
ABR Streaming with Separate Audio and Video Tracks:
Measurements and Best Practices
Yanyuan Qin1, Subhabrata Sen2, and Bing Wang1

1University of Connecticut 2AT&T Labs - Research

ABSTRACT
Adaptive bitrate (ABR) streaming is the predominant approach
for video streaming over the Internet. When the audio and video
tracks are stored separately (i.e., in demuxedmode), the client needs
to dynamically determine which audio and which video track to
select for each chunk/playback position. Somewhat surprisingly,
there is very little literature on how to best mesh together audio
and video adaptation in ABR streaming. In this paper, we first
examine the state of the art in the handling of demuxed audio
and video tracks in predominant ABR protocols (DASH and HLS),
as well as in real ABR client implementations in three popular
players covering both browsers and mobile platforms. Combining
experimental insights with code analysis, we shed light on a number
of limitations in existing practices both in the protocols and the
player implementations, which can cause undesirable behaviors
such as stalls, selection of potentially undesirable combinations
such as very low quality video with very high quality audio, etc.
Based on our gained insights, we identify the underlying root causes
of these issues, and propose a number of practical design best
practices and principles whose collective adoption will help avoid
these issues and lead to better QoE.

CCS CONCEPTS
• Information systems→Multimedia streaming;

KEYWORDS
Adaptive Video Streaming; Audio and Video; DASH; HLS

ACM Reference Format:
Yanyuan Qin, Subhabrata Sen, and Bing Wang. 2019. ABR Streaming with
Separate Audio and Video Tracks: Measurements and Best Practices. In
The 15th International Conference on emerging Networking EXperiments and
Technologies (CoNEXT ’19), December 9–12, 2019, Orlando, FL, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3359989.3365419

1 INTRODUCTION
Adaptive bitrate (ABR) streaming allows adaptation to dynamic
network conditions by providing multiple tracks/variants that all
represent the same content but are encoded at different bitrates
and quality levels. Each track is divided into multiple chunks, each
containing a few seconds worth of content. During playback, the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’19, Dec 9–12, 2019, Orlando, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6998-5/19/12. . . $15.00
https://doi.org/10.1145/3359989.3365419

Track 3

Track 2

Track 1

Track 3

Track 2

Track 1

Video

Audio

Audio

Buffer

Video

 Buffer

Rendering

Server ClientInternet

Network

Figure 1: ABR streaming of demuxed audio and video (the
different colors represent the chunks from different tracks).

client dynamically selects a chunk from the multiple available vari-
ants based on existing network conditions. On the server, a video
track and its corresponding audio can be combined together as a
single multiplexed track (in muxed mode), where each chunk in
the track contains the associated video and audio content. Alterna-
tively, the video and audio content can be maintained separately as
demultiplexed tracks (in demuxed mode) on the server, as shown in
Fig. 1. The demuxed approach offers a number of advantages for
services that need to have more than one audio variant – e.g., to
support multiple languages, or multiple audio quality levels or both.
First, it requires significantly less storage at the origin server. To
see this, consider a hypothetical service that usesM video and N
audio tracks. The server only needs to storeM video and N audio
tracks for the demuxed mode, while it has to store a much larger set
ofM × N muxed tracks for the muxed mode. Second, a subtle effect
is that the demuxed mode increases CDN cache hits. As an example,
for a given chunk/playback position, suppose userA requests video
track variantV 1 and audio track variantA2, and at a later time, user
B requests the same video track variant V 1 and a different audio
track variant A1. In muxed mode, B needs to download both V1
and A1 from the original server, while in demuxed mode, B can get
the video chunk for V1 from the CDN cache (which cached it due
to A’s earlier request), and only needs to get the audio chunk for
A1 from the original server. Due to the above advantages, services
are increasingly moving towards using demuxed audio and video
tracks [24]. We focus on ABR streaming for demuxed video and
audio tracks in this paper.

The literature on video rate adaptation is extensive [2, 12, 13,
18, 23, 25]. A common assumption regarding audio is that its bi-
trate is significantly lower than that of the video, and hence the
decision on audio track selection has little impact on the video
track selection [22]. The reality, however, is that increasingly an
audio track can be of similar or even much higher bitrate than
some of the video tracks. Based on the HLS authoring specification
for Apple devices [4], the audio bitrate can be as high 384 Kbps
for mobile devices, which can be much higher than the typical
encoding bitrates of lower-rung video tracks in real services (e.g.,
the two lowest video tracks have peak rates around 100 and 250
Kbps respectively for one popular service). In addition, more and

https://doi.org/10.1145/3359989.3365419
https://doi.org/10.1145/3359989.3365419

CoNEXT ’19, Dec 9–12, 2019, Orlando, FL, USA

more devices support Dolby Atmos audio [5], for which the audio
bitrate can be up to 768 Kbps [19]. As a result, audio can in reality
consume a significant fraction of the available network bandwidth,
and audio track selection can therefore significantly affect video
selection and the overall viewing experience (see §3). Concurrently
with the availability of higher bitrate audio tracks, the community
has also realized the importance of selecting higher audio quality
tracks when possible and appropriate. For example, Netflix very
recently adopted audio adaptation at the player side to boost the
overall video streaming experience [19, 20].

Little is known on how best to mesh together audio and video
rate adaptation in ABR streaming. In this paper, we first examine the
current practice in the predominant DASH [6] andHLS [3] protocols
and three popular players, ExoPlayer [8], Shaka Player [10], and
dash.js player [7] (see §2). Using a combination of code inspection
and experiments, we identify a number of limitations in existing
practices both in the protocols and the player implementations (see
§3). We identify the root causes of these limitations, and present a
set of best practices and guidelines (see §4). Our work makes the
following contributions:
• We find that all three players have various issues in handling
demuxed audio and video tracks (§3). These issues are not sim-
ple implementation bugs, but rather arise due to a confluence of
sometimes subtle interacting factors, ranging from a lack of suf-
ficient insights, design/engineering inadequacies to architectural
deficiencies. Specifically, these issues include (i) limitations in how
DASH/HLS handles demuxed content, (ii) player designs to cir-
cumvent the limitations in DASH/HLS, (iii) little understood dif-
ferences between HLS and DASH with important implications, (iv)
attempts in applying the same player logic designed for one pro-
tocol (DASH/HLS) to the other, and (v) inadequate attention to
synchronizing a player’s video and audio downloading.
• Our findings demonstrate that meshing together audio and video
rate adaptation is a very challenging problem – it involves many
pieces (in ABR protocols, server and player designs) and needs a
holistic solution. As a starting point in addressing the challenges,
we provide a set of best practices and guidelines (§4) for the ABR
protocol level (manifest file specification enhancements), the server
side (appropriately using manifest to convey needed information to
the client), and the player side (audio/video prefetching, and joint
adaptation for audio and video).

Note that in this paper we consider coordinated ABR rate adap-
tation for streaming demuxed video and audio to the same user
to maximize QoE. The demuxed video and audio tracks may be
located at different servers and hence may not necessarily share
the same bottleneck link. This problem is very different from the
multi-user rate adaptation problem where videos are streamed to
multiple users while sharing the same bottleneck link [1, 11, 13, 14].

We hope that our study brings the problem of ABR streaming
with demuxed audio and video tracks to the community’s attention
With coordinated efforts, we hope that the community can come
up with effective solutions soon.

2 MOTIVATION AND METHODOLOGY
2.1 Motivation
One way of treating demuxed audio and video tracks is determining
their rate adaptation independently, and combining the audio and

video chunks at playback time. While this approach is easy to
implement, it has two major drawbacks. First, it can lead to some
audio and video combinations that are clearly undesirable (e.g.,
lowest quality audio with highest quality video, or vice versa).
Second, it can cause the prefetched audio and video streams to be
severely unbalanced, e.g., audio (resp. video) buffer underruns and
hence leads to stalls, while there is a lot of prefetched data for the
corresponding video content (resp. audio).

Although the audio/video rate adaptation is decided by the player
at the client, we argue that the server needs to provide sufficient
information to facilitate the decision. Determining a good set of
audio and video combinations is not a trivial task. It depends on the
nature of the specific content, device characteristics (e.g., screen
size, sound system), and the business rules encoding the content
provider’s preferences for that content. For instance, for music
shows, the sound quality may be relatively more important than
video quality, and hence it might be more desirable to combine high
audio tracks with low/medium video tracks; while for an action
movie, the desirable combinations may be the opposite. The origin
server knows the content information, client device types, and
the business rules, and hence is at a better position for deciding
the combinations. Ideally, the server can determine a good set of
audio and video combinations beforehand, and pass the information
to the player through the manifest file or other out-of-the-band
mechanisms.

2.2 High-level Methodology
To understand the current practice for handling demuxed audio
and video tracks, we examine both predominant ABR streaming
protocols (DASH and HLS) and the treatment in three open-source
popular players, specifically, ExoPlayer [8] and Shaka [10] that are
widely used in industry, and dash.js [7] that showcases the DASH
standard. For each player, our focus is on understanding the inter-
action between audio and video rate adaptation and their impact on
each other. Specifically, we use a combination of source code analy-
sis (all the three players are open-source players) and controlled
experiments (with additional instrumentation in the source code
when necessary). The combined approach is necessary because as a
large-scale often multithreaded software system, the player source
code contains a large number of interlocking components with
complex interactions, and just code analysis by itself may not be
sufficient to understand the behavior of the system. The controlled
experiments therefore play a crucial role in profiling the overall
behavior and also help us to confirm our understanding. While our
study focuses on these three players, our findings of specific issues
(§3) in these players have wide applicability to the services that
use these players. Our best practice recommendations (§4) are not
player specific; we expect them to be widely applicable to any ABR
streaming service.

2.3 ABR Streaming Protocols
DASH [6] and HLS [3] are the two predominant ABR streaming
protocols. Both of them now support demuxed audio and video
tracks. The DASH protocol defines an Adaptation Set as a set of
interchangeable encoded versions of one or several media content
components. For demuxed audio and video tracks, it defines one
Adaptation Set for video tracks and another set for audio tracks.

ABR Streaming with Separate Audio and Video Tracks: Measurements and Best Practices CoNEXT ’19, Dec 9–12, 2019, Orlando, FL, USA

A bandwidth attribute is associated with each track (termed Rep-
resentation in DASH) to declare the required bandwidth (which is
close to the peak bitrate; see one example in Table 1). In HLS, a top-
level master playlist uses the EXT-X-STREAM-INF tag to specify an
audio and video track combination (termed Variant in HLS). With
HLS, one can specify all possible combinations or a subset thereof.
A BANDWIDTH attribute is associated with a video and audio track
combination to declare the aggregate bandwidth requirement of
the combination (which is the sum of the peak bitrates of the audio
and video tracks in the combination). In the rest of the paper, de-
pending on the context, the phrase bandwidth requirement refers to
the bandwidth attribute in DASH or BANDWIDTH attribute in HLS.

There are some key differences between DASH and HLS specifi-
cations in terms of how they treat demuxed audio and video tracks.
These differences have important implications for both player ABR
logic design and the resulting QoE. One key difference is that DASH
does not provide a mechanism for a content provider to specify only
the desired subset of audio and video track combinations, while HLS
provides an explicit mechanism to do so. Therefore, DASH provides a
player more freedom to select combinations from the available audio
and video tracks, potentially making it more vulnerable to choosing
undesirable combinations (see §3).

Another key difference between DASH and HLS is that DASH
specifies the bandwidth requirements of individual audio and video
tracks, while HLS top-level manifest only supports specifying the
aggregate bandwidth requirement of each audio and video track
combination. This difference should be recognized by the player to
avoid undesirable behaviors, as we shall see later.

2.4 Players
We focus on three widely used and open-source players, ExoPlayer
(v2.10.2) [8], Shaka Player (v2.5.1) [10], and dash.js player (v2.9.3) [7],
and try to understand their behaviors towards audio and video rate
adaptation using their latest versions. ExoPlayer is a widely used
application level media player for Android platforms. More than
140,000 applications in Google Play Store use ExoPlayer to play
media [9]. Shaka Player is an open-source JavaScript library for
adaptive media, and has been used by more than 1,600 websites [17].
dash.js is an open-source JavaScript based player and is the refer-
ence player maintained by the DASH Industry Forum. ExoPlayer
and Shaka Player support both DASH and HLS streaming; dash.js
only supports DASH.

3 PRACTICE OF POPULAR PLAYERS
3.1 Experimental Setup
In the experiments below, we use a drama show downloaded from
YouTube using youtube-dl [27]. It is around 5 minutes long, con-
taining 6 video tracks and 3 audio tracks. Table 1 lists the average
and peak bitrates of the video and audio tracks, as well as other
key characteristics. The bitrate ladder in Table 1 is commonly used
by YouTube [26]; the issues we point out below are related to the
bitrate ladder (not particular to the specific content), and hence are
broadly applicable.

We use the Bento4 toolkit [16] to create two sets of manifest files,
complying respectively with DASH and HLS standards. For DASH,
we create one manifest file, with the six video tracks and three
audio tracks specified in two Adaptation Sets. The declared bitrate

Table 1: Video and audio of a YouTube drama show.

Audio/ Average Peak Declared Audio channels,
Video Bitrate Bitrate Bitrate for sampling rate
Track (Kbps) (Kbps) DASH (Kbps) Video resolution
A1 128 134 128 2 channels, 44 kHz
A2 196 199 196 6 channels, 48 kHz
A3 384 391 384 6 channels, 48 kHz
V1 111 119 111 144p
V2 246 261 246 240p
V3 362 641 473 360p
V4 734 1190 914 480p
V5 1421 2382 1852 720p
V6 2728 4447 3746 1080p

for each audio/video track is shown in Table 1. For HLS, we create
two manifest files. The first, Hall , specifies all 18 combinations of
video and audio tracks1; the second, Hsub , specifies a subset of 6
combinations, i.e., V1+A1, V2+A1, V3+A2, V4+A2, V5+A3, V6+A3,
where high quality video tracks are associated with high audio
quality tracks, and vice versa. The bitrates (both peak and average
bitrates) for the combinations contained in these two manifest files
are listed in Tables 2 and 3 in the Appendix.

For controlled experiments, we set up a HTTP server as the
origin server. The network bandwidths from the server to client
are controlled by using tc [15] at the server. Our goal here is to
identify demuxed audio-video related performance problems for
each player, not to compare the performance across the multiple
players. Therefore, we choose the experimental settings targeting
the different issues of the different players. Whenever appropriate,
we choose fixed network bandwidths, since the behavior of a player
is more easily understood under such bandwidth profiles.

3.2 ExoPlayer
ExoPlayer adopted joint audio and video rate adaptation only very
recently (starting from version v2.10.0, released in May 2019). Prior
to that, it did not support simultaneous audio and video rate adap-
tation. Specifically, for multiple demuxed video and audio tracks, it
selected a fixed audio track and used it throughout the session with-
out any audio rate adaptation. In the following, we use ExoPlayer
version v2.10.2, the latest version that is publicly available.

DASH. Since a DASH manifest file does not restrict the combi-
nations of audio and video tracks that can be selected, ExoPlayer
designs a specific logic that uses the per-track declared bitrate in
the manifest file to determine a subset of combinations that com-
bines higher bitrate/quality audio tracks with higher bitrate/quality
video tracks. Specifically, for the audio and video tracks listed in Ta-
ble 1, the resultant combinations, in increasing order of bandwidth
requirement, are V1+A1, V2+A1, V2+A2, V3+A2, V4+A2, V4+A3,
V5+A3, and V6+A3, where two adjacent combinations have either
the same video or audio track. We refer to these combinations as
the predetermined combinations by ExoPlayer. The subsequent rate
adaptation process only considers these predetermined combina-
tions. Specifically, during rate adaptation, the player estimates the

1While HLS provides a mechanism to specify a subset of video and audio combinations,
it does not have an explicit recommendation that only carefully curated combinations
should be specified. A content provider may choose to list all the combinations; we
use Hall to illustrate the issues that may arise from such practices.

CoNEXT ’19, Dec 9–12, 2019, Orlando, FL, USA

0 50 100 150 200 250 300
Time (s)

0

200

400

600

800

1000

1200

1400

B
it

ra
te

 (
K

b
p
s)

Bandwidth

Audio

Video

(a) Selected bitrates (experiment 1).

0 50 100 150 200 250 300
Time (s)

0

200

400

600

800

1000

1200

1400

B
it

ra
te

 (
K

b
p
s)

Bandwidth

Audio

Video

(b) Selected bitrates (experiment 2).

Figure 2: ExoPlayer results (DASH).

available network bandwidth by considering both video and audio
downloading, and conservatively assumes that the actual network
bandwidth is 75% of the estimated bandwidth. It then selects an
audio and video combination out of the predetermined combina-
tions (based on the bitrate of each of the combinations, network
bandwidth estimate, and the buffer status).

The above treatment has the following limitation. The predeter-
mined combinations by ExoPlayer, while may be reasonable for
some bitrate ladder or content types, may not be suitable for others.
As an example, for the above drama show, it may be desirable to
allow V5+A2 (i.e., high quality video with medium quality audio),
which is, however, not in the predetermined combinations, and
hence will not be selected by ExoPlayer.

We next further illustrate the above point using two experiments.
In the first experiment, we create an audio adaptation set with three
audio tracks B1, B2 and B3 with the declared bitrate as 32, 64 and
128 Kbps, respectively. The video tracks are the same as listed in
Table 1. In this case, the predetermined combinations are V1+B1,
V2+B1, V2+B2, V3+B2, V4+B2, V5+B2, V5+B3, and V6+B3. The
network bandwidth is fixed at 900 Kbps. Fig. 2(a) plots the average
bitrate of the selected tracks. We see that V3+B2 is selected, while
V3+B3 would be a better choice, since it has higher audio quality,
and its bandwidth requirement (601 Kbps) is below the available
network bandwidth. This more desirable combination (V3+B3) is,
however, not in the predetermined combinations, and hence will
not be selected. In the second experiment, we switch the audio
adaptation set to three audio tracks with relatively higher bitrate,
referred to as C1, C2 and C2 with the declared bitrate as 196, 384 and
768 Kbps, respectively. In this case, the predetermined combinations
are V1+C1, V2+C1, V2+C2, V3+C2, V4+C2, V5+C2, V5+C3, and
V6+C3. Fig. 2(b) shows that ExoPlayer selects V2+C2, resulting in
very low video quality and high audio quality. The combination
V3+C1 would be a better choice (V3+C1 has declared video and
audio bitrates as 473 and 196 Kbps, respectively, versus 246 and
384 Kbps in V2+A2), which is however not in the predetermined
combinations.

While clearly undesirable, the root cause of the above problem
flows from a limitation in the DASH standard. As we mentioned in
§2, the server is better placed to specify the desirable set of video
and audio combinations. However, the DASH standard lacks such
specifications. The DASH client, typically lacks detailed domain
knowledge of the content being streamed, and therefore is forced
to either (i) consider all possible combinations of video and audio
track variants, or (ii) apply its own policy to determine a subset of
combinations (as in ExoPlayer). Both approaches have drawbacks.
The former can lead to a player selecting an unsuitable combination
for a certain type of content, while the latter can potentially exclude
desirable combinations of audio and video tracks for a content.

0 50 100 150 200 250 300
Time (s)

0

500

1000

1500

2000

2500

3000

B
it

ra
te

 (
K

b
p
s)

Bandwidth

Audio

Video

(a) Selected bitrates.

0 50 100 150 200 250 300
Time (s)

0

5

10

15

20

25

30

B
u
ff

e
r

le
v
e
l
(s

)

Audio

Video

(b) Buffer levels.

Figure 3: ExoPlayer results (HLS).

HLS. ExoPlayer uses the same rate adaptation code for both
DASH and HLS. In contrast to the behavior with DASH, for HLS,
this unfortunately leads to selecting a fixed audio track. In the
following, we first illustrate this behavior using experiments and
then explain the root cause.

In the first experiment, we specify a subset of audio and video
combinations, Hsub , in the top-level master playlist; the first audio
track in the manifest file is A3 (i.e., the highest bitrate/quality audio
track). The network bandwidth is set to be time-varying, with
the average as 600 Kbps. The evolution of the selected audio and
video tracks is shown in Fig. 3(a); the audio and video buffer levels
over time are shown in Fig. 3(b). We note that ExoPlayer selects
A3 throughout the playback, resulting in 5 stall events and 36.9
seconds of rebuffering (marked as the shaded regions). In addition,
the ABR selection has the effect of disobeying the subset of audio and
video combinations specified in the HLS manifest as it selects some
combinations (e.g., V1+A3) that are not in the specified subset. In
the second experiment, we modify the manifest file so that A1 (the
lowest quality audio track) is listed as the first audio track and fix
the network bandwidth to 5 Mbps. ExoPlayer selects A1 throughout
the playback despite plenty of available network bandwidth (figures
omitted), leading to unnecessarily poor audio QoE.

What causes such behavior? Inspecting the ExoPlayer source
code, we find that it is due to the lack of specification of the indi-
vidual audio and video track’s bitrate information in the top-level
manifest file, which is needed by ExoPlayer to predetermine a sub-
set of audio and video combinations. To accommodate the lack
of this information, ExoPlayer simply assumes that all the audio
tracks have the same quality, thereby leading to a fixed audio track
selection. For a video track, it uses the aggregate bitrate of the first
variant in the top-level manifest file that contains this video track
as its bitrate, which is clearly an overestimation. The overestima-
tion will be even more severe when the order of the variants is not
specified properly (i.e., the first variant for a video track contains
the video track and the highest bitrate audio track). In §4.1, we
outline practical solutions to this problem.

3.3 Shaka Player
HLS.We use two experiments with the HLS manifest file Hall to
understand the behavior of Shaka Player. In the first experiment,
the network bandwidth is set to a constant 1 Mbps. Fig. 4(a) shows
that the bandwidth estimated by Shaka is a constant 500 Kbps, only
half of the actual specified network bandwidth. As a result, V2+A2
(with aggregate peak bitrate of only 460 Kbps) is selected. In the
second experiment, the specified network bandwidth is dynamic
(with the average as 600 Kbps, see Fig. 4(b)). In this case, Shaka first
underestimates the network bandwidth, and then overestimates

ABR Streaming with Separate Audio and Video Tracks: Measurements and Best Practices CoNEXT ’19, Dec 9–12, 2019, Orlando, FL, USA

0 50 100 150 200 250 300
Time (s)

0

500

1000

1500

2000

2500

B
it

ra
te

 (
K

b
p
s)

Actual Bandwidth

Estimated Bandwidth

Audio

Video

(a) Selected bitrates (experiment 1).

0 50 100 150 200 250 300
Time (s)

0

500

1000

1500

2000

2500

3000

B
it

ra
te

 (
K

b
p
s)

Actual Bandwidth

Estimated Bandwidth

Audio

Video

(b) Selected bitrates (experiment 2).

Figure 4: Shaka Player results (HLS).

the bandwidth starting around 50 s. Correspondingly, the selected
video and audio tracks are initially low (V2+A2), and then overly
high (V3+A3), leading to a total rebuffering of 39 s. Inspecting
the player code, we find that the above undesirable behaviors are
due to Shaka’s network bandwidth estimation algorithm. Specifi-
cally, Shaka uses past video and audio downloading throughputs
as samples to estimate the bandwidth. It treats video and audio
downloading separately. While downloading a video track (the
same applies to audio downloading), Shaka considers each interval
(δ = 0.125s), calculates the amount of data d downloaded in that
interval, and only counts the resultant throughput as a valid sample
if d ≥ 16 KB. To estimate the overall available network bandwidth,
it considers a set of samples {c1, . . . , cn }, where ci is the through-
put from either video or audio downloading, and sets the estimated
bandwidth as an exponential weighted average of these samples.
For time intervals when the audio and video streams are being con-
currently downloaded over a shared network bottleneck link, the
above strategy will severely underestimate the available network
bandwidth. In addition, the filtering rule (i.e., only consider samples
with d ≥ 16 KB) itself can lead to bandwidth underestimation or
overestimation, depending on the network conditions. In the first
experiment above, none of the throughput samples satisfies the fil-
tering rule, and hence the default bandwidth estimation of 500 Kbps
is used throughout the streaming session. In the second experiment,
only the throughput samples under high network bandwidth satisfy
the rule, while those under low network bandwidth are discarded,
leading to significant bandwidth overestimation.

Another issue is that Shaka uses a simple rate based adaptation
scheme (i.e., selects the combination with the bandwidth require-
ment closest to the estimated bandwidth), which can cause the
selected audio and video tracks to fluctuate frequently even if the
bandwidth estimation is accurate. The above fluctuation problem
is more severe for the case of demuxed audio and video since a
large number of audio and video combinations may have close band-
width requirements. For example, suppose manifest fileHall is used
and the estimated network bandwidth varies between 300 to 700
Kbps. Then the selected combinations can fluctuate among V1+A2,
V2+A1, V2+A2, V1+A3 and V2+A3, with bandwidth requirements
as 318, 395, 460, 510 and 652 Kbps, respectively.

DASH. Under DASH, since no combinations of audio and video
tracks are specified in the manifest file, the player creates all the
combinations of video and audio tracks when parsing the DASH
manifest file. Therefore, the result is the same as that for HLS when
using manifest file Hall .

3.4 dash.js Player
The default ABR algorithm used in dash.js is DYNAMIC [22], which
switches between two schemes, THROUGHPUT and BOLA. THROUGHPUT

0 50 100 150 200 250 300
Time (s)

0

200

400

600

800

1000

1200

1400

1600

B
it

ra
te

 (
K

b
p
s)

Bandwidth

Audio

Video

(a) Bitrate selections.

0 50 100 150 200 250 300
Time (s)

0

5

10

15

20

25

30

B
u
ff

e
r

le
v
e
l
(s

)

Audio

Video

(b) Buffer levels.

Figure 5: dash.js results (DASH).

is a rate based approach that chooses tracks whose declared peak
bitrates are close to the estimated bandwidth. BOLA is a buffer based
approach that optimizes a utility function [23]. DYNAMIC starts by
using THROUGHPUT rule. It switches to BOLA when the buffer level is
above 12 s and BOLA selects a bitrate at least as high as that selected
by THROUGHPUT; it switches back to THROUGHPUT if the buffer is
less than 6 s and BOLA selects a bitrate lower than that selected by
THROUGHPUT.

Examination of the source code of dash.js shows that it utilizes
DYNAMIC strategy for both audio and video, and performs rate adap-
tation for audio and video separately. In addition, the bandwidth
estimation for audio (video) is based on past audio (video) down-
loading only. Fig. 5 plots the results when using a fixed network
bandwidth of 700 Kbps. We see that the selected video and audio
combinations includes V2+A3, V2+A2, V2+A3 and V3+A3. Some
of these combinations are clearly undesirable, e.g., V2+A3. The
combination, V3+A2, fits the network bandwidth profile (it actually
has lower bandwidth requirement than V2+A3), while it has higher
video quality and slightly lower audio quality than V2+A3, which
might be more preferable from the user perspective for the drama
show. We further see from Fig. 5(b) that the buffer levels for audio
and video can be unbalanced, which is undesirable since when
one of them underruns, stalls will happen, even if there is a lot of
content in the other buffer.

3.5 Summary of Findings
In summary, we observe the following problems with current ABR
streaming protocols and player implementations.
•When a player does not perform rate adaptation for audio (e.g.,
ExoPlayer for HLS), it can lead to poor performance (e.g., a large
amount of rebuffering). Therefore, it is desirable to perform rate
adaptation for both audio and video.
• Some players select undesirable audio and video combinations,
which can lead to poor viewing quality (e.g., the lowest video and
highest audio tracks). The problem is more severe for DASH, which
does not provide a mechanism to specify a subset of desirable audio
and video combinations, making the player more vulnerable to
selecting bad combinations.
• Some players make the rate adaptation decisions for audio and
video completely independently (e.g., dash.js). Considering audio
and video jointly is better than considering them independently.
But considering them jointly in an overly simplistic way is also not
desirable (e.g., the practice in Shaka player can lead to frequent
audio/video track changes).
• Some players do not synchronize audio and video downloading
explicitly (e.g., dash.js). This can lead to unbalanced content in
video and audio buffers. Since we need both video and audio in

CoNEXT ’19, Dec 9–12, 2019, Orlando, FL, USA

the playback, having a lot more content in video/audio is not help-
ful. Instead, it is more desirable to synchronize them on a finer
granularity (e.g., on per chunk level as in ExoPlayer).
• An HLS manifest can specify a subset of audio and video combi-
nations, but some players do not conform to the manifest file. For
example, ExoPlayer may select some bad combinations that are not
in the manifest file.

4 SUGGESTED BEST PRACTICES
Based on the analysis in §3, we suggest the following best practices
for demuxed audio and video tracks for the server side as well as
the player side.

4.1 Server Side Manifest Specifications
Audio and video combinations. The content provider should iden-
tify desirable combinations of audio and video tracks based on content
type and domain expertise, and specify these combinations in the
manifest file. A player should only select chunks from the allowed
combinations. This practice provides the following advantages: (i)
allows the content owner to specify combinations that are suit-
able for the specific content (e.g., music video v.s. action movie)
and devices (considering screen size, connected sound system, e.g.,
speaker or headphone), and (ii) simplifies the rate adaptation task
for the player. HLS already supports this capability to include spe-
cific combinations in the manifest file. However it is important for
the content provider to utilize and leverage this capability appro-
priately, and not specify all possible combinations unless they are
all desirable. Unlike HLS, DASH at present does not offer a way to
list only specific allowed combinations in the manifest. A practical
short term workaround would be for the client to get this additional
information from the server using HTTP. In the longer term, the
DASH specification can be expanded to support this feature.
Audio and video bandwidth declaration. In the manifest file, it
would be good to specify sufficient information about the aggregate
bandwidth requirements of audio and video combinations, as well as
the bandwidth requirements of individual audio/video tracks. This
is particularly important when audio and video are fetched over
different network paths that have different network characteristics
(e.g., when they are stored at different servers). Currently, DASH
specifies the bandwidth for each audio and video track, and the
aggregate bandwidth requirement for audio and video combinations
(if provided following the earlier suggestion) can be calculated from
the individual tracks. In HLS, the top-level master playlist only
specifies the aggregate bitrate for each specified audio and video
combination. The bitrate of each individual audio/video track is not
in the top-level master playlist, but can be obtained from the second-
level media playlists as follows (commercial players only use the
information to identify the content address for an already selected
chunk): (i) When all the video/audio chunks are packaged into
a single file, the media playlists specify the EXT-X-BYTERANGE
information (i.e., the start and end byte positions), which can be
used to obtain the audio/video bitrate, as pointed out in [21]. (ii)
When each video/audio chunk is packaged into an individual file, no
byte range information is provided in the media playlists. However,
HLS recently added an optional EXT-X-BITRATE tag that can be
used to obtain per-chunk bitrate. We recommend that this option
should be made mandatory. In addition, for both of the above two

cases in HLS, since the information required for computing the per-
track bitrates is in the second-level manifest files, we suggest that
the player should download these files and read the information
before making rate adaptation decisions2. A more robust longer
term solution is to enhance the HLS specification so that the top-
level master playlist directly provides per-track audio and per-track
video bitrate information.

4.2 Player Side ABR Logic
Adopt audio rate adaptation. For dynamic network bandwidth
scenarios, it is important to perform audio rate adaptation. High
quality audio tracks can have similar or even higher bitrates than
lower-rung video tracks. Audio rate adaptation is just as impor-
tant as video rate adaptation to avoid adverse impact on QoE (e.g.,
rebuffering as observed in §3.2 or low audio quality).
Select only from allowed audio and video combinations. The
ABR logic should only select from the set of allowed audio and video
combinations if provided by the server (e.g., via manifest file or cer-
tain out-of-band mechanism). As mentioned in §4.1, the allowed
combinations reflect the desirable combinations between audio and
video based on the content. Therefore, it is important for the client
to select only from those combinations.
Joint adaptation of audio and video. We suggest that the selec-
tion of the audio and video tracks for each chunk position (in playback
order) be considered jointly. For both video and audio rate adaptation,
it is desirable to satisfy conflicting goals in maximizing quality, min-
imizing stalls and minimizing quality variation. Since the selection
of audio and video is inherently coupled (so that good combinations
of audio and video tracks are chosen), we recommend considering
the combinations of audio and video (i.e., those specified in the
manifest file if provided) while making rate adaptation decisions,
instead of considering audio and video individually. The rate adap-
tation should be done carefully to avoid frequent changes in either
audio or video tracks.
Maintain balance between audio and video prefetching. It is
desirable to keep the audio and video buffer levels (in seconds) bal-
anced. This is because either empty audio or video buffer leads to
stalls. The balance can be achieved by synchronizing the duration
of prefetched audio and video content at a fine granularity, e.g., at
the chunk level or in terms of a small number of chunks.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we examined the handling of ABR adaptation for
demuxed video and audio tracks in predominant ABR streaming
protocols (DASH and HLS), and in three popular ABR players. We
identified a number of limitations in existing practices that can
adversely impact user QoE, and traced their root causes. We then
proposed a number of best practices and principles for the server,
ABR streaming protocols and client. We hope these findings will
encourage further studies on this important topic. As future work,
we are working to further refine the suggested practices, and plan
to design and implement rate adaptation schemes following the
suggested practices.

2We suggest avoiding the practice of “lazy” fetching, which only fetches the playlist
manifest file for a track when a chunk from that track has been selected, at which
point the player needs to know the address of that chunk.

ABR Streaming with Separate Audio and Video Tracks: Measurements and Best Practices CoNEXT ’19, Dec 9–12, 2019, Orlando, FL, USA

REFERENCES
[1] Saamer Akhshabi, Lakshmi Anantakrishnan, Ali C Begen, and Constantine Dovro-

lis. 2012. What happens when HTTP adaptive streaming players compete for
bandwidth?. In Proceedings of International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV). ACM, 9–14.

[2] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen,
Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. 2018. Oboe:
Auto-tuning Video ABR Algorithms to Network Conditions. In Proc. of ACM
SIGCOMM.

[3] Apple. 2017. Apple’s HTTP Live Streaming. https://developer.apple.com/
streaming/. (2017).

[4] Apple. 2017. HLS Authoring Specification for Apple Devices. (2017).
https://developer.apple.com/documentation/http_live_streaming/hls_
authoring_specification_for_apple_devices

[5] Dolby. 2018. The Dolby Atmos Difference. https://www.dolby.com/us/en/brands/
dolby-atmos.html. (2018).

[6] International Organization for Standardization. 2012. ISO/IEC DIS 23009-1.2
Dynamic adaptive streaming over HTTP (DASH). (2012).

[7] DASH Industry Forum. 2019. DASH IF Reference Client 2.9.3. https://github.
com/Dash-Industry-Forum/dash.js. (2019).

[8] Google. 2016. ExoPlayer. https://github.com/google/ExoPlayer. (2016).
[9] Google. 2017. ExoPlayer: Flexible Media Playback for Android (Google I/O ’17).

https://youtu.be/jAZn-J1I8Eg?t=552. (2017).
[10] Google. 2019. Shaka Player. https://github.com/google/shaka-player. (2019).
[11] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh

Johari. 2012. Confused, timid, and unstable: picking a video streaming rate is
hard. In Proc. of IMC. ACM.

[12] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2014. A buffer-based approach to rate adaptation: Evidence from a large
video streaming service. In Proc. of ACM SIGCOMM.

[13] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving fairness, efficiency,
and stability in HTTP-based adaptive video streaming with FESTIVE. In Proc. of
ACM CoNEXT.

[14] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and D. Oran. 2014. Probe and
adapt: Rate adaptation for HTTP video streaming at scale. IEEE JSAC 32, 4 (2014),
719–733.

[15] Linux. 2014. tc. https://linux.die.net/man/8/tc. (2014).
[16] Axiomatic Systems LLC. 2016. Bento4 MP4 and DASH Class Library, SDK and

Tools. (2016). https://www.bento4.com
[17] SimilarTech Ltd. 2019. Facebook Video vs Shaka Player. (2019). https://www.

similartech.com/compare/facebook-video-vs-shaka-player
[18] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive

Video Streaming with Pensieve. In Proc. of ACM SIGCOMM.
[19] Netflix. 2019. Bringing Studio Quality Sound to Netflix. (2019). https://media.

netflix.com/en/company-blog/bringing-studio-quality-sound-to-netflix
[20] Netflix. 2019. Engineering a Studio Quality Experience With High-Quality Audio

at Netflix. shorturl.at/cfhx5. (2019).
[21] Yanyuan Qin, Shuai Hao, K. R. Pattipati, Feng Qian, Subhabrata Sen, Bing Wang,

and Chaoqun Yue. 2018. ABR Streaming of VBR-encoded Videos: Characteriza-
tion, Challenges, and Solutions. In Proc. of ACM CoNEXT.

[22] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2018. From Theory to
Practice: Improving Bitrate Adaptation in the DASH Reference Player. In Proc. of
ACM MMSys.

[23] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2016. BOLA: Near-
Optimal Bitrate Adaptation for Online Videos. In Proc. of IEEE INFOCOM.

[24] Shichang Xu, Z. Morley Mao, Subhabrata Sen, and Yunhan Jia. 2017. Dissecting
VOD Services for Cellular: Performance, Root Causes and Best Practices. In Proc.
of IMC.

[25] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-
Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In Proc.
of ACM SIGCOMM.

[26] YouTube. 2019. Recommended upload encoding settings. https://support.google.
com/youtube/answer/1722171?hl=en. (2019).

[27] youtube-dl developers. 2018. youtube-dl. https://goo.gl/mgghW8. (2018).

A BITRATE OF AUDIO AND VIDEO
COMBINATIONS

Table 2 lists the full set of the 18 audio and video combinations
for the drama show in Table 1. They are the combinations listed in
the HLS manifest file Hall . For each combination, the peak bitrate
is the sum of the peak bitrates of the audio and video tracks; the
average bitrate is sum of their average bitrates. The combinations
are placed in increasing order of the peak bitrate.

Table 3 lists a subset of 6 audio and video combinations for the
drama show in Table 1. They are the combinations listed in the
HLS manifest file Hsub . For each combination, both the peak and
average bitrates are listed in the table.

Table 2: Bitrates of the full set of audio and video combina-
tions (used in HLS manifest file Hall).

Video/Audio Average Bitrate Peak Bitrate
Combination (Kbps) (Kbps)
V1 + A1 239 253
V1 + A2 307 318
V2 + A1 374 395
V2 + A2 442 460
V1 + A3 495 510
V2 + A3 630 652
V3 + A1 490 775
V3 + A2 558 840
V3 + A3 746 1032
V4 + A1 862 1324
V4 + A2 930 1389
V4 + A3 1118 1581
V5 + A1 1549 2516
V5 + A2 1617 2581
V5 + A3 1805 2773
V6 + A1 2856 4581
V6 + A2 2924 4646
V6 + A3 3112 4838

Table 3: Bitrates of a subset of audio and video combinations
(used in HLS manifest file Hsub).

Video/Audio Average Bitrate Peak Bitrate
Combination (Kbps) (Kbps)
V1+A1 239 253
V2+A1 374 395
V3+A2 558 840
V4+A2 930 1389
V5+A3 1805 2773
V6+A3 3112 4838

https://developer.apple.com/streaming/
https://developer.apple.com/streaming/
https://developer.apple.com/documentation/http_live_streaming/hls_authoring_specification_for_apple_devices
https://developer.apple.com/documentation/http_live_streaming/hls_authoring_specification_for_apple_devices
https://www.dolby.com/us/en/brands/dolby-atmos.html
https://www.dolby.com/us/en/brands/dolby-atmos.html
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/google/ExoPlayer
https://youtu.be/jAZn-J1I8Eg?t=552
https://github.com/google/shaka-player
https://linux.die.net/man/8/tc
https://www.bento4.com
https://www.similartech.com/compare/facebook-video-vs-shaka-player
https://www.similartech.com/compare/facebook-video-vs-shaka-player
https://media.netflix.com/en/company-blog/bringing-studio-quality-sound-to-netflix
https://media.netflix.com/en/company-blog/bringing-studio-quality-sound-to-netflix
shorturl.at/cfhx5
https://support.google.com/youtube/answer/1722171?hl=en
https://support.google.com/youtube/answer/1722171?hl=en
https://goo.gl/mgghW8

	Abstract
	1 Introduction
	2 Motivation and Methodology
	2.1 Motivation
	2.2 High-level Methodology
	2.3 ABR Streaming Protocols
	2.4 Players

	3 Practice of Popular Players
	3.1 Experimental Setup
	3.2 ExoPlayer
	3.3 Shaka Player
	3.4 dash.js Player
	3.5 Summary of Findings

	4 Suggested Best Practices
	4.1 Server Side Manifest Specifications
	4.2 Player Side ABR Logic

	5 Conclusions and Future Work
	References
	A Bitrate of Audio and Video Combinations

