
A Control Theoretic Approach to ABR Video Streaming:
A Fresh Look at PID-based Rate Adaptation

Yanyuan Qin∗, Ruofan Jin∗, Shuai Hao†, Krishna R. Pattipati∗, Feng Qian‡,
Subhabrata Sen†, Bing Wang∗, Chaoqun Yue∗

∗University of Connecticut, †AT&T Labs Research, ‡Indiana University

Abstract—Adaptive bitrate streaming (ABR) has become the
de facto technique for video streaming over the Internet. Despite
a flurry of techniques, achieving high quality ABR streaming
over cellular networks remains a tremendous challenge. ABR
streaming can be naturally modeled as a feedback control
problem. There has been some initial work on using PID, a widely
used feedback control technique, for ABR streaming. Existing
studies, however, either use PID control directly without fully
considering the special requirements of ABR streaming, leading
to suboptimal results, or conclude that PID is not a suitable
approach. In this paper, we take a fresh look at PID-based
control for ABR streaming. We design a framework called PIA
that strategically leverages PID control concepts and incorporates
several novel strategies to account for the various requirements of
ABR streaming. We evaluate PIA using simulation based on real
LTE network traces, as well as using real DASH implementation.
The results demonstrate that PIA outperforms state-of-the-art
schemes in providing high average bitrate with significantly lower
bitrate changes (reduction up to 40%) and stalls (reduction up
to 85%), while incurring very small runtime overhead.

I. INTRODUCTION

Video streaming has come to dominate mobile data con-
sumption today. As per Cisco’s 2016 Visual Network Index
report [2], mobile video traffic now accounts for more than
half of all mobile data traffic. Despite much effort, achieving
good quality video streaming over cellular networks remains
a tremendous challenge. In fact, a report in late 2014 indicates
significant stalling (10% to 40% depending on video quality)
in both Europe and North America’s cellular networks [3].

Most video content are currently streamed using Adaptive
Bit-Rate (ABR) streaming over HTTP, the de facto technology
adopted by industry. In ABR streaming, a video is encoded
into multiple resolutions/quality levels. The encoding at each
quality level is divided into small chunks, each containing
data for some time intervals’ worth of playback (e.g., several
seconds). A chunk at a higher quality level requires more bits
to encode and is therefore larger in size. During playback, the
video player determines in real-time which quality level to
fetch according to its adaptation algorithm.

Various user engagement studies [10], [13], [15], [17]
indicate that satisfactory ABR streaming needs to achieve three
conflicting goals simultaneously: (1) maximize the playback
bitrate; (2) minimize the likelihood of stalls or rebuffering; and
(3) minimize the variability of the selected video bitrates for
a smooth viewing experience. Reaching any of the three goals
alone is relatively easy – for instance, the player can simply
stream at the highest bitrate to maximize the video quality;

or it can stream at the lowest bitrate to minimize the stalls.
The challenge lies in achieving all three goals simultaneously,
especially over highly varying network conditions, typical of
the last-mile scenarios in cellular networks.

Rate adaptation for ABR streaming can be naturally mod-
eled as a control problem: the video player monitors the
past network bandwidth and the amount of content in the
playback buffer to decide the bitrate level for the current
chunk; the decision will then affect the buffer level, which
can be treated as feedback to adjust the decision for the next
chunk. PID (named after its three correcting terms, namely
“proportional”, “integral”, and “derivative” terms) is one of the
most widely used feedback control technique in practice [6]. It
is conceptually easy to understand and computationally simple.

There has been initial work on using PID control theory for
ABR streaming. However, the message so far has been mixed
and inconclusive. The studies [8], [9] directly apply the stan-
dard PID controller to ABR streaming with no modifications.
As a result, video bitrate may fluctuate significantly as shown
in the evaluation results. The studies [20], [22] conclude that
PID control is not a suitable approach since the goal of PID
control is misaligned with the goals of ABR streaming.

A. Contributions

In this paper, we adopt a contrarian perspective and take
a fresh look at the potential of PID control for ABR video
streaming. We start by pointing out that a recent heuristic tech-
nique with commercial deployment, BBA [11], in fact can be
shown to be, in effect, using a simplified form of PID control.
We then conduct an in-depth exploration of using PID control
for ABR streaming. We design PIA (PID-control based ABR
streaming), a novel control-theoretic video streaming scheme
that strategically leverages PID control concepts as the base
framework, and further incorporates domain knowledge of
ABR streaming to improve the robustness and adaptiveness of
video playback. Our main contributions include the following.
• We take a fresh look at PID-based control for ABR stream-
ing. We strategically leverage PID control concepts as the base
framework for PIA. The core controller in PIA differs from
those in [8], [9] in that we define a control policy that makes
the closed-loop control system linear, and easy to control and
analyze. The core controller maintains the playback buffer to
a target level, so as to reduce rebuffering.
• We add domain-specific enhancements to further improve
the robustness and adaptiveness of ABR streaming. Specifi-

cally, PIA addresses two key additional requirements of ABR
streaming, i.e., maximizing playback bitrate and reducing
frequent bitrate changes. It also incorporates strategies to ac-
celerate initial ramp-up and protect the system from saturation.
• We explore parameter tuning. Kp and Ki (defined in
Section II) are the two fundamental and most critical param-
eters that guide the PIA controller’s behavior. We develop a
methodology that systematically examines a wide spectrum
of network conditions and parameter settings to derive their
(Kp, Ki) configurations that yield satisfactory quality of
experience (QoE). A service provider can use this approach
to appropriately tune (Kp, Ki) for their environment.

We conduct comprehensive evaluations of PIA using a large
number of real cellular network traces with diverse network
variability characteristics. The traces were collected from two
commercial LTE networks at diverse geographic locations. Our
key findings include the following.
• PIA achieves comparable bitrates as two state-of-the-art
schemes, BBA [11] and MPC [22], while substantially reduc-
ing bitrate changes (49% and 40% lower respectively) and
rebuffering time (68% and 85% lower respectively). Overall,
PIA achieves the best balance among the three QoE metrics.
• PIA has low computation overheads (e.g., comparable to
BBA and only 0.5% of MPC based on our simulation). Our
emulation results also show that the execution time of PIA is
less than 2 seconds for a 15-minute video.
• We also found that a common set of (Kp, Ki) values exist
that have good performance across all the traces. This is impor-
tant as it suggests that a single appropriately selected (Kp, Ki)
pair can be used across a wide range of network conditions,
facilitating easy deployment of our streaming scheme.

B. Related Work

Overall, our work differs from prior efforts that directly ap-
ply PID controller to video streaming without any adaptation.
Instead, we show a somewhat surprising high-level finding: by
applying control theories in an explicit and adaptive manner,
our ABR streaming algorithm substantially outperforms state-
of-the-art video streaming schemes. Besides the initial work
on using control theory for ABR streaming [8], [9], [20],
[22] as described earlier, we briefly review other recently
proposed schemes for ABR streaming. BOLA [19] improves
BBA by selecting the bitrate to maximize a utility function
considering both rebuffering and video quality. FESTIVE [12]
and PANDA [14] both consider scenarios with multiple video
flows. piStream [21] is designed specifically for LTE networks
and uses PHY-layer information to improve the bandwidth
prediction. As another related work, [7] proposes a network-
based scheduling framework for adaptive video delivery over
cellular networks. The work [23] demonstrates the benefits
of knowing network bandwidth on the performance of ABR
streaming. None of them focuses specifically on leveraging
control theory for improving the video streaming QoE.

II. MOTIVATION

For a satisfactory user-perceived QoE, ABR streaming
needs to optimize several conflicting goals, including maxi-

Ct Network bandwidth at time t
xt Buffer level at time t
xr Target buffer level
Rt Selected video bitrate for time t
∆ Video Chunk Size
δ Startup latency
ut PID controller output
Kp,Ki,Kd PID controller parameters
ζ Damping ratio
ωn Natural frequency
β Setpoint weighting parameter

TABLE I: Key notation.

mizing average playback rate, minimizing stalls (or rebuffer-
ing), and reducing sudden and frequent quality variations [10],
[13], [15], [17]. We next formulate ABR streaming as a control
problem and describe the motivation for our study. Table I
summarizes the main notation used in this paper.

A. ABR streaming as a control problem

Deciding which bitrate level to choose can be modeled as a
control problem. Specifically, let xt be the buffer level of the
video player at time t, Ct the real-time network bandwidth
at time t, and Rt the bitrate of the video chunk that is being
downloaded at time t. Further, let ∆ denote the video chunk
size (i.e., the duration of its playback time), δ denote the
startup delay, i.e., how long it will take for the player to start
playing. Then the player’s buffer dynamics can be written as

ẋt =

{
Ct

Rt
, if t ≤ δ

Ct

Rt
− 1(xt −∆), otherwise

(1)

where 1(xt −∆) = 1 if xt ≥ ∆; otherwise, 1(xt −∆) = 0.
In other words, the playback of a chunk is only started after
the entire chunk has been downloaded (a chunk contains meta
data and hence the player needs to wait until the entire chunk
is downloaded).

In (1), ẋt is the rate of change of the buffer at time t. Here,
Ct/Rt models the relative buffer filling rate. If Ct > Rt,
i.e., the actual network bandwidth is larger than the bitrate
of the video chunk being downloaded, the buffer level will
increase. Otherwise, the buffer level will be at the same level
(if Ct = Rt) or decrease (if Ct < Rt).

One simple control strategy is to select the video bitrate for
each chunk based on the prediction of real-time link band-
width, C̃t. Specifically, it simply chooses the highest bitrate
that is less than C̃t. This is an open-loop control (there is no
feedback; the decision is based only on the current state and
the model of the system). It is not robust against network link
bandwidth estimation errors. As an example, it may choose a
high video bitrate if the estimated bandwidth, C̃t, is high, even
if the current playback buffer level is very low. If it turns out
that C̃t is an overestimate of the actual network bandwidth, the
buffer can be further drained and become empty, causing stalls.
Closed-loop control (or feedback control) is more effective in
dealing with network link bandwidth estimation errors.

B. PID control

As mentioned earlier, PID control is by far the most
common way of using feedback in engineering systems. A PID

controller works by continuously monitoring an “error value”
defined as the difference between the setpoint and measured
process variable [6]. Specifically, let ut represent the control
output, and et the error feedback at time t. Then

ut = Kpet +Ki

∫ t

0

eτdτ +Kd
det
dt
, (2)

where the three parameters Kp, Ki and Kd are all non-
negative, and denote the coefficients for the proportional,
integral and derivative terms, respectively. As defined above,
a PID controller takes account of the present, past and future
values of the errors through the three terms, respectively.
Some applications may require using only one or two terms
to provide the appropriate system control. This is achieved by
setting the other parameters to zero. A PID controller is called
a PI, PD, P or I controller in the absence of the respective
control actions [6].

In the video streaming scenario, the real-time buffer level
is the measured process variable, and the reference buffer
level is the setpoint. We next show that a recent state-of-
the-art buffer based scheme, BBA [11], can be mapped to
a P-controller (though the paper does not claim any control-
theoretic underpinnings). In BBA, the video player maintains a
buffer level, and empirically sets two thresholds, θhigh > θlow.
If the buffer level is below θlow, the video player always picks
the lowest bitrate, Rmin; if the buffer level is above θhigh, the
video player picks the highest bitrate, Rmax; otherwise, the
video player picks the video bitrate proportionally to buffer
level. The selected bitrate, Rt, can therefore be represented as

Rt =


Rmin, xt < θlow,
Rmax−Rmin
θhigh−θlow

(xt − θlow) +Rmin, θlow ≤ xt ≤ θhigh

Rmax, xt > θhigh

Comparing the above with (2), we see that it is equivalent to
a P-controller when xt ∈ [θlow, θhigh] with Kp = Rmax−Rmin

θhigh−θlow
,

Ki = 0 and Kd = 0.
The above scheme has been tested successfully in a large-

scale deployment [11], indicating that a PID-type control
framework has potential for ABR streaming. On the other
hand, P-controller only considers the present error (i.e., the
proportional term), and ignores the other two terms. It is well
known that the absence of an integral term in a system may
prevent the system from reaching its target value [6]. This is
especially true for video streaming where inaccurate network
bandwidth estimations may cause the error to accumulate over
time. Therefore, including the integral term can potentially
further improve the performance of [11]. PID’s ability to
address accumulative errors is advantageous compared to
model predictive control (MPC) based approach in [22], which
does not consider accumulative errors and requires accurate
network bandwidth prediction. In addition, MPC is much more
computationally intensive than PID.

We investigate PID-based control for ABR streaming in this
paper, motivated by the widespread adoption of PID control in
practice and BBA. Using PID for ABR streaming, however,

Moving
Horizon

Regularized LS

Video Player
Dynamics

rx Setpoint
Weighting

PIA Core
Component

Anti-windup

tu *
tR

Estimated
Network

Bandwidth

PIA
tx

Fig. 1: PIA main components.

has several challenges. First, the goal of PID control is to
maintain a target buffer level that is only indirectly related to
QoE. Indeed, while maintaining the buffer at a target level can
help in preventing rebuffering, it does not help with the other
two metrics on playback quality and bitrate variation. Second,
PID is often used in continuous time and state space, while
video streaming is a discrete-time system where the decisions
are made at chunk boundaries and the video bitrate levels
are discrete. Finally, while PID is conceptually simple, the
parameters (Kp, Ki and Kd) need to be tuned carefully. Here
important questions are how to choose these parameters, and to
find out whether there exists a parameter set that is applicable
to a wide range of settings. Some of the above challenges
have been pointed out in [20], [22], which take the position
that PID is not suitable for ABR streaming. As we shall show,
none of the above challenges is a fundamental hurdle for using
PID-based control for ABR streaming.

III. ADAPTING PID CONTROL FOR ABR STREAMING

We propose PIA, a PID based rate adaption algorithm for
ABR streaming. As shown in Fig. 1, it contains a PI-based
core control block as well as three mechanisms to address
specific requirements for ABR streaming. We first describe
the core component, and then the three performance enhancing
mechanisms.

A. PIA core component

The core component of PIA adjusts the standard PID control
policy in equation (2) so that the resultant closed-loop system
is linear, and hence easier to control and analyze. We next
define the controller output, analyze the system behavior, and
provide insights into how to choose the various parameters.

Recall the dynamic video streaming model in (1), where
xt is the video player buffer level at t, Ct is the network
bandwidth at time t, and Rt is the video bitrate chosen for
time t. We define the controller output, ut, as

ut =
Ct
Rt
, (3)

and set the control policy as

ut = Kp(xr − xt) +Ki

∫ t

0

(xr − xτ)dτ + 1(xt −∆) (4)

where Kp and Ki denote, respectively, the parameters for
proportional and integral control, xr denotes target buffer
level, and ∆ is the chunk size. The choice of xr depends on
system constraints, a point we will come back to in Section IV.

The above control policy differs from the standard PID
control policy (2) in the last term 1(xt−∆), which is a novel

aspect of our design. As we shall see, it provides linearity,
making the closed-loop control system easier to control and
analyze. In our control policy, the parameter for derivative
control Kd = 0 (hence strictly speaking, our controller is a
PI controller). This is because derivative action is sensitive to
measurement noise [6] and measuring network bandwidth in
our context is prone to noise.

Intuitively, ut defined in (3) is a unitless quantity represent-
ing the relative buffer filling rate. With ut selected, based on
(3), the player can select the corresponding bitrate as

Rt =
C̃t
ut
, (5)

where C̃t is the estimated link bandwidth at time t. Since video
bitrate levels are discrete, we can choose the bitrate to be the
highest that is below C̃t/ut. This choice of Rt can increase,
decrease or maintain the buffer level.

We next analyze the system to provide insights into its be-
havior as well as providing guidelines in choosing parameters.
Combining equations (1) and (4) yields

ẋt = ut−1(xt−∆) = Kp(xr−xt)+Ki

t∫
0

(xr−xτ)dτ, (6)

when the video starts playback (i.e., when t ≥ δ). We see that
it is a linear system. Taking Laplace transform on both sides
of (6) yields

sx(s) = Kp(xr(s)− x(s)) +
Ki

s
(xr(s)− x(s)) , (7)

where s is a complex variable. Let T (s) be the system transfer
function, which describes the relationship of the input and
output of a linear time-invariant system. From (7), we have

T (s) =
x(s)

xr(s)
=

Kps+Ki

s2 +Kps+Ki
, (8)

which is a second-order system. From (8), we have

2ζωn = Kp, ω2
n = Ki , (9)

where ζ and ωn are damping ratio and natural frequency,
respectively, two important properties of the system. Solving
the above two equations, we have

ζ =
Kp

2
√
Ki

, ωn =
√
Ki . (10)

Damping ratio represents the system’s ability of reducing its
oscillations. In our context, it measures how the buffer will
oscillate around the target buffer level — small damping will
cause the buffer to change rapidly, while large damping will
cause the buffer to change slowly. Natural frequency represents
the frequency at which a system tends to oscillate in the
absence of any driving or damping force. Empirically it is
found that ζ in the range [0.6, 0.8] yields a very good system
performance [18]. As a result, Kp and Ki should be chosen
so that ζ ∈ [0.6, 0.8]. We will discuss how to tune those
parameters in Section IV-B.

B. PIA performance enhancing techniques

Based on the core component of PIA, we now add three
domain-specific enhancements to further improve the robust-
ness and adaptiveness for ABR streaming.
Accelerating initial ramp-up. At the beginning of the video
play, the buffer level xt can be much smaller than the target
buffer level xr. In this case, observe from (4) that ut will be
large, which will result in low video bitrate, Rt. To address
this issue, we include a setpoint weighting parameter [6], β ∈
(0, 1], into the control policy as

ut = Kp(βxr − xt) +Ki

∫ t

0

(xr − xτ)dτ + 1(xt −∆). (11)

Note that β is only included in the proportional term; it does
not affect the steady-state behavior of the control system [6].
When β = 1, the above control policy reduces to (4). When
β < 1, it can lead to smaller ut, and hence faster initial
ramp-up in video bitrate. However, very small β can lead
to aggressive choice of video bitrate, and hence rebuffering
at the beginning of the playback. We explore how to set β in
Section IV-B. The control function corresponding to the above
control policy is

T (s) =
x(s)

xr(s)
=

βKps+Ki

s2 +Kps+Ki
. (12)

Therefore, both damping ratio and natural frequency remain
the same as before.
Minimizing bitrate fluctuations. The simple choice of Rt in
(5) mainly tracks the network bandwidth and does not take into
account the smoothness of the video; it may lead to frequent
and/or abrupt bitrate changes. To address the above issue,
we develop a regularized least squares (LS) formulation that
considers both video bitrate and the changes in video bitrate to
achieve a balance between both of these metrics. Specifically,
it minimizes the following objective function

J(Rt) =

t+L+1∑
k=t

(
ukRt − Ĉk

)2
+ η (Rt −Rt−1)

2
, (13)

where Rt−1 is the video bitrate for chunk t − 1 (i.e., the
previous chunk), uk is the controller output for the k-th chunk
(based on the decision of using Rt as the bitrate), Ĉk is the
estimated link bandwidth for the k-th chunk, and η is the
weight factor for bitrate changes. To reduce the number of
video bitrate changes, the formulation assumes that the bitrate
for the next L chunks to be the same, all equal to Rt. In
(13), the first term in the sum aims to minimize the difference
between ukRt and the estimated network bandwidth Ĉk (so as
to maximize Rt under the bandwidth constraint and selected
uk); the second term aims to minimize the bitrate changes
compared to Rt−1; the weight factor η can be set to reflect
the relative importance of these two terms. We use η = 1 (i.e.,
equal importance) in the rest of the paper.

The above formulation takes into account both the history
(i.e., Rt−1) and future time slots (through a moving horizon
of L chunks into the future). In each moving horizon, the
control output uk is updated according to the control policy

(11), base on the estimated xk when choosing Rt as the video
bitrate. Note that the above formulation does not need to con-
sider rebuffering explicitly because PID already maintains the
playback buffer to the target level (so as to avoid rebuffering).

Let R denote the set of all possible bitrates. The solution
of (13) is

R∗t = arg min
Rt∈R

J(Rt). (14)

We can find R∗t easily by plugging in all possible values
of Rt, Rt ∈ R, into (13), and find the value that provides
the minimum objective function value in (13). For every
Rt ∈ R, obtaining J(Rt) requires computation of L steps.
Therefore, the total computation overhead is O(|R|L). This is
significantly lower than the complexity of O(|R|L) in [22].

Dealing with bitrate saturation. Following the control policy,
ut may become negative (e.g., when the current buffer level
exceeds the target buffer level). In this case, solving (13) will
lead Rt to be the minimum bitrate. During this time period, if
we continue using the integral term, Iout = Ki

∫ t
0

(xr − xτ)dτ ,
ut may remain negative for an extended period of time,
causing Rt to stay at the minimum bitrate level for an
extended period of time (so called system saturation [6]), and
causing the buffer level to continue to grow. To deal with the
above scenario, we incorporate an anti-windup technique (to
deal with integral windup, i.e., integral term accumulates a
significant error) for negative ut, or more specifically, when
ut ≤ ε, 0 < ε � 1. Many anti-windup techniques have been
proposed in the literature [6]. We adopt a simple technique
which sets Rt to the maximum value, ut = ε, and does not
change Iout when ut ≤ ε. This corresponds to turning off the
integral control when ut is below ε. We set ε to a small positive
value, 10−10, in the rest of the paper.

C. PIA parameter tuning

Three important parameters in PIA are Kp, Ki and β, where
Kp and Ki determine the system behavior and β is used
for faster initial ramp-up. For a given network setting (e.g.,
cellular networks), since β does not affect the steady-state
behavior [6], we can first assume a fixed β (e.g., β = 1) and
tune Kp and Ki to achieve a desirable steady-state behavior
(i.e., jointly maximize the three metrics in QoE). Once Kp

and Ki are fixed, we then tune β for the initial stage of
the video playback. The values of Kp and Ki need to be
tuned so that the resultant system behavior is compatible with
the network setting. Taking cellular networks as an example,
since the bandwidth is highly dynamic, it is reasonable to
tune the system so that the buffer level does not fluctuate
drastically. Otherwise, the buffer can suddenly become very
low, making the system vulnerable to stalls. We describe
this approach using a set of network traces from commercial
cellular networks in Section IV-B.

D. Putting it altogether

We summarize the workflow of PIA depicted in Fig. 1. PIA
takes the target buffer level xr and current buffer level xt
as input, and computes the selected bitrate R∗t , which is then

Network trace index
10 20 30 40 50

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

10-2

100

102

(a)

Network trace index
10 20 30 40 50

P
re

d
ic

ti
o
n
 e

rr
o
r

-2

-1

0

1

2

(b)

Fig. 2: Characteristics of the network bandwidth traces.

fed into the Video Player Dynamics block to update the buffer
level xt. PIA considers both present and past estimation errors,
as well as incorporates all the three QoE metrics in the control
loop. PIA also includes an anti-windup mechanism to deal
with bitrate saturation, and a setpoint weighting technique to
provide faster initial ramp-up.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of PIA using
simulation and real implementation on a video player. Simula-
tion allows us to evaluate a large set of parameters in a scalable
manner. Real implementation provides insights under various
system constraints. In both cases, the network conditions are
driven by a set of traces captured from commercial LTE
networks that allow reproducible runs as well as apple-to-
apple comparison of different schemes. We first describe the
evaluation setup, and then compare PIA against several state-
of-the-art schemes using simulation. Last, we present real
implementation results on a DASH player.

A. Evaluation setup

Network bandwidth traces. We focus on LTE networks that
dominate today’s cellular access technology. For evaluation
under realistic LTE network environments, we collected 50
network bandwidth traces from two large commercial LTE
networks in the US. These traces were collected under a wide
range of settings, including different times of day, different
locations (in three U.S. states), and different movement speed
(stationary, walking, local driving, and highway driving). Each
trace contains 30 minutes of one-second measurement of
network bandwidth. The bandwidth was measured as the
throughput of a large file downloading from a well provisioned
server on a mobile device. Fig. 2(a) is a boxplot that shows the
minimum, first quartile, median, third quartile, and maximum
bandwidth of each trace, where the traces are sorted by
the median bandwidth. We see that the network bandwidth
is indeed highly dynamic. For some traces, the maximum
bandwidth is tens of Mbps while the minimum bandwidth is
less than 10 Kbps.

Video parameters. We use three video bitrate sets: R1 =
[0.35, 0.6, 1, 2, 3] Mbps, R2 = [0.35, 0.6, 1, 2, 3, 5] Mbps and
R3 = [0.2, 0.4, 0.6, 1.2, 3.5, 5, 6.5, 8.5] Mbps. The first set
is based on the reference for YouTube video bitrate levels

(corresponding to 240p, 360p, 480p, 720p and 1080p respec-
tively) [5]. The second set adds a higher bitrate level of 5
Mbps to the first set. The third set is based on Apple’s HTTP
Live Streaming standard [1]. For each bitrate set, we further
consider three variants with chunk size of 2, 4, and 8 s.

ABR Schemes. We compare PIA against three other schemes.
• RB: The bitrate is picked as the maximum possible bitrate

that is below the predicted network bandwidth. This is a simple
open-loop controller (see Section II) serving as baseline.
• BBA [11]: This is a state-of-the-art buffer based scheme. We
use BBA-0 (BBA-1 deals with variable bitrate (VBR) while
for simplicity, we use constant bitrate (CBR) in simulation).
The lower and upper buffer thresholds are θlow = 10 s and
θhigh = 60 s, respectively. The upper threshold is chosen to
accommodate chunk size of 8s (for chunk size of 2 and 4 s,
setting it to 30 s leads to similar results). The corresponding
buffer size is at most 60 MB (considering the highest bitrate
of 8 Mbps), reasonable even on mobile devices. We have
empirically verified the above buffering setting works well on
our dataset.
• MPC [22]: The video bitrate is chosen by solving a discrete
optimization problem by looking ahead for a horizon of 5
chunks (as suggested by the paper).
• PIA: We set the target buffer level xr = 60 s that is
compatible with the setting of BBA. The look-ahead horizon
is set to 5 chunks (i.e., L = 5 in (13)).

For all the schemes, the start-up playback latency δ is set
to 5, 10 or 15 s. For BBA and MPC, their parameters are
either selected based on the original papers, or configured by
us based on the properties of the videos (e.g., chunk size and
encoding rates) as justified above.

Network bandwidth prediction. For the schemes that require
network bandwidth estimation, it is set as the harmonic mean
of the network bandwidth of the past 20s. Harmonic mean
has been shown to be robust to measurement outliers [12].
Fig. 2(b) shows the boxplot of the bandwidth prediction of
the network traces. Each box in the plot corresponds to the
distribution of all prediction instances within a particular trace.
The prediction is at the beginning of every second. As shown,
the median prediction error is 20% to 40%, highlighting the
challenges of accurate bandwidth prediction in LTE networks.

B. PIA: Choice of parameters

Following the methodology outlined in Section III-C, we
first tune Kp and Ki, and then tune β for PIA. One question
is whether there exist a set of Kp and Ki values that work
well in a wide range of settings. This is an important issue
related to the practicality of PIA because if the choice of
Kp and Ki were sensitive to the settings, then tuning them
for different settings would require more efforts. While as
described earlier, the quality of experience (QoE) is affected
by three metrics (average video bitrate, the amount of bitrate
changes and rebuffering) jointly, comparing the QoE under
different choices of Kp and Ki is much simpler when using
a single combined metric. There is no consensus on such a

metric. One approach is using a weighted sum of the three
metrics as in [22]. Specifically, for a video of N chunks,

QoE =

N∑
t=1

Rt − µ
N−1∑
t=1

|Rt+1 −Rt| − λ
N∑
t=1

St. (15)

where Rt is the bitrate of the t-th chunk and St is the amount
of stalls for the t-th chunk, and µ and λ are weights that
represent respectively the importance of the middle and last
terms (i.e., bitrate changes and rebuffering) relative to the first
term (i.e., average bitrate) in the sum. There is no well agreed
upon settings for µ and λ; we vary µ and λ to multiple values
for sensitivity test.

K
i

#10-4

0

1

2

3

4

Kp
0 0.01 0.02 0.03

20

30

40

50

(a) Heatmap.

Heat values
44 46 48 50

P
er

ce
nt

ag
e

0

10

20

30

40

50

(b) Histogram of “heat” values.

Fig. 3: Region of Kp and Ki and the corresponding “heat”
values in one setting (bitrate level set R3, chunk size 2s, video
length 20 min, startup latency 10s, µ = 1, λ = 8.5 (when
bitrate is represented in the unit of Mbps)).

The trace-driven simulation allows us to conveniently con-
sider a wide range of settings by varying video bitrate level
set, video length, chunk size, startup latency, and µ and λ in
(15). Specifically, the video bitrate level set is either R1, R2,
or R3, video length is 5, 10 or 20 minutes, chunk size is 2,
4 or 8 s, startup latency is 5, 10 or 15 s, and µ is 1 or 2, and
λ is the maximum bitrate level of a video (e.g., 3 Mbps in
R1) or twice as much. The choice of of µ and λ is based on
the settings in [22]. In each setting (i.e., after fixing the above
parameters), we consider each of the 50 network bandwidth
traces individually. For the k-th network trace, we vary the
values of Kp and Ki in a large range to find the pair of Kp

and Ki that maximizes the QoE (note that as described in
Section III, we only consider valid combinations of Kp and
Ki values, i.e., those so that the damping ratio is in [0.6, 0.8]).
Once the maximum QoE, denoted as Q∗k, is determined, the
QoE under each valid (Kp, Ki) pair is compared to Q∗k to
see whether it is within 90% of Q∗k. Specifically, we define
a binary function fk(Kp,Ki) for the k-th network bandwidth
trace, where fk(Kp,Ki) = 1 if the resulting QoE under Kp

and Ki is within 90% of Q∗k, and otherwise fk(Kp,Ki) = 0.
We then consider all the network bandwidth traces, and create
a heat map with the “heat” for each valid pair of Kp and Ki

values as
∑
k fk(Kp,Ki). Clearly, a larger “heat” value for a

Kp and Ki pair means that it leads to good performance for
more network bandwidth traces. Fig. 3a shows an example
heat map for one set of parameters (described in the caption
of the figure). The black region represents invalid Kp and Ki

pairs (i.e., those causing the damping ratio out of [0.6, 0.8]).
For the valid Kp and Ki pairs, the “heat” value varies, with

Time (s)
0 500 1000 1500

R
e

la
ti
v
e

 b
u

ff
e

r
le

v
e

l

0

0.5

1

- = 1
- = 0.2
- = 0.01

(a) Step response.

Number of chunks played back
50 100 200 300 600

Q
o
E

0

2000

4000

6000

8000
PIA core
PIA, - = 1

PIA, - = 0.01
PIA, - = 0.2

(b) QoE.

Fig. 4: Choosing β in PIA.

the highest values in the bottom left region, marked by the
rectangle. Fig. 3b is the histogram of the “heat” values in the
rectangle area (excluding those corresponding to invalid Kp

and Ki pairs). It shows that majority of the values are close to
50 (i.e., the maximum “heat”), indicating that the valid Kp and
Ki pairs marked by the rectangle provide good performance
across almost all network traces.

We repeat the above procedure for all the settings, and
find the following region of Kp and Ki values leads to good
performance for all the settings

Kp ∈
[
1× 10−3, 14× 10−3

]
Ki ∈

[
1× 10−5, 6× 10−5

]
s.t. ζ (Kp,Ki) ∈ [0.6, 0.8] .

(16)

Specifically, under the above range of values, the average
“heat” for the different settings varies from 31 to 50, and the
standard deviation varies from 0.25 to 3.45. The results in the
rest of the paper use Kp = 8.8 × 10−3, approximately the
middle of the range of Kp in (16), and Ki = 3.6 × 10−5 so
that the damping ratio is 1/

√
2, a widely recommended value

for damping ratio [18], [16].
The finding that a small set of Kp and Ki values work

well under a wide range of settings is encouraging. Comparing
video characteristics (chunk size, bitrate levels) and network
conditions, network conditions represent the environment in
which PIA operates, and hence play a more important role in
determining Kp and Ki values. Considering that the network
traces were collected under a wide range of settings and that
they exhibit significantly different characteristics (see Fig. 2),
our results show that Kp and Ki can be tuned to accommodate
the large variations among individual traces. Fundamentally,
this indicates that we can find a range of Kp and Ki values to
make the system capable of dealing with the rapid bandwidth
variations, which are known to be one of the predominant
characteristics of cellular networks, despite the differences
across individual network conditions.

Once Kp and Ki are determined, we tune β for the initial
stage of the video playback. Specifically, we set β to 0.01,
0.2, 0.4, 0.6, 0.8, and 1.0. Fig. 4(a) shows the step response
of the control policy (only the results for β=0.01, 0.2 and 1
are shown for better clarity). When β = 1, the buffer becomes
full much more quickly than when β=0.2 and 0.01. This is

because, as explained in Section III-B, lower bitrate tends
to be selected when β=1, causing the buffer to fill up more
quickly. To examine the three QoE metrics jointly, Fig. 4(b)
plots the QoE when playing up to the i-th chunk of a video of
600 chunks (the setting is the same as that for Fig. 3) when
β=0.01, 0.2 or 1. We see that β indeed affects the QoE for
the initial playback, and β=1 leads to lower QoE compared to
β=0.01 and 0.2. Further investigation reveals that β=0.01 leads
to more rebuffering than β=0.2. Results in other settings show
similar trends. Since rebuffering has very detrimental effects
on viewing quality, we use β=0.2 in the rest of the paper.

Last, the results of PIA core (i.e., without the three enhanc-
ing techniques) are also shown in Fig. 4(b). We see that PIA
core indeed leads to lower QoE compared to the full-fledged
PIA, indicating the benefits of our three enhancing techniques.

C. Performance comparison

We first present the performance of PIA in the default
setting, i.e., chunk size 2 s, video bitrate set R2, video length
20 minutes, startup latency 10 s. After that, we evaluate the
impact of various parameters on the performance of PIA.

Fig. 5 plots the CDF of the three QoE metrics over all net-
work bandwidth traces in the default setting. The performance
of four schemes, RB, BBA, MPC and PIA, are also plotted.
We see that while the amount of bitrate change and rebuffering
is low under RB, its average bitrate is significantly lower
than those of the other schemes. PIA achieves comparable
average bitrate as BBA and MPC, with significantly less bitrate
change and rebuffering. Specifically, the average bitrate of
PIA is 98% and 96% of that of BBA and MPC, respectively,
while the average amount of bitrate change is 49% and
40% lower, and the average amount of rebuffering is 68%
and 85% lower than BBA and MPC, respectively. Overall,
PIA achieves the best balance among the three conflicting
metrics. As described earlier, the inferior performance of RB is
because it uses open-loop control without any feedback. The
superior performance of PIA compared to BBA is because
BBA implicitly uses one form of P-control (Section II) that
only takes into account present error, while PIA considers
both the present and past errors. PIA’s approach of applying
PID in an explicit and adaptive manner further facilitates the
design and improves the performance. The performance of
MPC is sensitive to network bandwidth estimation errors [22]:
it solves a discrete optimization problem in each step; when
network bandwidth estimation is inaccurate, the input to the
optimization problem is correspondingly inaccurate, leading to
suboptimal performance.

To provide further insights, Fig. 6 plots the bitrate selection
and the buffer level over time for BBA, MPC and PIA when
using one network trace. For reference, it also plots the
network bandwidth of the trace. We clearly see that BBA
has significantly more bitrate changes, and MPC tends to
be more aggressive in choosing higher bitrates, which can
lead to excessive rebuffering. The bitrate selection under PIA
matches well with the network bandwidth without frequent
bitrate changes. In terms of the buffer level shown in the

Average bitrate (kbps)
0 2000 4000 6000

C
D

F
0

0.2

0.4

0.6

0.8

1

RB
BBA
MPC
PIA

(a)

Average bitrate change (kbps/chunk)
0 100 200 300

C
D

F

0

0.2

0.4

0.6

0.8

1

RB
BBA
MPC
PIA

(b)

Total rebuffering (s)
0 50 100 150

C
D

F

0

0.2

0.4

0.6

0.8

1

RB
BBA
MPC
PIA

(c)

Fig. 5: Performance comparison in default setting (chunk size 2 s, bitrate set R2, video length 20 mins, startup latency 10s).

B
an

dw
id

th

 (
kb

ps
)

0

5000

0

5000 BBA

B
itr

at
e

se
le

ct
io

n

(k

bp
s)

0

5000 MPC

0

5000 PIA

Time (s)
0 200 400 600 800 1000 1200

B
uf

fe
r

le
ve

l

(s

)

0

50

100
BBA
MPC
PIA

Fig. 6: Comparison of different schemes for one trace under
the default setting (chunk size 2 s, video bitrate set R2, video
length 20 minutes, startup latency 10 s).

bottom plot in Fig. 6, MPC is lower than that of BBA and
PIA due to its aggressive choice of bitrate; the buffer level
of PIA reaches steady state at around 300 s, and then stays
around the target level of 60 s; the buffer level of BBA is in
between that of MPC and PIA.
Impact of video length. The above results are for video length
of 20 mins. We can vary the ending time of the video to
investigate PIA’s performance for shorter videos. When the
ending time is larger than 5 mins (i.e., video length longer than
5 mins), we observe similar results as before; for much shorter
videos, PIA has lower average bitrate compared to BBA and
MPC (but still outperforms BBA and MPC on the other two
metrics). This is because of the initial transient period of
PIA to reach the target buffer level. Further improving the
performance during the transient period is left as future work.
Impact of video bitrate sets. Recall that the video bitrate
set R2 has one higher bitrate level of 5 Mbps compared to
R1. We further investigate two more video bitrate sets R4 =
[0.2, 0.35, 0.6, 1, 2, 3] Mbps, which has one lower bitrate of
0.2 Mbps compared to R1; and R5 = [0.2, 0.35, 0.6, 1, 2, 3, 5]
Mbps, which has one lower and one higher video bitrate
levels (of 0.2 and 5 Mbps) compared to R1. Fig. 7 shows
the results (the results of RB are omitted for better clarity).
The X axis is the video bitrate set ID, and each subplot
corresponds to a metric. For each metric, we plot the average
value over all the network traces with 95% confidence interval.
We observe consistent trend for all three schemes (BBA, MPC,

and PIA). Comparing the results under R1 and R2, we see
adding one higher bitrate level leads to higher average video
bitrate, more bitrate changes, and more rebuffering; comparing
the results under R1 and R4, we see adding one lower
bitrate level maintains the average video bitrate while reduces
bitrate changes and rebuffering; comparing R1 and R5 , we
see adding both one lower and higher bitrate levels increases
the average video bitrate and bitrate changes, while reduces
the rebuffering. In general, adding more bitrate levels helps
improve at least one of the three metrics. Across the settings,
PIA has the lowest bitrate switches, the lowest rebuffering,
and comparable average bitrate compared to BBA and MPC.

Impact of video chunk size. We vary the video chunk size
by setting it to 2, 4, and 8 s. We found that for all chunk sizes,
PIA consistently outperforms MPC and BBA in balancing the
tradeoffs incurred by the three metrics. For example, for chunk
size of 8 s, PIA’s average playback bitrate differs from BBA
and MPC only by 0.1% and 3.2%, respectively, while PIA
reduces the rebuffering duration by 67% and 68% compared
to those of BBA and MPC, respectively.
D. Computational overhead

As described earlier, the computational overhead of PIA is
much lower than that of MPC: for m bitrate levels and horizon
L, the complexity of MPC is O(mL), while the complexity of
PIA is O(mL). On a commodity laptop with Intel i5 2.6GHz
CPU and 16GB RAM, for 600 chunks (2-second chunk with
bitrate set R2), the CPU time for MPC is 36.04 s, while the
CPU time for PIA is 0.17 s, comparable to that of BBA (0.08s).

E. Evaluation using DASH implementation

We have implemented PIA using dash.js (version 2.0),
a production quality open source framework [4]. We create
an emulation environment that consists of two computers:
one is a Linux machine running Apache httpd as the video
server and the other is a Windows machine as the client (a
laptop with i7-5700HQ 3.50 GHz CPU and 16GB memory).
They are connected by a 100Mbps link. We then apply the
Linux tc tool on the server side to emulate the bandwidth
of the download link based on the LTE bandwidth traces we
collected. We set the latency between the client and the server
to 70ms as it is the average latency reported by OpenSignal’s
latency report. The client uses Chrome browser to run
dash.js. Under the dash.js framework, we implemented
a new ABR streaming rule (about 400 LoC) to realize PIA.

Video bitrate set

A
ve

ra
ge

 b
itr

at
e

(k
bp

s)

0

1000

2000

3000

4000

5000

R1 R2 R4 R5

BBA
MPC
PIA

(a)

Video bitrate set

A
ve

ra
ge

 b
itr

at
e

ch
an

ge
(k

bp
s/

ch
un

k)

0

100

200

300

R1 R2 R4 R5

BBA
MPC
PIA

(b)

Video bitrate set

T
ot

al
 r

eb
uf

fe
rin

g
(s

)

0

20

40

60

80

100

120

R1 R2 R4 R5

BBA
MPC
PIA

(c)

Fig. 7: Impact of video bitrate levels on performance (chunk size 2 s, video length 20 minutes, startup latency 10 s.)

Comparing Simulation and Real Implementation Re-
sults. We compare the results obtained from our dash.js
implementation with those from the simulation, and confirm
that the results are consistent. Specifically, for average bitrate,
90% of the relative differences are within 6.5%; for bitrate
changes and and rebuffering duration, 90% of the absolute
differences are within 15 Kbps/chunk and 3 s, respectively.
Our further investigation indicates that such differences are
mainly due to VBR introduced by the x.264 encoder, a setting
that differs from our constant bitrate assumption in simulation.
The results also indicate PIA works well for VBR videos.

Runtime Overhead. We use a video of 903 seconds en-
coded using the bitrate set R1 with the chunk size of 2 s.
We record the CPU execution time of the ABR logic in the
JavaScript code when the video is being played. The execution
time of the default ABR logic in the dash.js player is
1.2 s for the entire 15-min video; the execution time of our
PIA logic is only slightly longer (1.9 s). The results indicate
PIA incurs very small runtime overhead despite its non-trivial
decision process shown in Fig. 1.

V. CONCLUSION AND FUTURE WORK

By strategically applying PID controller in an explicit
and adaptive manner, PIA considerably outperforms state-of-
the-art video streaming schemes in balancing the complex
tradeoffs incurred by key QoE metrics, as demonstrated by
extensive evaluations. PIA is also lightweight and easy to
deploy. We believe the same high-level principle can be
applied to other multimedia applications with content quality
adaptation such as live video conferencing. In our future work,
we plan to port our implementation to mobile devices to better
assess PIA’s performance in the wild, and also conduct deeper
exploration of other network and streaming settings.

REFERENCES

[1] Best Practices for Creating and Deploying HTTP Live Streaming
Media for Apple Devices (Apple Technical Note TN2224).
https://developer.apple.com/library/content/technotes/tn2224/ index.html.

[2] Cisco VNI: Global Mobile Data Traffic Forecast Update, 2015-2020.
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/mobile-white-paper-c11-
520862.html.

[3] Ctrix Mobile Analytics Report, 2014.
https://www.citrix.com/products/bytemobile-adaptive-traffic-
management/tech-info.html#reports.

[4] Dash-Industry-Forum/dash.js.
https://github.com/Dash-Industry-Forum/dash.js.

[5] YouTube live encoder settings, bitrates and resolutions.
https://support.google.com/youtube/answer/2853702?hl=en.

[6] K. J. Åström and R. M. Murray. Feedback Systems: An Introduction
for Scientists and Engineers. Princeton University Press, 2008.

[7] J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan, and
M. Chiang. A scheduling framework for adaptive video delivery over
cellular networks. In Proc. of ACM MobiCom, 2013.

[8] L. D. Cicco, S. Mascolo, and V. Palmisano. Feedback control for
adaptive live video streaming. In Proc. of ACM MMSys, 2011.

[9] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. ELASTIC:
a client-side controller for dynamic adaptive streaming over HTTP
(DASH). In Proc. of Packet Video Workshop (PV). IEEE, 2013.

[10] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam,
J. Zhan, and H. Zhang. Understanding the impact of video quality on
user engagement. ACM CCR, 41(4), 2011.

[11] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service. In Proc. of ACM SIGCOMM, pages 187–198, 2014.

[12] J. Jiang, V. Sekar, and H. Zhang. Improving fairness, efficiency, and
stability in http-based adaptive video streaming with FESTIVE. In
Proc. of ACM CoNEXT, pages 97–108, 2012.

[13] S. S. Krishnan and R. K. Sitaraman. Video stream quality impacts
viewer behavior: inferring causality using quasi-experimental designs.
IEEE/ACM Transactions on Networking, 21(6):2001–2014, 2013.

[14] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and D. Oran. Probe
and adapt: Rate adaptation for http video streaming at scale. IEEE
JSAC, 32(4):719–733, 2014.

[15] Y. Liu, S. Dey, F. Ulupinar, M. Luby, and Y. Mao. Deriving and
validating user experience model for DASH video streaming. IEEE
Transactions on Broadcasting, 61(4), December 2015.

[16] N. H. McClamroch. State Models of Dynamic Systems: A Case Study
Approach. Springer, 1980.

[17] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and P. Halvorsen. Flicker
effects in adaptive video streaming to handheld devices. In Proc. of
ACM Multimedia, 2011.

[18] K. Ogata. Modern Control Engineering. Prentice Hall, 2010.
[19] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. BOLA: near-optimal

bitrate adaptation for online videos. In INFOCOM. IEEE, 2016.
[20] G. Tian and Y. Liu. Towards agile and smooth video adaptation in

dynamic HTTP streaming. In Proc. of ACM CoNEXT, 2012.
[21] X. Xie, X. Zhang, S. Kumar, and L. E. Li. piStream: physical layer

informed adaptive video streaming over LTE. In Proc. of ACM
MobiCom, 2015.

[22] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-theoretic
approach for dynamic adaptive video streaming over HTTP. In Proc.
of ACM SIGCOMM, pages 325–338, 2015.

[23] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana,
X. Jin, J. Rexford, and R. K. Sinha. Can accurate predictions improve
video streaming in cellular networks? In Proc. of HotMobile, 2015.

