𝑖th segment at track level ℓ∗. We refer to this track ℓ∗ as the base
track. The target track for all the segments is first set to this base

track, and then the target track of each Q4 segment is incremented

Algorithm 2: DP-T: Determine per-segment target track.

Input: per-segment size, data budget 𝐷 , segments that are

classified as Q1, Q2, Q3 or Q4 beforehand

Output: per-segment target track

ℓ = 1

while (∑𝑖 𝑠𝑖,ℓ < 𝐷) and (∑𝑖 𝑠𝑖+1,ℓ > 𝐷) do
ℓ = ℓ + 1

end
ℓ∗ = ℓ
Set target track for each segment to ℓ∗

if 𝐷 −∑
𝑖 𝑠𝑖,ℓ∗ > 0 then

Increment the target levels of Q4 segments in increasing

segment index order

Let 𝐼 denote the corresponding increment in data usage;

update 𝐼 accordingly

Return ℓ∗
𝑖
for each segment 𝑖 when 𝐷 −∑

𝑖 𝑠𝑖,ℓ∗ − 𝐼 is not
sufficient for increasing the track for the next Q4

segment

if 𝐷 −∑
𝑖 𝑠𝑖,ℓ∗ − 𝐼 > 0 then

Increment the target level of Q1-Q3 segments in

increasing segment index order

Return ℓ∗
𝑖
for each segment 𝑖 when the the remaining

data is not sufficient for increasing the track for the

next 𝑄1-𝑄3 segment

return per-segment target track ℓ∗
𝑖
for each segment 𝑖

when possible. Specifically, if 𝐷 −∑
𝑖 𝑠𝑖,ℓ∗ > 0, i.e., the data budget

is not completely exhausted yet, then the difference is used to add

one level to the sequence of Q4 segments, in the increasing order

of playback position in the video; if the data budget is still not

used up after that, then it will be used to increment the level of

Q1-Q3 segments, again in the increasing order of playback position.

After the above process, let ℓ∗
𝑖
denote the target track for segment

𝑖 . Then ℓ∗
𝑖
will be fed to the ABR logic to limit the track selection

for segment 𝑖 .

Fig. 4 illustrates this algorithm. Suppose we have 8 segments, two

being Q4 segments, and the others being Q1, Q2, or Q3 segments;

each segment has three track levels, marked in green, orange and

blue, respectively. DP-T first determines that track 2 is the highest

track level so that the corresponding total data usage is below the

data budget. It sets the target track for all the segments to 2. Then

for the remaining unused data budget, it first increases the track for

the two Q4 segments to track 3, and then uses the still remaining

data to increase the track level of the first segment (which is a Q2

segment) to 3. The operation of DP-T is summarized in Algorithm 2.

4 PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed DP

strategies and their interaction with ABR schemes using exten-

sive simulation. All the simulations are driven by real-world time-

varying network bandwidth traces collected from commercial cellu-

lar networks, which allows repeatable experiments and evaluation

of different schemes under identical settings. Evaluation using our

implementation in a real player is deferred to §5. In the following,

we first describe the evaluation setup and then the results.

DataPlanner: Data-budget Driven Approach to Resource-efficient ABR Streaming MMSys’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey

4.1 Evaluation Setup
Methodology. The goal of the evaluation is to understand the per-

formance of combining DP strategies with ABR schemes under

diverse settings. The performance will depend on many factors,

including the ABR video characteristics (codec, track ladders, en-

coding bitrate and qualities), network conditions, and data budget.

To understand the complex tradeoffs and allow performance com-

parisons across the different videos and ABR track ladder settings,

we use the following methodology: for a given video, we set the

data budget and scale the network bandwidth traces relative to a

reference track from that video’s ABR track ladder.

For the reference track, we focus on middle rungs in the track

ladder, in our case, tracks 3 (360p) and 4 (480p), which have quality

(VMAF) ranging from fair to good. Denote the size of a reference

track (including all the segments in the track) of a video as 𝑆 and

the average bitrate of that track as 𝑏. Then the data budget is set

to 𝑟𝑑 × 𝑆 and each network bandwidth trace is scaled so that the

average bandwidth is 𝑟𝑛 × 𝑏, where 𝑟𝑑 ≥ 1 is referred to as data
budget scale factor, and 𝑟𝑛 ≥ 1 is referred to as network bandwidth
scale factor.

The above evaluation methodology is designed to allow us to eas-

ily reason about how the performance depends on the quantitative

relation among total data budget, the sizes (and their corresponding

qualities) of different tracks, and the available network bandwidth.

For example, for a given video, by ranging the data budget around a

particular reference track, we can understand how a DP scheme is

able to guide ABR rate adaptation within different degrees of tight-

ness of the data budget. Note that the above methodology is mainly

for experimental clarity and provides a way to explore the large

space of the experiments as described above. Our DP strategies

can work with any data budget, and for any network bandwidth

conditions.

Videos. We consider four H.264 encoded and three H.265 encoded

VBR videos (see Table 1). Three H.264 videos, BBB (Big Buck Bunny),

ED (Elephant Dream), and ToS (Tears of Steel), are encoded by

YouTube. The fourth H.264 video, AF (American Football), and the

three H.265 videos, AF, BB (Basketball) and FH (Forza Horizon),

were encoded using ffmpeg [12]. Specifically, we used the “three-

pass” encoding following the specification by Netflix [10], with CRF

values of 28 for H.264 and 31 for H.265 (default settings in ffmpeg).
All the videos are around 10-minute long, with segment durations

either 5 or 5.33 seconds. They represent a wide range of genres

(animation, sci-fi movie, sports and racing car game). Two videos

(BB and FH) have frame rates of 30 fps; the others have frame rates

of 24 fps.

Data budget. As mentioned earlier, the data budget for a video is

set relative to a reference track, i.e., track 3 (360p) or 4 (480p) in

our case. The data budget scale factor, 𝑟𝑑 , is varied in a wide range,

from 1.0 to 1.8, to explore different degrees of tightness of the data

budget relative to the size of the reference track.

Network traces.We collected a total of 42 hours of network traces

over two large commercial LTE networks in the US. Our traces

consist of per-second network bandwidth measurements, which

are collected on a phone, by recording the throughput of a large file

downloaded from a well-provisioned server. They cover a diverse

set of scenarios, including different times of day, locations, and

movement speeds (stationary, walking, local driving, and highway

driving). We divide the collected traces into 15-minute long traces.

The evaluation in the rest of the section is performed using 100

randomly chosen traces. As mentioned earlier, for each video, we

scale the network traces using either track 3 or 4 of the video as

the reference track. Specifically, we vary the network bandwidth

scale factor 𝑟𝑛 in a wide range, from 1.2 to 4.0, to explore different

degrees of tightness of the available network bandwidth relative

to the bitrate of the reference track. For a particular network trace

and 𝑟𝑛 , although the average network bandwidth is higher than the

average bitrate of the reference track, the instantaneous network

bandwidth can be very low due to the highly dynamic network

conditions in cellular networks.

Data planning strategies.We evaluate three strategies, the straw-

man track-capping strategy, henceforth referred to as DP-Strawman,

and the two strategies that we develop, DP-Q and DP-T. For all

these three strategies, we evaluate two ways to interact with the

ABR logic, i.e., cap-beforehand and cap-afterwards (see §2.4). Both

DP-Q and DP-T periodically recalculate the target tracks, and we

evaluate two ways to trigger the calculation: (i) after every 𝑁 seg-

ments have been downloaded, where 𝑁 is varied from 1 to 60, and

(ii) after every Δ = 20 seconds.

ABR schemes. We consider two state-of-the-art ABR schemes: (i)

RobustMPC [43], which is a well-known scheme based on model

predictive control, and has been shown to outperform its more

aggressive variants, MPC and FastMPC, under more dynamic net-

work bandwidth settings [29], and (ii) CAVA [36], which is a more

recent control-based scheme that was designed to explicitly take

account of the characteristics of VBR videos. For both schemes, we

use the harmonic mean of the average download throughout for

the past 5 segments as the bandwidth prediction, as it has been

shown to be robust to measurement outliers [20, 43]. The maximum

client-side buffer size is set to 100 seconds. This is reasonable for

VOD streaming, and is consistent with existing practices that set

the maximum buffer size to hundreds of seconds [14, 17, 42]. The

track for the first segment is selected to be track 1. The player starts

the playback when two segments are downloaded into the buffer,

following the practice in commercial services [42].

Perceptual quality. DP-Q uses per-segment quality, which is mea-

sured using the VMAF [24] phone model, a state-of-the-art per-

ceptual quality metric. The VMAF value of a segment is the mean

VMAF value of all the frames in the segment. To calculate the

VMAF values for a video, we need a high-quality reference video.

For the videos with publicly available high quality raw videos, we

use the corresponding raw video as the reference video. For the

other videos, we use the highest resolution track (4K resolution) as

the reference video.

Performance metrics. We use six metrics: five for measuring

different aspects of QoE (four related to quality, measured using

VMAF phonemodel, and one on rebuffering), and one for measuring

data usage. (i) Quality of Q4 segments: measures the quality of Q4

segments, which contain complex scenes. (ii)Quality of all segments:
captures the quality of all the segments. (iii) Low-quality segment
percentage: measures the percentage of the segments that were

selected with low quality (specifically with VMAF values below

40 [24]). The reason for using this metric is because human eyes

MMSys’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey Y. Qin et al.

are sensitive to bad quality segments [32]. (iv) Rebuffering duration:
measures the total rebuffering/stall duration in a streaming session.

(v) Average quality change per segment: defined as

∑
𝑖 |𝑞𝑖+1 − 𝑞𝑖 |/𝑛,

where 𝑞𝑖 is the quality of the 𝑖th segment and 𝑛 is the number

of segments. (vi) Data usage: measures the total amount of data

downloaded for a streaming session. All metrics are computed

with respect to the delivered segments, i.e., those that have been

downloaded and played back.

4.2 RobustMPC with Data Budget
We first report the performance of RobustMPC with the three data

planning strategies. Unless otherwise stated, we use cap-afterwards;

for DP-Q and DP-T, the per-segment target track is calculated after

every five segments are downloaded. We evaluate the impact of

other options later in this section.

Comparison of strategies. We first use the results for one video

to show the main observations, and then show the results for other

videos. Fig. 5 shows the performance of RobustMPC combined

with the three data planning strategies, along with the original

RobustMPC scheme, when using the ED video, reference track of

360p, 𝑟𝑛 = 4.0, and 𝑟𝑑 = 1.6. The results are obtained from 100

simulation runs, each using a randomly chosen LTE trace. We make

the following three main observations:

•While the overall quality is necessarily reduced when using DP-

Q and DP-T to constrain the data usage, the quality degradation

is low: the percentage of segments with VMAF values above 70

is 76% and 78% under DP-Q and DP-T, respectively, only slightly

lower than that of the original scheme (85%); for Q4 segments,

the percentages are comparable to that the original scheme (70%

and 66% vs. 68%). More importantly, DP-Q and DP-T help to steer

the ABR scheme away from choosing very low-quality segments,

leading to similar or even fewer low-quality segments compared

to the original scheme (which uses much more data). Specifically,

for all segments, the percentages of low quality segments under

RobustMPC, RobustMPC+DP-Q, and RobustMPC+DP-T are 6%, 4%,

and 4%, respectively; for Q4 segments, the corresponding values are

10%, 6%, and 6%. The comparable or lower percentage of low-quality

segments under DP-Q and DP-T is because they guide the ABR

scheme to choose fewer segments with very high quality (that tend

to have higher bitrate), which helps to maintain a higher player

buffer level, thus leading to lower frequency of choosing low-quality

segments. Another benefit of the data planning is that the amount

of rebuffering is much lower than that of the original scheme (close

to 0 vs. 5 seconds of average rebuffering for the original scheme).

• Both DP-Q and DP-T achieve significantly better QoE than DP-

Strawman. For Q4 segments, the median qualities under DP-Q and

DP-T are 76 and 77, respectively, 11 and 12 VMAF points higher

than that under DP-Strawman; for all (Q1-Q4) segments, the cor-

responding improvements are 5 and 7 VMAF points, respectively.

DP-Q and DP-T also outperform DP-Strawman in achieving lower

average quality change per segment. The data usage of DP-Q and

DP-T is bounded by the specified data budget, while DP-Strawman

underuses the data budget. In summary, while DP-Strawman also

satisfies the data budget constraint and leads to close to zero re-

buffering as DP-Q and DP-T, it leads to significantly more adverse

impact on QoE than DP-Q and DP-T.

• DP-T achieves similar performance as DP-Q for all the perfor-

mance metrics (also see the results in Table 2). This result demon-

strates that even when per-segment quality information is not

available, a carefully designed DP strategy that only uses coarse-

grained track information such as DP-T can achieve most of the

gains of data planning that uses quality information.

Results for other videos. The above results are for one video.
Table 2 summarizes the results for three H.264 videos (with boldface

titles) and three H.265 videos. The results are for three settings: (i)

reference track (RT) of track 3 (360p), 𝑟𝑛 = 4.0, (ii) RT of track 4

(480p), 𝑟𝑛 = 2.0, and (iii) RT of track 4 (480p), 𝑟𝑛 = 4.0, listed from

the top to the bottom in Table 2. For all the three settings, the data

budget scale factor 𝑟𝑑 is 1.6. The table shows the five performance

metrics across all the simulation runs. In each cell, the three values

are for RobustMPC, RobustMPC+DP-Q, and RobustMPC+DP-T,

marked in black, green and blue, respectively.

In the two settings with 𝑟𝑛 = 4.0, we see that both DP-Q and

DP-T lead to significantly lower data usage than the original ABR

scheme, which uses on average 93% and 90% more data than DP-

Q and DP-T respectively. Even with the lower data usage, DP-Q

and DP-T still realize acceptable quality delivery: (i) for most of

the cases, the median quality of Q4 segments is close or above

80 (considered as good quality [4, 25]); and (ii) the percentage of

low-quality segments per session is consistently low, no more than

6% and 7% for DP-Q and DP-T respectively, in the same ballpark as

the original ABR scheme.

In the setting with 𝑟𝑛 = 2.0 (i.e., the average network bandwidth

is tighter with respect to the reference track bitrate than when

𝑟𝑛 = 4.0), perhaps somewhat surprisingly, we see that the quality

when using DP-Q and DP-T is close to and sometime even better

than that of the original scheme. This is because when the network

bandwidth is not very high, DP-Q and DP-T help the ABR scheme

to make more judicious use of the bandwidth by avoiding selecting

extremely high quality segment variants, and guide the selection

towards the overall good QoE (as we shall see in Fig. 7 later). In

addition, they also avoid selecting very low quality segments: the

percentage of low-quality segments per session is no more than

6% and 7% for DP-Q and DP-T respectively, and even lower than

the corresponding value (up to 10%) for the original scheme. In this

setting, because of the lower network bandwidth, the data saving

compared to the original scheme is lower than that when 𝑟𝑛 = 4.0.

For all the three settings, the average stall duration when using

DP-Q and DP-T is in general lower than that of the original scheme,

and sometimes significantly lower (see the first two settings in

Table 2). Last, DP-Q and DP-T exhibit much better quality (up to 16

VMAF [24] points higher) for segments with complex scenes than

DP-Strawman (not shown in the table), which reinforces the im-

portance of carefully designing DP schemes that consider both the

data budget and QoE dimensions, to realize significantly improved

QoE beyond DP-Strawman.

We observe that DP-Q and DP-T are able to lead to low per-

centage of poor quality segments even with tighter data budget

constraints. For instance, for the three settings in Table 2, when we

reduce the data budget scale factor 𝑟𝑑 from 1.6 to 1.2, the percentage

of low-quality segments ofDP-Q andDP-T is still within 5% of what

the original scheme achieves with no data budget constraint. This

behavior is because their planning aspects allow them to better

DataPlanner: Data-budget Driven Approach to Resource-efficient ABR Streaming MMSys’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey

0 20 40 60 80 100
Quality of Q4 segments

0

0.2

0.4

0.6

0.8

1

C
D

F

DP-Strawman
DP-T
DP-Q
RobustMPC

0 20 40 60 80 100
Quality of all segments

0

0.2

0.4

0.6

0.8

1

C
D

F
0 50 100

Total rebuffering (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

5 10 15
Avg quality change (/segment)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 50 100
Total Bytes (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 5: Performance of using data planning with RobustMPC for ED video, reference track 3 (360p), 𝑟𝑛 = 4.0, 𝑟𝑑 = 1.6.

Table 2: Performance comparison. The three numbers in
each cell represent the results for the tuple (RobustMPC,
RobustMPC+DP-Q, RobustMPC+DP-T). Reference track (RT)
is 3 or 4, 𝑟𝑛 = 2.0 or 4.0, 𝑟𝑑 = 1.6.

Video

Median

Q4 seg.

quality

Low-qual.

segs

(%)

Stall

durat.

(s)

Avg.

quality

change

Data

usage

(MB)

R
T
3
,
𝑟 𝑛

=
4
.0

BBB 86, 82, 82 7, 4, 4 6, 0, 0 7, 9, 10 78, 32, 33

ED 79, 76, 77 6, 4, 4 5, 0, 0 7, 9, 9 99, 41, 42

ToS 82, 74, 76 7, 6, 7 7, 1, 0 8, 10, 10 101, 41, 41

AF 98, 85, 87 3, 3, 3 1, 0, 0 5, 7, 7 178, 105, 106

BB 98, 79, 79 5, 4, 4 1, 0, 0 4, 6, 6 162, 78, 78

FH 92, 72, 76 6, 4, 4 4, 0, 0 5, 6, 6 188, 84, 84

R
T
4
,
𝑟 𝑛

=
2
.0

BBB 89, 92, 92 6, 5, 5 4, 1, 2 7, 6, 6 84, 67, 69

ED 82, 88, 88 6, 4, 4 5, 1, 1 7, 6, 6 106, 83, 87

ToS 88, 90, 89 7, 4, 4 5, 1, 1 7, 5, 6 111, 87, 91

AF 92, 92, 92 7, 5, 5 4, 1, 2 7, 6, 7 150, 137, 140

BB 93, 92, 92 9, 6, 7 4, 2, 2 6, 5, 5 134, 112, 113

FH 84, 84, 84 10, 6, 6 6, 1, 1 7, 5, 5 153, 124, 125

R
T
4
,
𝑟 𝑛

=
4
.0

BBB 99, 92, 92 3, 2, 2 0, 0, 0 4, 4, 4 121, 72, 72

ED 97, 89, 88 2, 2, 2 1, 0, 0 4, 5, 5 162, 89, 90

ToS 98, 91, 90 3, 2, 2 1, 0, 0 3, 4, 4 161, 92, 94

AF 98, 93, 96 2, 2, 2 0, 0, 0 4, 5, 6 187, 145, 147

BB 99, 92, 92 3, 2, 2 0, 0, 0 3, 4, 4 176, 116, 116

FH 96, 84, 84 3, 2, 2 1, 0, 0 3, 4, 4 225, 129, 129

ration the data budget across the session as well as make better use

of network bandwidth variability.

Impact of data budget. For all the three data planning strategies,

as expected, increasing the data budget under the same network

setting leads to higher quality. Fig. 6 shows the impact of data

budget when the reference track is 4 (480p) and network bandwidth

scale factor 𝑟𝑛 = 4.0 under DP-T; the results under DP-Q show

similar trend. The data budget scale factor 𝑟𝑑 is varied from 1.0 to

1.8. For clarity, only the results for 𝑟𝑑 = 1.0 and 1.6 are shown in

the figure; the results for 𝑟𝑑 = 1.2 are between those of 𝑟𝑑 = 1.0

and 1.6; the results for 𝑟𝑑 = 1.8 are close to those of 𝑟𝑑 = 1.6.

For comparison, the results for the original scheme without data

constraint are also shown in the figure. When 𝑟𝑑 = 1.6, the quality

under RobustMPC+DP-T is closer to that of the original scheme

compared to the case when 𝑟𝑑 = 1.0, while still using much less

data than the original scheme. Even when 𝑟𝑑 = 1.0, the percentage

of low-quality segments under RobustMPC+DP-T is already similar

to that of the original scheme with no data budget constraint.

Fig. 6 also shows the results for DP-Strawman with 𝑟𝑑 = 1.0.

When 𝑟𝑑 = 1.0, although DP-Strawman and DP-T set the same

target track for all the segments at the beginning of the session,

DP-T leads to significantly better performance than DP-Strawman.

This is because during the session DP-T dynamically adjusts the

target tracks for the remaining segments based on the remaining

data budget, which takes account of the past network dynamics,

while DP-Strawman makes no such subsequent adjustment.

Impact of network bandwidth.We now fix the data budget, and

investigate the performance ofDP-Q andDP-Twhen increasing the

available network bandwidth. As the network bandwidth increases,

he data budget becomes the dominant constraint in limiting the

track selection, and the data usage becomes closer to the specified

data budget. Fig. 7 shows an example when the reference track is

360p, data budget is fixed to 𝑟𝑑 = 1.6, and the network bandwidth

scale factor 𝑟𝑛 increases from 1.5 to 4.0. For clarity, only the results

for DP-T and the original scheme when 𝑟𝑛 = 2.0 and 4.0 are shown

in the figure; the results for DP-Q are similar as those for DP-

T. As expected, for both RobustMPC and RobustMPC+DP-T, all

the performance metrics improve when increasing 𝑟𝑛 from 2.0 to

4.0. When 𝑟𝑛 = 2.0, RobustMPC+DP-T consumes less data, has

much lower rebuffering and is much better in steering away from

the low quality segments than RobustMPC (comparing the two

dashed lines in each figure). When the network bandwidth is higher

(𝑟𝑛 = 4.0), the data saving from RobustMPC+DP-T is much more

significant, while still achieving acceptable quality and significantly

lower rebuffering compared to RobustMPC.

Impact of data planning interval. In all the results presented so

far, the planning interval for DP-Q and DP-T is set to five segments

(using a planning interval of 20 seconds leads to similar results).

To evaluate the impact of planning interval, we set it to 1, 5, 20, or

60 segments. A very large planning interval can lead to delayed

updates of the target tracks for the remaining segments and slower

adjustment to network bandwidth dynamics, which can lead to

lower quality and lower data usage. When the planning interval

is very small (being 1 segment), we observe similar quality as that

when it is set to 5 or 20 segments, but slightly larger quality changes

per segment in some settings (since the target tracks for the remain-

ing segments may change frequently). Fig. 8 shows an example for

reference track 3 (360p), 𝑟𝑛 = 4.0, 𝑟𝑑 = 1.6. The difference across

different planning intervals is small since the network bandwidth

is high.

Fig. 8 also plots the results for DP-Strawman. We see that DP-

T significantly outperforms DP-Strawman even with a planning

interval of 60 segments (DP-T only does two plannings in this case).

This is because DP-T determines the target track for each segment

individually, while DP-Strawman chooses the same target track for

all the segments.

Interaction with ABR logic. So far, all the results are for cap-

afterward. In cap-beforehand, the search space of the ABR scheme

MMSys’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey Y. Qin et al.

0 20 40 60 80 100
Quality of Q4 segments

0

0.2

0.4

0.6

0.8

1

C
D

F

0 20 40 60 80 100
Quality of all segments

0

0.2

0.4

0.6

0.8

1

C
D

F
0 10 20 30

Total rebuffering (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 5 10 15
Avg quality change (/segment)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 100 200
Total Bytes (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 6: Impact of data budget when using DP-T with RobustMPC for ED video, reference track 4 (480p), 𝑟𝑛 = 4.0.

0 20 40 60 80 100
Quality of Q4 segments

0

0.2

0.4

0.6

0.8

1

C
D

F

RoMPC, r
n
=2.0

DP-T, r
n
=2.0

RoMPC, r
n
=4.0

DP-T, r
n
=4.0

0 20 40 60 80 100
Quality of all segments

0

0.2

0.4

0.6

0.8

1

C
D

F

0 50 100 150
Total rebuffering (s)

0

0.2

0.4

0.6

0.8

1

C
D

F
5 10 15 20

Avg quality change (/segment)

0

0.2

0.4

0.6

0.8

1

C
D

F

40 60 80 100
Total Bytes (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 7: Impact of network bandwidth when using DP-T with RobustMPC for ED video, reference track 3 (360p), 𝑟𝑑 = 1.6. The
two dashed lines are for 𝑟𝑛 = 2.0 and the two solid lines are for 𝑟𝑛 = 4.0.

0 20 40 60 80 100
Quality of Q4 segments

0

0.2

0.4

0.6

0.8

1

C
D

F

DP-Strawman
DP-T interval 1
DP-T interval 5
DP-T interval 60

0 20 40 60 80 100
Quality of all segments

0

0.2

0.4

0.6

0.8

1

C
D

F

20 40
Total Bytes (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 8: Impact of data planning interval for ED video, ref-
erence track 3 (360p), 𝑟𝑛 = 4.0, 𝑟𝑑 = 1.6.

is restricted to a smaller set, which can lead to lower running time.

On the other hand, the restricted search space may lead to inferior

track selection. We see that when combining DP-Q or DP-T with

RobustMPC, the performance of cap-beforehand is worse than

that of cap-afterward in certain settings. For CAVA, the results in

these two cases are similar. The different observations across these

two ABR schemes are due to their different design: when deciding

the track for the current segment, both schemes consider several

segments in the future, CAVA requires that the track levels for these

segments to be the same (for smoothness), while RobustMPC does

not have such a requirement. In general, when combining DP-Q or

DP-T with a particular ABR scheme, the impact of cap-beforehand

and cap-afterward should be tested to decide what to use. Usually,

cap-afterward is more desirable as it leads to easier deployment

with existing ABR logic.

4.3 CAVA with Data Budget
Fig. 9 plots the results for CAVA with DP-Strawman, DP-T, and

DP-Q, along with the original scheme, for ED video, reference track

of 360p, 𝑟𝑛 = 4.0, and 𝑟𝑑 = 1.6. Table 3 summarizes the performance

for 6 videos under the same settings as those in Table 2. Across all

the cases, the predominant trend is that, for a given setting, the

performance of the CAVA based schemes (standalone and with data

planning) is somewhat better than the corresponding RobustMPC

based schemes. This is not unexpected given the very different

designs of RobustMPC and CAVA. On the other hand, the high-

level trends observed here are similar to those for RobustMPC:

Table 3: Performance comparison. The three numbers
in each cell represent the results for the tuple (CAVA,
CAVA+DP-Q, CAVA+DP-T). Reference track (RT) is 3 or 4,
𝑟𝑛 = 2.0 or 4.0, 𝑟𝑑 = 1.6.

Video

Median

Q4 seg.

quality

Low-qual.

segs

(%)

Stall

durat.

(s)

Avg.

quality

change

Data

usage

(MB)

R
T
3
,
𝑟 𝑛

=
4
.0

BBB 92, 83, 85 3, 2, 2 2, 0, 1 4, 5, 6 71, 33, 33

ED 85, 77, 77 2, 2, 2 2, 0, 0 5, 6, 6 90, 42, 42

ToS 87, 76, 79 5, 3, 4 1, 0, 0 5, 6, 7 91, 42, 42

AF 99, 88, 94 3, 2, 2 0, 0, 0 4, 5, 7 174, 106, 106

BB 98, 79, 86 5, 4, 4 2, 0, 0 4, 5, 6 154, 78, 78

FH 94, 73, 77 4, 2, 2 1, 0, 0 4, 4, 4 179, 85, 85

R
T
4
,
𝑟 𝑛

=
2
.0

BBB 93, 92, 93 3, 3, 3 2, 2, 2 4, 4, 4 77, 67, 68

ED 88, 88, 87 2, 2, 2 2, 1, 2 4, 4, 4 97, 81, 84

ToS 90, 90, 90 4, 3, 3 1, 1, 1 5, 4, 5 100, 86, 88

AF 96, 96, 97 6, 5, 5 1, 1, 1 6, 6, 6 141, 134, 136

BB 94, 92, 93 8, 7, 7 2, 2, 2 5, 5, 5 126, 111, 112

FH 90, 85, 89 7, 5, 6 2, 1, 1 5, 4, 4 145, 124, 126

R
T
4
,
𝑟 𝑛

=
4
.0

BBB 99, 93, 95 1, 1, 1 1, 0, 0 2, 3, 3 124, 72, 72

ED 97, 89, 89 0, 0, 0 1, 0, 0 3, 4, 4 156, 89, 90

ToS 98, 91, 91 2, 1, 1 0, 0, 0 2, 4, 4 157, 93, 94

AF 99, 97, 98 2, 2, 2 0, 0, 0 3, 4, 5 193, 147, 147

BB 99, 92, 93 2, 2, 2 1, 0, 0 2, 4, 4 174, 116, 116

FH 97, 86, 89 1, 1, 1 1, 0, 0 2, 3, 3 224, 130, 131

• Given a data budget, DP-Q and DP-T guide the ABR scheme to

steer away from very low-quality segments. Using DP-Q and DP-T

leads to acceptable quality, lower rebuffering and much lower data

usage compared to the original ABR scheme.

• Both DP-Q and DP-T significantly outperform DP-Strawman.

• Despite lacking per-segment quality information, DP-T achieves

similar performance as DP-Q.

5 EXOPLAYER RESULTS
Implementation.We implemented the three data planning strate-

gies, DP-Strawman, DP-Q and DP-T, in ExoPlayer [15] (v2.11.7)

DataPlanner: Data-budget Driven Approach to Resource-efficient ABR Streaming MMSys’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey

0 20 40 60 80 100
Quality of Q4 segments

0

0.2

0.4

0.6

0.8

1

C
D

F

DP-strawman
DP-T
DP-Q
CAVA

0 20 40 60 80 100
Quality of all segments

0

0.2

0.4

0.6

0.8

1

C
D

F
0 20 40 60

Total rebuffering (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

4 6 8 10
Avg quality change (/segment)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 50 100
Total Bytes (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 9: Performance of using data planning with CAVA for ED video, reference track 3 (360p), 𝑟𝑛 = 4.0, 𝑟𝑑 = 1.6.

Figure 10: Performance of using data planning in ExoPlayer for ED video, reference track 3 (360p), 𝑟𝑑 = 1.6, 𝑟𝑛 = 4.0.

with the DASH [13] protocol. The reason for choosing ExoPlayer is

that it is a popular application-level media player for the Android

platform and is widely used in commercial services [16]. The imple-

mentation involves adding three modules, one for each of the three

strategies. For each module, the main changes are in ExoPlayer’s

UpdateSelectedTrack function so that the caps for the tracks are

applied after the track selection by the default ExoPlayer logic. We

also instrumented ExoPlayer to provide detailed information about

the ABR streaming process and its performance. The segment size

information is obtained directly from the ABRmanifest file received

from the server. For DP-Q, we piggybacked the quality information

of each segment in the manifest file (see discussion in §2.4).

While Exoplayer for much of its life had avoided the technique

of segment replacement (SR) [42], the version that we use (v2.11.7)

combines SR with the ABR logic. SR can replace an earlier down-

loaded segment with a higher quality variant later on (e.g., when the

buffer level is high or network bandwidth improves). It essentially

attempts to improve QoE at the cost of additional data usage and

potential risk of underrunning the buffer during SR (if the network

bandwidth drops again). Hence, its design involves complex trade-

offs. Since we are seeking opportunities for achieving good QoE

under strict data constraints, we consider using data planning in the

absence of SR in this paper, and therefore disable SR in ExoPlayer.

A study of DP in the presence of SR is left as future work.

Evaluation setup. We compare the performance of the default

ExoPlayer ABR logic in standalone mode, referred to as Exo, with
Exo+DP-Strawman, Exo+DP-Q, and Exo+DP-T using experiments

conducted on an Android phone (Samsung Galaxy S7 Edge, OS

8.0.0). For repeatability and enabling apples-to-apples comparison

across the schemes under identical conditions, we deploy our own

ABR streaming origin server, and use tc [27] to create time-varying

network bandwidths (on the path from the server to the client) that

are reminiscent of real cellular conditions. Specifically, we use 20

LTE network traces (see §4.1) to drive the experiments. All the

experiments use the ED video. Following the same experimental

methodology in §4.1, the average network bandwidth and data

budget are set based on reference track 3, with data budget scale

factor 𝑟𝑑 = 1.6 and in two network settings, 𝑟𝑛 = 4.0 and 𝑟𝑛 = 6.0.

track 1

Track size
(bytes)

track 2

track 3

track 5

track 6

track 4

Data budget
ladder

Very data intensive,
excellent quality

Data intensive, good-
excellent quality
Medium data usage,
fair-good quality
Low data usage,
poor-fair quality

≥MoS excellent

≥ MoS good

≥ MoS fair

≥ MoS very poor
≥ MoS poor

Figure 11: An approach to determining per-session data bud-
get based on data budget ladder.

Evaluation results. Both DP-Q and DP-T are computationally

light-weight. For 104 segments, their running times in ExoPlayer on

the test phone were 55.2 ms and 48.8 ms, respectively (and expected

to be faster for newer devices). Fig. 10 plots the performance of

the various schemes when 𝑟𝑑 = 1.6 and 𝑟𝑛 = 4.0 (the results for

𝑟𝑛 = 6.0 show similar trends). Note that the data usage reported here

only considers application-level data, and is slightly lower than the

actual data usage (our measurements show that the total network

protocol related overhead is within 3%). The overall observations

are consistent with the results from the simulations. Exo in its

standalone mode has the highest quality, while leads to the highest

data usage and the highest amount of stalls. Combining DP-Q and

DP-T with Exo leads to significantly lower rebuffering and data

usage (bounded by the data budget), with little degradation in

quality. Combining DP-Strawman and Exo leads to the lowest data

usage, however, with noticeable degradation in quality.

6 OTHER PRACTICAL ASPECTS
As shown in our evaluation, the actual impact of data planning

on QoE depends on the video track ladder, ABR logic, data budget,

and network conditions. Based on insights from our evaluation, we

next discuss two other practical aspects related to data planning.

Setting per-session data budget. Following §2.1, we next present
an approach for determining per-session data budget choices for

a specific video. This approach considers the track ladder of the

MMSys’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey Y. Qin et al.

0 20 40 60 80 100
Quality of Q4 segments

0

0.2

0.4

0.6

0.8

1

C
D

F

DP-T 1.5Mbps
DP-T 3.0Mbps
RoMPC 1.5Mbps
RoMPC 3.0Mbps

0 20 40 60 80 100
Quality of all segments

0

0.2

0.4

0.6

0.8

1

C
D

F
0 50 100

Total rebuffering (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 5 10 15
Avg quality change (/segment)

0

0.2

0.4

0.6

0.8

1

C
D

F

50 100 150 200
Total Bytes (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 12: Impact of network-based bandwidth cap when using and not using data planning strategies, for ED video, reference
track 4 (480p), 𝑟𝑛 = 4.0, 𝑟𝑑 = 1.6. The two dashed lines are for cap 1.5 Mbps and the two solid lines are for cap 3.0 Mbps.

specific video, as illustrated by an example in Fig. 11. As in exist-

ing practice in commercial services, it first roughly maps tracks to

quality levels, e.g., mapping track 1 to very poor quality, track 2 to

poor quality, track 3 to fair quality, etc. But instead of just statically

capping the track selection to a particular level as in existing prac-

tice, our approach (i) determines a data budget ladder based on the

mapping, and (ii) uses dynamic data planning strategies such as

DP-Q or DP-T to judiciously guide rate adaptation. Specifically, the

data budget ladder is first determined as illustrated in Fig. 11. The

lowest rung in the data budget ladder (e.g., low data usage, poor-fair

quality) maps to data usage between track 2 and 3 for this particular

video, i.e., the data budget is set to 𝐷 = 𝑟𝑑 ×𝑆2, where 𝑟𝑑 ≥ 1 and 𝑆2
is the size of track 2. Similarly, the second lowest rung in the data

budget ladder (e.g., medium data usage, fair-good quality) maps to

data usage between track 3 and track 4 with the data budget set

to 𝐷 = 𝑟𝑑 × 𝑆3. The other rungs in the data budget ladder can be

defined in similar ways. In the above, the parameter 𝑟𝑑 allows a

finer-level decision of data budgets within the rung (e.g., based on

the remaining monthly data plan, the content of the video, etc.).

As we have shown in §4, a larger 𝑟𝑑 leads to better performance

at the cost of higher data usage. On the other hand, even when

𝑟𝑑 = 1.0, our proposed strategies, DP-Q and DP-T, can significantly

outperform DP-Strawman. We emphasize that the specific numbers

in the above only serve as illustrative examples; the actual mapping

may be different for another video depending on its ABR track

ladder, but the basic concept still holds.

Setting network bandwidth cap. Recall that one practice in
industry for limiting data usage is to cap the network bandwidth to

a fixed value for video streaming sessions (see §1). This approach

can be potentially combined with client-based DP strategies to

both control the peak network bandwidth usage as well as per-

session data usage, while still delivering good QoE. As a first step,

we explore how to configure the network bandwidth cap in con-

junction with our DP strategies. Our evaluation shows that, for a

given data budget, when combining a DP strategy with the ABR

logic, as the network bandwidth increases, the data usage will still

be bounded by the data budget, while the quality improves and

rebuffering decreases (see Fig. 7). This trend implies that when a

cellular network provider caps the network bandwidth, from both

the data usage and QoE perspectives, it is more desirable to cap

the bandwidth to a higher level and rely on the client-side data

budget constraint to limit the data usage. We next demonstrate

this point using an example in Fig. 12. The figure shows the re-

sults for four settings: RobustMPC and RobustMPC+DP-T, with

either 1.5 or 3.0 Mbps network bandwidth cap. Without DP-T, the

standalone ABR scheme with the lower 1.5 Mbps network cap uses

much less data than that when the network cap is 3.0 Mbps. This

benefit, however, comes at the cost of much worse quality. When

combined with DP-T (data budget 𝑟𝑑 = 1.6, reference track of 480p),

the ABR scheme with 3.0 Mbps cap leads to similar data usage as

the two cases with 1.5 Mbps cap, while achieving visibly better

quality. Overall, RobustMPC+DP-T with 3.0 Mbps cap achieves the

best balance in QoE and data usage, demonstrating the benefits of

combining DP with a higher network bandwidth cap. Note that

these are illustrative settings; determining the optimal network

bandwidth cap to deploy in practice requires detailed analysis.

7 RELATEDWORK
ABR schemes. A large number of ABR schemes have been pro-

posed. BBA [17], BOLA [39], and BOLA-E [38] propose adaptation

schemes based on client-side buffer information. QDASH [30] tries

to reduce quality switches during adaptation. PANDA/CQ [26]

jointly considers network bandwidth and video bitrate variability.

Pensieve [29] proposes a system that generates ABR algorithms us-

ing reinforcement learning. Oboe [1] pre-computes the best possible

ABR parameters for different network conditions and dynamically

adapts the parameters at run-time. All of these schemes aim to

maximize QoE without considering data usage at all.

Reducing data usage. Reducing data in the content encoding

process has been studied in [5, 8, 21, 31, 41]. Our work consid-

ers reducing data usage for a given set of encoded tracks and can

complement those efforts. QBR [7] aims to improve the efficiency

of existing ABR schemes by reducing the data usage while po-

tentially increasing QoE. The study in [6] manages the tradeoff

between monthly data usage and video quality by leveraging the

compressibility of videos and predicting consumer usage behavior

throughout a billing cycle. Neither of the above two studies uses

data budget to explicitly constrain the data usage. The work in [37]

relies on a user specified target quality to reduce data usage, which

does not provide users explicit control of data usage (see §2.1). In

addition, it assumes that per-segment quality is available, while we

also consider the case when quality information is not available.

8 CONCLUSION
We proposed a novel framework for ABR streaming using a per-

session data budget constraint, and developed two strategies, DP-Q

and DP-T. This framework is designed to work in conjunction

with existing ABR workflows. Using a combination of extensive

simulations and experiments with ExoPlayer, we demonstrated that

a per-session data budget together with a carefully designed data

planning strategy can achieve significantly lower data usage, while

still delivering good QoE. The results are encouraging and suggest

the potential of further research in this direction.

DataPlanner: Data-budget Driven Approach to Resource-efficient ABR Streaming MMSys’21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey

REFERENCES
[1] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen,

Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. 2018. Oboe:

Auto-tuning Video ABR Algorithms to Network Conditions. In SIGCOMM.

[2] Apple. [n. d.]. AVFoundation. https://developer.apple.com/av-foundation/. ([n.

d.]).

[3] AT&T. 2018. Stream Saver. (2018). https://www.att.com/offers/streamsaver.html

[4] Christos Bampis. 2018. Measuring Video Quality with VMAF: Why You Should

Care. (2018). http://downloads.aomedia.org/assets/pdf/symposium-2019/slides/

ChristosBampis_Netflix.pdf

[5] Chao Chen, Yao-Chung Lin, Anil Kokaram, and Steve Benting. 2017. Encoding

Bitrate Optimization Using Playback Statistics for HTTP-based Adaptive Video

Streaming. arXiv preprint arXiv:1709.08763 (2017).
[6] Jiasi Chen, Amitabha Ghosh, Josphat Magutt, and Mung Chiang. 2012. QAVA:

Quota Aware Video Adaptation. In Proc. of ACM CoNEXT. 121–132.
[7] William Cooper, Sue Farrell, and Kumar Subramanian. 2017. QBR Metadata to

Improve Streaming Efficiency and Quality. In SMPTE.
[8] Jan De Cock and Anne Aaron. 2016. Constant-slope rate allocation for distributed

real-world encoding. In Picture Coding Symposium (PCS), 2016. IEEE, 1–5.
[9] Jan De Cock, Zhi Li, Megha Manohara, and Anne Aaron. 2016. Complexity-based

consistent-quality encoding in the cloud. In ICIP. IEEE.
[10] Jan De Cock, Aditya Mavlankar, Anush Moorthy, and Anne Aaron. 2016. A

large-scale video codec comparison of x264, x265 and libvpx for practical VOD

applications. In SPIE, Applications of Digital Image Processing.
[11] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam,

Jibin Zhan, and Hui Zhang. 2011. Understanding the impact of video quality on

user engagement. In ACM SIGCOMM.

[12] FFmpeg. 2017. FFmpeg Project. https://www.ffmpeg.org/. (2017).

[13] International Organization for Standardization. 2012. ISO/IEC DIS 23009-1.2

Dynamic adaptive streaming over HTTP (DASH). (2012).

[14] DASH Industry Forum. 2017. Reference Client 2.4.1. https://goo.gl/XJcciV. (2017).

[15] Google. 2016. ExoPlayer. https://github.com/google/ExoPlayer. (2016).

[16] Google. 2017. ExoPlayer: Flexible Media Playback for Android (Google I/O ’17).

https://youtu.be/jAZn-J1I8Eg?t=552. (2017).

[17] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark

Watson. 2014. A buffer-based approach to rate adaptation: Evidence from a large

video streaming service. In Proc. of ACM SIGCOMM.

[18] MulticoreWare Inc. 2018. H.265 Video Codec. http://x265.org/hevc-h265/. (2018).

[19] ITU. 2017. H.264 codec. https://goo.gl/AjvnTs. (2017).

[20] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving fairness, efficiency,

and stability in HTTP-based adaptive video streaming with FESTIVE. In CoNEXT.
[21] Ioannis Katsavounidis. 2018. Dynamic optimizer a perceptual video encoding

optimization framework. https://goo.gl/zHdium. (2018).

[22] S. Shunmuga Krishnan and Ramesh K Sitaraman. 2013. Video stream quality

impacts viewer behavior: inferring causality using quasi-experimental designs.

IEEE/ACM Transactions on Networking 21, 6 (2013), 2001–2014.

[23] TV Lakshman, Antonio Ortega, and Amy R Reibman. 1998. VBR video: Tradeoffs

and potentials. Proc. IEEE (1998).

[24] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy, and Megha

Manohara. 2016. Toward A Practical Perceptual Video Quality Metric. (2016).

https://goo.gl/ptjrWv.

[25] Zhi Li, Christos Bampis, Julie Novak, Anne Aaron, Kyle Swanson, Anush

Moorthy, and Jan De Cock. 2018. VMAF: The Journey Continues. (2018).

https://netflixtechblog.com/vmaf-the-journey-continues-44b51ee9ed12

[26] Zhi Li, Ali Begen, Joshua Gahm, Yufeng Shan, Bruce Osler, and David Oran. 2014.

Streaming video over HTTP with consistent quality. In ACM MMSys.
[27] Linux. 2014. tc. https://linux.die.net/man/8/tc. (2014).

[28] Yao Liu, Sujit Dey, Fatih Ulupinar, Michael Luby, and Yinan Mao. 2015. Deriv-

ing and Validating User Experience Model for DASH Video Streaming. IEEE
Transactions on Broadcasting 61, 4 (December 2015).

[29] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive

Video Streaming with Pensieve. In Proc. of ACM SIGCOMM.

[30] Ricky KP Mok, Xiapu Luo, Edmond WW Chan, and Rocky KC Chang. 2012.

QDASH: a QoE-aware DASH system. In ACM MMSys.
[31] Netflix. 2015. Per-Title Encode Optimization. https://goo.gl/1J5vBv. (2015).

[32] Netflix. 2016. VMAF score aggregation. https://goo.gl/v38JMB. (2016).

[33] Pengpeng Ni, Ragnhild Eg, Alexander Eichhorn, Carsten Griwodz, and Pål

Halvorsen. 2011. Flicker effects in adaptive video streaming to handheld de-

vices. In Proc. of ACM Multimedia.
[34] Jan Ozer. 2017. Finding the Just Noticeable Difference with Netflix VMAF. https:

//goo.gl/TGWCGV. (September 2017).

[35] The WebM Project. 2017. VP9 Video Codec. https://goo.gl/Xep8rr. (2017).

[36] Yanyuan Qin, Shuai Hao, Krishna R Pattipati, Feng Qian, Subhabrata Sen, Bing

Wang, and Chaoqun Yue. 2018. ABR streaming of VBR-encoded videos: charac-

terization, challenges, and solutions. In CoNext. ACM.

[37] Yanyuan Qin, Shuai Hao, Krishna R Pattipati, Feng Qian, Subhabrata Sen, Bing

Wang, and Chaoqun Yue. 2019. Quality-aware strategies for optimizing ABR

video streaming QoE and reducing data usage. In MMSys. ACM.

[38] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2018. From Theory to

Practice: Improving Bitrate Adaptation in the DASH Reference Player. InMMSys.
[39] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2016. BOLA: Near-

Optimal Bitrate Adaptation for Online Videos. In INFOCOM. IEEE.

[40] T-Mobile. 2018. T-Mobile Binge On. (2018). https://goo.gl/Q9fbw6

[41] Laura Toni, Ramon Aparicio, Telecom Bretagne, Karine Pires, Gwendal Simon,

Alberto Blanc, and Pascal Frossard. 2015. Optimal selection of adaptive streaming

representations. ACM Trans. Multimedia Comput. Commun. Appl. (2015).
[42] Shichang Xu, Z. Morley Mao, Subhabrata Sen, and Yunhan Jia. 2017. Dissecting

VOD Services for Cellular: Performance, Root Causes and Best Practices. In IMC.
[43] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-

Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In

SIGCOMM. ACM.

https://developer.apple.com/av-foundation/
https://www.att.com/offers/streamsaver.html
http://downloads.aomedia.org/assets/pdf/symposium-2019/slides/ChristosBampis_Netflix.pdf
http://downloads.aomedia.org/assets/pdf/symposium-2019/slides/ChristosBampis_Netflix.pdf
https://www.ffmpeg.org/
https://goo.gl/XJcciV
https://github.com/google/ExoPlayer
https://youtu.be/jAZn-J1I8Eg?t=552
http://x265.org/hevc-h265/
https://goo.gl/AjvnTs
https://goo.gl/zHdium
https://goo.gl/ptjrWv.
https://netflixtechblog.com/vmaf-the-journey-continues-44b51ee9ed12
https://linux.die.net/man/8/tc
https://goo.gl/1J5vBv
https://goo.gl/v38JMB
https://goo.gl/TGWCGV
https://goo.gl/TGWCGV
https://goo.gl/Xep8rr
https://goo.gl/Q9fbw6

	Abstract
	1 Introduction
	2 Motivation and Solution Framework
	2.1 The Case for Per-session Data Budget
	2.2 Problem Setting
	2.3 Simple Strawman Strategy
	2.4 Proposed Data Planning Framework

	3 Data-budget Driven ABR Strategies
	3.1 DP with Per-segment Quality Information
	3.2 DP without Quality Information

	4 Performance Evaluation
	4.1 Evaluation Setup
	4.2 RobustMPC with Data Budget
	4.3 CAVA with Data Budget

	5 ExoPlayer Results
	6 Other Practical Aspects
	7 Related Work
	8 Conclusion
	References

