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Smartphones have emerged as ubiquitous platforms for people to consume content in a wide range of con-

sumption contexts (C2), e.g., over cellular or WiFi, playing back audio and video directly on phone or through

peripheral devices such as external screens or speakers. In this article, we argue that a user’s specific C2 is an

important factor to consider in Adaptive Bitrate (ABR) streaming. We examine the current practices of using

C2 in five popular ABR players, and identify various limitations in existing treatments that have a detrimental

impact on network resource usage and user experience. We then formulate C2-cognizant ABR streaming as

an optimization problem and develop practical best-practice guidelines to realize it. Instantiating these guide-

lines, we develop a proof-of-concept implementation in the widely used state-of-the-art ExoPlayer platform

and demonstrate that it leads to significantly better tradeoffs in terms of user experience and resource usage.

Last, we show that the guidelines also benefit dash.js player that uses an ABR logic significantly different

from that of ExoPlayer.
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1 Introduction

We consume content on smartphones in a wide range of contexts: we listen to audio/music on our
phones, using either the built-in speaker, or headphones that can even support spatial audio [69];
we watch video using the small built-in phone screen, a flip screen [49] that can be unfolded to a
larger display, or a connected projector (either built-in [77] or external [38, 47]) that projects the
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content to a larger space. In addition, we connect our phones to external peripherals such as a large-
screen high-resolution TV/monitor and 5.1 or 7.2 channel surround sound system [4, 36, 55] when
convenient (e.g., in Tailgate parties). The ubiquitous network connectivity to phones, through
cellular or WiFi, further allows us to access the Internet anytime anywhere.

We broadly refer to the environment in which a user consumes content as the consumption

context (C2). As examples, streaming a video over a cellular connection to the phone and viewing
the content on the phone involves one type of C2, while viewing the video on an external TV would
be another type. As we shall see, to deliver good Quality of Experience (QoE), different types of
C2 can have very different resource requirements and user needs. Therefore, being C2-cognizant
is important for many applications to appropriately optimize user experience and resource usage.

In this article, we explore using C2 in Adaptive Bitrate (ABR) streaming, the current de facto
technology for video streaming. In ABR streaming, the origin server provides multiple tracks or
variants that represent the same content, but are encoded at different bitrates and quality lev-
els. Each track is divided into multiple segments, each containing a few seconds worth of content.
During playback, for each segment position, the client uses an ABR rate adaptation logic to dynam-
ically select a variant from the multiple available options to adapt to dynamic network conditions.
We consider broadly HTTP Adaptive Streaming (HAS), including both DASH [42] and HLS [20]
protocols, with or without CMAF packaging [11]. At the server, video and audio can be muxed to-
gether, or demuxed (i.e., stored and streamed as separate tracks) [60]. We focus on the demuxed
paradigm because it has many advantages [60] and is widely adopted in popular streaming services.
However, the C2-cognizant framework developed here also applies to the muxed case.

Existing literature on ABR streaming has focused primarily on a single aspect of C2, i.e., avail-
able network bandwidth, and produced a range of rate adaptation schemes (see Section 7). While
this is certainly very important, many other important aspects of C2 have received little prior
attention. We describe two such aspects next. First, existing works focused primarily on video;
audio has received much less attention. Even in the well-studied area of rate adaptation, there
is very little work on rate adaptation for the case of streaming demuxed video and audio tracks,
which requires addressing subtle interactions between audio and video track selections [60]. Sec-
ond, there has been very little attention on matching the ABR track selection to the contextual
needs of the display/audio device where the content is consumed. Specifically, the video can be
either displayed on a small phone screen or a large external display, while audio can be played
either by the stereo speaker on the phone or an external surround sound system. Even in a single
session, the display/audio device can change over time. As we shall see, the choice of the periph-
eral used for consuming the video or audio has important implications for both QoE and resource
usage, and hence needs to be considered carefully.

We argue that using C2 holistically is important for the entire end-to-end path of ABR streaming
that involves the server, CDN, client and the network, especially due to the large amount of re-
sources and bandwidth consumed by ABR streaming. For last-mile networks, such considerations
are clearly relevant for resource constrained cellular networks. Even for relatively resource-richer
broadband settings, such considerations are relevant since typical uses often involve multiple de-
vices running multiple applications concurrently and sharing network resources over the same
broadband connection. It is important to ensure that the resource-intensive multimedia streaming
applications do not use more bandwidth than necessary for the current C2.

In this article, we explore using C2 to guide existing ABR rate adaptation schemes toward bet-
ter QoE and resource tradeoffs. In particular, our emphasis is on appropriately tailoring the video
and audio track selections to better match the contextual needs of the specific audio and display
devices used for the playback. This is important since not doing so can waste significant network
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bandwidth, without improving QoE (see examples in Section 2.1). In addition, user expectations
may also be conditioned depending on the consumption device capabilities and context. For in-
stance, when playing audio with a surround sound system, the user will clearly prefer the richer
5.1-channel experience over the 2-channel experience. However, when consuming the same con-
tent over a phone with a stereo speaker, the 2-channel experience may be perfectly acceptable.

To understand whether an audio/video track is suitable for particular C2, we need to be able to
measure the corresponding delivered QoE. This is relatively straightforward to realize for video,
given the availability of recent state-of-the-art metrics such as Video Multimethod Assessment

Fusion (VMAF) [50], which allow for evaluating perceptual video quality under different screen
sizes and viewing modes (e.g., phone, TV, and 4K screens). For audio, however, somewhat to our
surprise, the same task is much more challenging. While various objective audio quality models
exist (see Section 7), they suffer from key limitations (e.g., can only measure audio quality for mono
and stereo cases). In addition, while there is some recent work [26, 58] that uses video quality
metrics to guide video track selection, we are not aware of any work that uses perceptual audio
quality metrics for driving audio track selection. In this article, we address the above limitations
and make the following main contributions:

— We identify C2 as an important factor for achieving good tradeoffs between QoE and re-
source usage in ABR streaming. Using existing quality models for video and the methodol-
ogy that we developed for audio quality evaluation, we quantify and highlight the benefits
of being C2-cognizant in ABR streaming (Section 2).

— We examine the current practices of using C2 in five popular ABR players on a wide range
of platforms (Android, iOS, and web browser) and identify various limitations (Section 3).
Specifically, we consider ExoPlayer [33], dash.js [27], Shaka Player [34], AVPlayer [19], and
the YouTube app. Our evaluation shows that, although the different players use elements of
C2 to certain extent, they only provide limited treatment, lacking a holistic view of C2. We
show that these limitations can lead to substantial resource usage and/or degradation in QoE.

— We formulate the problem of C2-cognizant ABR streaming as an optimization problem
and develop practical best-practice guidelines to realize it (Section 4). These guidelines
leverage information provided through standard APIs by the OS and the streaming server,
and can be easily incorporated in ABR players. They enable appropriate tradeoffs between
QoE and resources to be achieved automatically, without involving users in the complex
decision process. We propose that these best-practice guidelines be used as first-class
principles in ABR streaming pipeline, while allowing each player to tailor its own policies
and instantiations to its specific use cases.

— To evaluate the design guidelines, we develop a proof-of-concept implementation in
ExoPlayer and evaluate it in a wide range of realworld scenarios (Section 5). We show that
it achieves significantly better tradeoffs between QoE and resource usage than the standard
ExoPlayer. For example, under low network bandwidth settings, it improves video quality
by reducing low-quality video segments (e.g., by 17%), while leading to similar audio quality
and slightly lower data usage compared to the non-C2 case. When the available network
bandwidth is high, it leads to significantly lower resource usage on the end-to-end path
(e.g., using only 13% of the bandwidth used by the standard ExoPlayer), while still realizing
good QoE for the specific C2. In addition, we demonstrate that our prototype can recognize
and react to dynamic C2 changes, and adjust audio/video track selection accordingly.

— We further apply C2-based filtering to dash.js player (Section 6), whose rate adaptation
strategy differs significantly from that in ExoPlayer. Our results show that C2-based filtering
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Table 1. Video and Audio Tracks of Two Demuxed Media

Track Attributes Average, peak, and DASH declared bitrate (Kbps)
ED (Elephant Dream) ToS (Tears of Steel)

A1 2, 48 kHz 66, 67, 65 66, 67, 67
A2 2, 48 kHz 131, 171, 128 130, 133, 133
A3 6, 48 kHz 197, 198, 198 197, 198, 198
A4 6, 48 kHz 392, 413, 383 392, 394, 388

V1 144p 102, 138, 117 89, 106, 91
V2 240p 225, 292, 259 198, 226, 202
V3 360p 390, 642, 560 342, 473, 429
V4 480p 844, 1365, 1186 763, 1003, 900
V5 720p 1622, 2716, 2325 1422, 2000, 1778
V6 1080p 2857, 4670, 3838 2314, 3249, 2931

can bring substantial benefit to dash.js, e.g., in reducing rebuffering when the network
bandwidth is low.

— We highlight the ABR protocol as another important component of C2 that needs to be
considered carefully (Section 2 and Section 3.2.4). Specifically, DASH [42] and HLS [20], the
two predominant ABR protocols, have subtle differences in their specifications, which have
significant implications that need to be explicitly accounted for by any streaming platform
that serves both protocols.

The concept of C2 and C2-based filtering apply to both client- and server-based approaches. Our
design and prototype (Sections 4 and 5) use a client-based approach, which can be easily adapted
to a server-based setting. While our prototype implementation and evaluation focus on the use
cases of displaying the video on the phone screen versus an external display, and playing the
audio over the phone’s built-in stereo speaker versus an external surround sound system, our C2
best practices can be applied directly to other C2 cases such as displaying video using a projector
and playing the audio using headphones. In the rest of the article, we focus on the cases where
the phone plays a central role in selecting the audio/video tracks from the server, whether in the
standalone mode or connected to an external display or speaker (popularly referred to as mirroring).
The cases where the external devices make their own decisions (e.g., when pressing the “casting”
button on YouTube phone app, see Section 3.4) are not of interest to this study.

2 The Need for C2-cognizance

In this section, we highlight the importance of being C2-cognizant in ABR streaming, specifically,
the importance of taking audio/video device capabilities and the ABR protocol into account during
track selection.

2.1 Audio Device and Audio Quality

A common practice in ABR streaming is that the server provides multiple audio tracks with varying
number of channels and encoding bitrate. Two examples are shown in the top half of Table 1 for
two demuxed media, ED (Elephant Dream) and ToS (Tears of Steel) [73]. For each media, the
server provides four audio tracks, A1–A4, all with sampling rate of 48 KHz, encoded using AAC-
LC [1]. Among them, A1 and A2 have two audio channels; A3 and A4 have six channels, i.e.,
corresponding to 5.1 channel surround sound [7].

Do the two higher bitrate audio tracks, A3 and A4, lead to better quality than the two lower
bitrate tracks, A1 and A2? As we show below, the answer is not straightforward—it depends on
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the number of channels that can be played out by the speaker. Specifically, we show two scenarios
below: (i) playback over a stereo (i.e., 2-channel) speaker, and (ii) playback over a surround sound
system.

Scenario 1 (playback over a stereo speaker). In this scenario, since the speaker only has two
channels, while A3 and A4 have six channels, each has to be downmixed into two channels before
it can be played back [21]. We follow the ATSC (Advanced Television Systems Committee)
standard [21] for the downmixing, and refer to the downmixed tracks as A3’ and A4’. Therefore,
the four options of audio tracks that can actually be played back by the stereo speaker are A1, A2,
A3’, and A4’. To compare the quality of these four options, we explore three objective models for
perceptual audio assessment: ITU-T Rec. P.1203.2 [46], ViSQOL [24, 37, 66], and Perceptual Eval-

uation of Audio Quality (PEAQ) [43]. While P.1203.2 is a recent standardized model (released
in 2017, as part of ITU-T P.1203 series), its audio quality module algorithm is the same as an older
standard, ITU-T P.1201.2 [44]. It adopts a no-reference model (also known as single-ended or non-
intrusive), i.e., it does not use a reference audio stream when assessing the quality of a test stream.
In contrast, both ViSQOL and PEAQ adopt full-reference models. ViSQOL v3 [24] was released in
2020 and improves upon its earlier versions [37, 66] in both design and usage. PEAQ is an ITU-T
standard that predates P.1203.2 and ViSQOL. In the following, we only present the quality scores
from ViSQOL and PEAQ since their results are sensitive to the audio content, while P.1203.2 does
not consider content at all.

To use ViSQOL and PEAQ, we need a high-quality stereo audio track as the reference, referred
to as A0. We obtain A0 from the content source website [73] as follows. The website provides
six raw audio tracks, corresponding to front left and right, center, rear left and right, and low-
frequency effect channels. To create A0, we first join the six raw audio tracks into a single file and
then downmix it to A0 following the downmix standard [21]. We divide each such encoded audio
track into multiple segments, each 5.33 seconds long to be compatible with video segmentation,
and obtain a time series of scores for each tested audio using A0 as reference.

Figure 1(a) plots the ViSQOL-based Mean Opinion Score (MOS) for ED, which is on a 1 (bad)
to 5 (excellent) scale. For the ViSQOL software we use, the maximum score observed is around
4.75 [12]. Figure 1(b) plots the PEAQ Objective Difference Grade (ODG) scores obtained using
the PEAQ software from [10] for ED, which is on a scale from -4 (very annoying impairment) to 0
(imperceptible impairment). Figure 1(c)–(d) shows the corresponding results for ToS. We see that
with ViSQOL, the scores of A4’ and A2 are very close to each other, and the scores of A3’ and
A1 are very close to each other. Using PEAQ, A4’ has the highest score, followed by A2, A3’, and
A1. For a given audio track, the PEAQ MOS mappings tend to be lower than the ViSQOL scores,
consistent with the observations in [66]. For instance, for ED, ViSQOL rates A2 and A3’ as good
quality (i.e., around 4), while PEAQ rates A2 mostly as -1 (impairment not annoying), and rates
most of the segments in A3’ as -2 (impairment slightly annoying).

The above observations suggest that choosing 6-channel audio tracks (A3 and A4) for a stereo

speaker is problematic: downloading A4 requires 3× the network bandwidth as A2, while the down-
mixed version A4’ has comparable or only slightly better quality than A2; A3 requires 1.5× the
bandwidth as A2, while A3’ has lower quality than A2. The higher bandwidth requirement of A3
and A4 can significantly limit the bandwidth left over for streaming video. This can lead to lower
video tracks being streamed and hence lower video QoE. Conversely, restricting the choice of au-
dio tracks to those that match the speaker capability (i.e., A1-A2) can lead to better video quality,
while not degrading audio quality.

We illustrate the above points using an example in Figure 2. It is obtained by running ExoPlayer
for ED (video and audio tracks listed in Table 1) on a Pixel 4a phone using a cellular network
bandwidth trace (average bandwidth as 1.5 Mbps). This network trace was collected by us; see
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Fig. 1. Quality of the four audio tracks in ED and ToS assessed using ViSQOL and PEAQ.

Fig. 2. An example illustrating the benefits of tailoring audio track selection to audio device capability (from

ExoPlayer with the DASH protocol using a cellular network trace with average bandwidth of 1.5 Mbps). The

y-axes in the first two plots are for video and audio tracks. The y-axes in the last three plots are for video

and audio qualities.

more details in Section 5.2.1. Both the video and audio are directly played on the phone. Figure 2,
from left to right, plots the video and audio track selection, video quality measured using VMAF,
and audio quality measured using ViSQOL and PEAQ. The results are for two cases: one only
allows 2-channel audio tracks (i.e., suitable for stereo speakers, marked as A1-A2) and the other
has no restriction (i.e., all 4 audio tracks are allowed, marked as A1-A4). We see that the A1-A2
case leads to significantly better video quality than the A1-A4 case: 91% of the video segments
have VMAF values above 60 and no segment has VMAF below 40 (VMAF value is in [0,100], the
higher the better; below 40 is considered as poor quality, above 60 is considered as fair or better),
while in the A1-A4 case, only 80% of the segments have VMAF above 60 and 7% of the segments
have VMAF below 40. The improved video quality in the A1-A2 case does not come at the cost of
lower audio quality; instead, it leads to similar or even better audio quality than the A1-A4 case.
Specifically, Figure 2 shows that, for the earlier audio segments, the A1-A2 case have higher quality
than the A1-A4 case. This is because the A1-A4 case selects A3, which has to be downmixed to the
2-channel A3’ for playback on the stereo speaker, but A3’ has lower scores than A2 that is selected
by the A1-A2 case. For the later segments, Figure 2 shows that both cases have good quality (mostly
above 4 for ViSQOL and above -1 for PEAQ).

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 9, Article 272. Publication date: August 2024.



C2: ABR Streaming in Cognizant of Consumption Context 272:7

Scenario 2 (playback over a surround sound system). Intuitively, since A3 and A4 can take
advantage of surround sound, they can lead to better quality than the two stereo tracks, A1 and A2.
However, we are not aware of any objective audio quality assessment tools that work for audio
tracks with more than two channels. Hence we cannot provide any numeric comparisons here.
Developing good quality evaluation tools for multi-channel such as surround sound is a promising
research area.

2.2 Display Device and Video Quality

Matching the video track selection to the display context being used for consuming the video
is important. However, there is a lot of focus on maximizing user experience, which in industry
translates to delivering very high quality content in many services, even for small-screens such
as phones. As an example, a new version of the YouTube player allows users to stream 4K videos
on Android devices (even on small-screen phones) [14–16]. In a test, we were able to stream a 4K
track over a LTE network to a Samsung phone whose screen resolution is only 1440p (significantly
less than 4K). The data usage is very substantial (several tens of Mbps), while the associated ben-
efit accruals in terms of better QoE is unclear for small screen context, due to human perception
limitations. For example, studies have shown very little gain for delivering quality beyond 720p
on small screens [58]. In addition, streaming and playing the high-bandwidth 4K resolution can
lead to high phone energy consumption [76] and undesirable stalls. As we shall see in Section 3,
ExoPlayer and Shaka player exhibit similar problematic behaviors as above.

Certain commercial streaming services provide options that account for partial C2 for video.
As examples, the YouTube phone app provides an option called “Play HD on Wi-Fi only,” which
limits the video resolution when streaming over cellular networks; the Amazon Prime Video app
provides multiple options (“Good”, “Better”, “Best”) to tradeoff the video quality and data usage.
In addition, some commercial services use device-specific ABR manifest files [20, 42], which can
limit the highest resolution track allowed on small screens. These practices, while moving in the
right direction, do not consider the entire C2. They are mainly motivated to conserve data, and do
not consider other important C2 factors such as display and speaker capabilities. Our best-practice
guidelines in Section 4 significantly extend the above practices in holistic ways.

2.3 ABR Protocol

DASH and HLS, the two predominant protocols, differ in important ways in terms of the actual
information communicated between the server and client. As an example, for demuxed video and
audio, DASH only specifies individual audio/video tracks and their bitrates, and does not specify
desired audio and video track combinations. In contrast, with HLS, a top-level master playlist
specifies both the allowed audio and video track combinations and the average and peak bitrate of
each combination, but does not specify the bitrate of an individual audio or video track. The player
logic needs to carefully account for these differences. As we shall see (Section 3.2.4), the current
treatment of this aspect in a popular player is not adequate.

3 C2 Practices in Current Players

In this section, we investigate the current practices around C2 in five popular players and identify
their limitations. We first describe our methodology, and then the behaviors of these players.

3.1 Players and Methodology

We study five players: ExoPlayer (v2.16.1) [33], dash.js (v3.1.1) [27], Shaka Player (v2.5.20) [34],
AVPlayer (running on iOS 15.0.1) [19], and the YouTube app for both Android and iOS (versions
18.12.34 and 18.09.4, respectively). ExoPlayer is an application-level media player for the Android
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platform, and has been used by more than 140,000 apps in Google Play Store [32]. dash.js is a
JavaScript based player and the reference player maintained by the DASH Industry Forum [2].
Shaka Player is a JavaScript library and has been used by more than 1,600 websites [65]. AVPlayer
is based on AVFoundation [18], a full-feature framework currently recommended by Apple for au-
diovisual media on Apple devices. YouTube player is one of the most widely used players, accessed
by millions of users every day [63].

Our main goal for studying these players is to understand (i) how and to what extent C2-related
information (such as audio/video device capabilities and network type) is obtained or configured
in each player, and (ii) whether/how such information is used to filter out unsuitable audio/video
tracks. ExoPlayer, Shaka Player, and dash.js are open-source players. For them, we first use source
code analysis to understand their behaviors and then use controlled lab experiments to verify our
understanding. For AVPlayer and YouTube app, since no source code is available, we rely primarily
on controlled blackbox experiments.

3.2 Open-Source Players

ExoPlayer and Shaka Player support both DASH and HLS, while dash.js only supports DASH. For
clarity, we first describe the behavior of these three players with DASH (Sections 3.2.1 to 3.2.3),
followed by ExoPlayer and Shaka Player with HLS (Sections 3.2.4 and 3.2.5). We use the built-
in ABR logic of each player without any change. Briefly, ExoPlayer considers audio and video
tracks together, and the rate adaptation is primarily rate based, with consideration of other factors
(e.g., buffer level and past track selection). The default ABR logic in dash.js is DYNAMIC [67], and
dash.js uses this ABR logic for audio and video rate adaptation separately. Shaka uses a simple
rate-based adaptation scheme that selects the video and audio combination whose bandwidth re-
quirement is closest to the current estimated network bandwidth. See more details on the ABR
logic of each player in [56].

The description below focuses on each player’s practice of audio and video track filtering; their
behaviors of identifying and using network information also have limitations, which are omitted
in the interest of space and can be found in [56].

3.2.1 ExoPlayer with DASH Protocol. For audio, ExoPlayer specifies that the maximum number
of channels that can be played by an audio device as a fixed value 8, independent of the actual

device capability. Due to the above over-specification, even for a stereo speaker, all audio tracks
that have up to eight channels will be determined as playable. After that, ExoPlayer has a filter-
ing mechanism based on the primary audio track. Specifically, ExoPlayer determines the primary
audio track to be the one with the highest number of channels, the highest sampling rate, and the
highest bitrate. After the primary audio track is determined, only the audio tracks that have the
same number of channels and the same sampling rate as the primary audio track are retained for
the subsequent ABR logic. As an example, for the media in Table 1, A4 is chosen as the primary
audio track. Then only A3-A4 are retained; A1 and A2 are excluded since they both have only
two channels. The above practice does not consider the speaker capability at all, which can have
significant adverse impact on QoE (see later).

For video track filtering, ExoPlayer associates a variable, maxVideoSizeInViewPort, with each
video track, whose value is a function of the resolution and width-to-height ratio of the dis-
play, as well as those of the video track. For example, consider a Pixel 4a phone with display
resolution 2340×1080, and three video tracks of 360p (640×360), 1080p (1920×1080), and 2160p
(3840×2160). The width-to-height ratio of the display is 29:6, while the width-to-height ratio
of all the three tracks is 16:9, lower than that of the display. Then for each of three tracks, its
maxVideoSizeInViewPort will be set to 1920×1080 for it to fit the display resolution (see details
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in ExoPlayer code [5]). After that, the video track filtering works as follows. The player checks
whether both the height and width of a video track are larger than the corresponding values in
maxVideoSizeInViewPort times a fraction (default as 0.98), that is, whether this video has to be
downsampled [8] to fit the display resolution. If none of the video tracks satisfies the above con-
dition, then no video track will be filtered. Otherwise, i.e., if one or more video tracks satisfy the
above condition, their respective numbers of pixels are noted, and let n be the minimum of these
values. After that, any video track with the number of pixels exceeding n will be filtered out. In
the example above for the Pixel 4a phone and three video tracks, both the 1080p and 2160p tracks
satisfy the condition, and hence their number of pixels will be noted, leading to n = 1920 × 1080.
Hence the 2160p (4K) track, which has more than n pixels, will be filtered out, and the 1080p track
along with the 360p track will be retained. While the above practice considers display capabilities to

some extent, it is not sufficient as we shall show later on.
As to display changes, ExoPlayer registers a listener to receive events regarding display changes.

However, it only handles the case when the display is changed from an external display to the built-
in display, and does not handle the other direction (i.e., changing the display from phone screen
to an external display).

Summarizing the above, ExoPlayer’s current treatment of C2 has various limitations in terms of
optimizing QoE and resource usage, including:

— The audio track filtering mechanism does not consider the speaker capabilities at all and
can exclude audio tracks with lower numbers of channels and lower bitrates. The example
in Figure 2 shows that such a practice can lead to lower video quality, with no improvement
in audio quality, compared to the practice of considering speaker capabilities.

— While the video track filtering mechanism considers display capabilities, it can still allow
video tracks with overly high resolutions to be selected. One example is as follows. Con-
sider a Samsung Galaxy S21 Ultra 5G with resolution 3200×1440, and seven video tracks
with resolutions 144p, 240p, 360p, 480p, 720p, 1080p, and 2160p. We find that ExoPlayer sets
maxVideoSizeInViewPort for each video track as 2560×1440. Consequently, only the num-
ber of pixels of the last track is noted and n is set to 3840×2160, and hence none of the video
tracks will be filtered out, and the highest 2160p (4K) track may be selected under certain
network conditions. However, streaming and playing 4K track on small-screen phones is
problematic in both QoE and resource usage, as we have pointed out in Section 2.2.

— The video track filtering only considers the built-in screen’s capabilities and does not han-
dle the case where the screen resolution is increased to a larger value. For example, when
connecting a Pixel 4a phone to an external 4K display, the 4K track should be allowed to
be selected. However, as described earlier, it will not be selected since it has already been
filtered out.

— The handling of dynamic display change is inadequate in that it cannot deal with the sce-
narios of changing the display during a streaming session, e.g., connecting a Pixel 4a phone
to a 4K display in the middle of the playback.

3.2.2 dash.js with DASH Protocol. dash.js does not consider the audio device capabilities
for filtering out audio tracks. It does not take account of the audio device capabilities in the ABR
track selection either. For video, dash.js sets the display window using HTML, and provides a
mechanism to limit the top video track based on the window size. This mechanism is, however,
disabled by default. As a result of the above behaviors, no audio or video track will be filtered. The
above simplifying treatment might be because dash.js is meant to be a prototype, instead of a
full-fledged product. On the other hand, since dash.js is a reference player, identifying what can
be improved is important for informing the practice.
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Fig. 3. An example showing the detrimental impact of not considering speaker capabilities in dash.js for

ED using a cellular network trace. In addition to worse video quality, it also leads to significantly more

rebuffering (5.5 seconds vs no rebuffering, not shown in the figure).

Since dash.js does not filter out any audio/video tracks based on C2, it has various drawbacks,
including potentially using audio/video tracks that exceed the speaker/display capabilities, leading
to low QoE and high data usage. We next show an example. It is obtained by running dash.js for
ED under the same cellular network trace for Figure 2 (average bandwidth 1.5 Mbps) on a Pixel 4a
phone. In the following, the A1-A4 case is for the current dash.js player, which allows all four
audio tracks A1-A4 to be selected, while the A1-A2 case emulates the scenarios where only A1-A2
are allowed based on speaker capabilities. We observe that the A1-A4 case has 5.5 seconds of stalls,
while the A1-A2 case has no stall at all. Figure 3 further shows the video and audio track selection
and their respective qualities. We see that these two cases have similar audio quality, while the
A1-A4 case has significantly lower video quality: 69% of the video segments have VMAF values
above 60 and 14% of the segments have VMAF below 40, while the corresponding values for A1-A2
case are 79% and 8%, respectively.

3.2.3 Shaka Player with DASH Protocol. Given multiple audio tracks, Shaka has an explicit logic
to prefer those with two channels. Specifically, the audio tracks are placed into groups based on
the number of channels. If there are tracks with two channels, these tracks are retained and the
rest of the tracks are removed from subsequent ABR track selection. If none of the audio tracks
has two channels, then the group of audio tracks with the lowest number of channels is retained
and the rest of the audio tracks are removed. For the two media in Table 1, only A1 and A2 are
retained, independent of the audio device that is being used.

For video, Shaka has a mechanism that filters video tracks based on the minimum/maximum
allowed video width, height, number of pixels, frame rate, or bitrate. In the default setting, however,
the minimum value is 0 and the maximum value is infinity for all these attributes, and hence no

video track will be filtered.
In summary, Shaka’s conservative preference for low-channel audio tracks, independent of the

audio device capabilities, is problematic: even if the audio is played over a surround sound system,
multi-channel audio tracks with six or more channels will not be selected, which can lead to lower
user experience than possible with such speaker systems. In contrast, for video, since no video
tracks are filtered out, Shaka can lead to inappropriate video track selection. Specifically, we tested
a setting where the playback uses the built-in screen of a Pixel 4a phone, the connection is over a
cellular network, and the highest video track is 4K. We see that the 4K track can be selected, which,
as we pointed out in Section 2.2, is problematic in both QoE and resource usage.

3.2.4 ExoPlayer with HLS Protocol. We highlight several differences between how HLS and
DASH are handled by ExoPlayer.

— Audio and video media attributes. Since the bitrate of an individual audio/video track is
not specified in the top-level HLS manifest file (see Section 2.3), ExoPlayer sets the bitrate
of each audio track as -1 (i.e., undefined). It sets the bitrate of a video track to be the value
specified in the first combination that contains this track.
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Fig. 4. Results of ExoPlayer with HLS and DASH under one cellular network trace (with proper C2-based

filtering).

— Audio track filtering. ExoPlayer uses the same logic to filter audio tracks for HLS as it uses
for DASH (see Section 3.2.1). However, since all the audio tracks have the same bitrate for
HLS (i.e., -1), only the first two rules (i.e., related to the number of channels and sampling
rate) will be effective in determining the primary audio track. For example, for the two media
in Table 1, when the HLS manifest file has four audio tracks, in the order of A1, A2, A3, and
A4, ExoPlayer will determine A3 (instead of A4 in DASH) as the primary audio track. This is
because A3 has the highest number of channels, sampling rate and bitrate, same as A4, and
is listed earlier in the manifest file (in reality, A3 has a lower encoding bitrate than A4, but
ExoPlayer regards the bitrate of both as the same -1).

— ABR logic. ExoPlayer uses the same logic for DASH and HLS. Specifically, ExoPlayer prede-
termines a set of audio and video combinations, and ignores the set of combinations that is
actually specified in the HLS manifest file. In addition, since audio tracks have unspecified bi-
trate in HLS, ExoPlayer will retain a single audio track, i.e., the primary audio track, leading
to a fixed single audio track selection. For ED (see Table 1), since A3 is determined to be the
primary audio track and is the only audio track retained for ABR logic, the predetermined
set of combinations for HLS only contains A3. See more details on the track combination
chosen by DASH and HLS in ExoPlayer in [56].

Due to the above issues in ABR, even if there were proper C2-based filtering in place, the perfor-
mance of ExoPlayer with HLS can still be undesirable. In fact, the QoE can be significantly lower
than that with DASH, even under exactly the same network bandwidth profile and for the same
set of audio/video tracks. Figure 4 shows an example obtained when the playback is on a Pixel 4a
phone under a cellular network trace with the average bandwidth of 1.0 Mbps (see details on the
network traces in Section 5.2.1). We assume proper C2-based filtering. Specifically, the video track
is capped to 720p considering the small phone screen, and the audio tracks are A1-A2 considering
the stereo speaker. The audio tracks are listed in the manifest in the order A2, A1, and hence A2
is determined to be the primary audio track. Figure 4(a) shows that a fixed audio track (i.e., A2) is
selected for HLS, in contrast to the adaptive choice for DASH. As a result, the HLS case has sig-
nificantly worse video quality than the DASH case as shown in Figure 4(b): it has 28% low-quality
segments (VMAF below 40), versus 1% in the DASH case.

The above observations highlight the importance of understanding the subtle differences be-
tween DASH and HLS, and their implications for ABR streaming. A streaming service that sup-
ports both DASH and HLS protocols may need customized treatment for these two protocols. A
service that builds on top of ExoPlayer may choose to support a single protocol for lower cost, and
may very well choose to support HLS instead of DASH, since HLS is supported by both Android
and Apple platforms, while DASH is only supported by Android. In such cases, it is even more
important to address the limitations in how ExoPlayer handles HLS protocol.
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3.2.5 Shaka with HLS Protocol. Unlike ExoPlayer with HLS, Shaka considers the set of audio
and video track combinations specified in the HLS manifest file. As with DASH, it prefers audio
tracks with two channels, independent of the audio device capabilities. Again, such choices
can lead to audio quality that is below the current device capabilities, and undesirable user
experience.

3.3 AVPlayer

AVPlayer only supports HLS. Since it is a proprietary player, we use controlled blackbox exper-
iments to explore its behaviors. All the experiments below are carried out in a high-bandwidth
(consistently above 300 Mbps) WiFi network, using the default setting in AVPlayer. We use an
iPhone 11 pro (iOS 15.0.1) that has a built-in stereo speaker and resolution 2436×1125. The periph-
eral devices include two different smart TVs that each has two speakers and 4K display, and a 5.1
channel surround sound system.

Audio track filtering. We investigate which audio track AVPlayer prefers when given three audio
tracks that have one, two, and six channels, respectively. All the three tracks are encoded in Dolby
Digital Plus (E-AC-3) [3], recommended surround sound codec by Dolby [6]. In the standalone
mode where the phone is not connected to any external device, AVPlayer selects the 6-channel
audio track, which needs to be downmixed for the stereo speaker on the phone and is problem-
atic (for reasons described in Section 2.1). When connecting the phone to a smart TV via HDMI,
we experiment with two recent but different Samsung TVs. Both TVs have stereo speakers, and
hence for each TV, we further explore two scenarios: connecting or not connecting a 5.1 channel
surround sound system to the TV. We find that for one TV, the 6-channel audio track is selected in
both modes, while for the other TV, the 2-channel audio track is selected in both modes. Neither
behavior is undesirable. The preferred C2-cognizant behavior would be to select a 2-channel au-
dio when the audio playback is over the built-in speakers, and select a 6-channel track when the
playback is over an attached surround sound speaker system.

Video track filtering. We explore the track selection by AVPlayer using a manifest file with
seven tracks, the two highest tracks being 1080p and 4K. In both the stand-alone and HDMI cases,
the maximum selected track is 1080p, even though 4K track is a more appropriate choice for the
latter based on C2. We find that AVPlayer has a configurable parameter preferredMaxResolution
whose default setting appears to be limiting this highest track selection to 1080p, agnostic of the
specific C2. If this parameter is configured appropriately, the player can indeed select a higher
resolution (e.g., 4K) track. Therefore, C2-cognizant ABR streaming would need to determine the
C2 over time and dynamically adapt this parameter setting appropriately.

3.4 YouTube Player

We explore the C2 behavior of the YouTube app on both the Android and iOS platforms using
controlled blackbox experiments. As mentioned in Section 1, we focus on various scenarios where
the decisions are made by the app on the phone.

Our experiments below use a Samsung Galaxy S21 Ultra 5G phone (running Android 12) and
an iPhone 11 pro (iOS 15.0.1). The peripheral devices include (i) a smart TV that has a stereo
speaker and 4K resolution, (ii) a 5.1 channel surround sound system, and (iii) an external monitor
with resolution 1080p. All the experiments were conducted in the same WiFi network with high
bandwidth as in Section 3.3. The audio and video selections by the YouTube app are obtained using
YouTube’s Stats for Nerds [9]. To verify the characteristics of the selected video/audio tracks (e.g.,
resolution of a video track and number of channels of an audio track), we use youtube-dl [75] to
download the tracks and use FFmpeg [30] to analyze the encoding of the tracks.
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YouTube Android Player. For audio filtering, we stream a movie that has both two and six chan-
nel audio tracks. The encoding is E-AC-3 [3]. We experiment in four scenarios: phone standalone
mode, phone connected to the smart TV using HDMI, the smart TV is further connected to the 5.1
surround sound system using HDMI, and phone connected the 5.1 surround sound system using
HDMI. In all these four cases, the app only selects the 2-channel audio track. While the selection
is appropriate for the first two scenarios (the phone has a stereo speaker), it is not ideal for the last
two scenarios, where the six channel audio track will better match the capability of the surround
sound system and user’s expectation.

For video filtering, we stream a video with seven tracks, the two highest tracks being 1440p and
4K. We configure the resolution of the Android phone display to three settings: 720p, 1080p, and
1440p (i.e., the maximum resolution that can be set since the phone display resolution is 3200×1440).
For each setting, we experiment in three scenarios: phone standalone mode, phone connected to
the smart TV using HDMI, and phone connected to the monitor using HDMI. In all the three
scenarios, the video track selection is up to the resolution set on the phone, i.e., when the phone
resolution is set to 720p, the maximum resolution of the video tracks that are selected is 720p,
and so on. In other words, for the two cases where the phone is connected to external devices,
the video track selection is agnostic to the external display resolution, while ideally the selection
should consider the external device capabilities, e.g., allowing 4K track to be selected when playing
the video on the smart TV.

YouTube iOS Player. For audio, we observe the same results on the iOS app as those on the
Android app. Namely, even when a 6-channel audio track is available on the YouTube server and
the network bandwidth is sufficiently high, the 6-channel audio track is never selected even when
the phone is connected to a 5.1 channel surround sound system.

For video, the iOS phone does not allow changing the phone resolution to other values, and
hence we only experiment with the actual phone resolution (2436×1125). We test four cases: three
as those for the Android phone (see above), while in the 4th case we connect the phone to the
smart TV using the screen-mirroring capability that is provided by iOS. In all the four cases,
the app only chooses 1080p video tracks, although it is more desirable to allow 4K tracks when
the phone is connected to the 4K smart TV.

3.5 Summary of Main Findings

We see all the five players have limitations in using C2. The limitations vary, including over-
specification (e.g., ExoPlayer’s setting on the maximum allowed number of audio channels), lack
of restriction (e.g., dash.js allows all audio and video tracks to be played under all possible C2),
conservative preference (e.g., Shaka prefers stereo audio tracks irrespective of the audio device ca-
pabilities), and not adapting to external peripheral capabilities (e.g., AVPlayer and YouTube player
do not select 4K video when connected to a 4K display). As we have shown, such limitations can
significantly affect their effectiveness, leading to performance and resource usage far from optimal.

4 Best-practice Guidelines

The limitations of the existing practice in using C2 cannot be simply resolved by changing some
default parameters alone. Rather, it requires the right flow of C2 information, and C2-cognizant
policies and actions based on that information. In this section, we first formulate the problem of
C2-cognizant ABR streaming as an optimization problem, and then present our design and best-
practice guidelines to realize it. While our findings on the limitations of the various players are
specific to the players, our formulation, design and best-practice guidelines are general, applicable
broadly to ABR streaming.
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4.1 C2-Cognizant ABR Streaming

The goal of C2-cognizant ABR streaming is to use C2 to guide rate adaptation to optimize QoE
and resource usage. Specifically, consider K video and audio segments. Let vk and ak represent
the selected video and audio tracks for segment k , respectively. Let C2k represent the C2 at the
decision time for segment k . Let QoEK

1 and RK

1 represent the QoE and resource usage for segment
1 to K . Then the optimization problem is

maximizevk ,ak ,k=1, ...,K : QoEK

1 − γRK

1

s.t. QoEK

1 =

K∑

k=1

Q(vk ,ak | C2k ) − λ
K∑

k=1

B(vk ,ak | C2k ) − μ
K−1∑

k=1

Vk

RK

1 =

K∑

k=1

S(vk ) + S(ak )

where Q(·) represents the quality given the selected video and audio segments under the current
C2, while B(·) represents the amount of rebuffering,Vk = |Q(vk+1,ak+1 | C2k+1) −Q(vk ,ak | C2k )|

represents the quality variation (in absolute value) between the (k + 1)th and kth segment, and
S(·) is the size of a video/audio segment in bits. Last, γ , λ, and μ are non-negative parameters that
specify the weights for resource usage, quality variation, and rebuffering, respectively.

Given the above formulation, one way to optimize the QoE and resource usage tradeoffs cog-
nizant of C2 is C2-based filtering, i.e., dynamically determining a subset of video and audio tracks
that are appropriate for the current C2 and limiting track selection to this subset. Let Vk and Ak

denote the full set of video and audio tracks for segment k , respectively. Given C2k , i.e., the C2
when the player needs to select segments k , let V′

k
⊆ Vk denote the appropriate subset of video

tracks based on C2k . Similarly, define A′
k
⊆ Ak for audio. Specifically, V′

k
and A′

k
exclude some

tracks with overly high bitrate relative to the current C2 (e.g., excluding 6-channel audio tracks,
and 1080p and 4K video tracks when playing on a phone), while still keeping the lower bitrate
tracks to accommodate bandwidth variations. As a result, choosing from V′

k
and A′

k
steers the

ABR logic to C2 appropriate choices, which can lead to lower resource usage, potentially less re-
buffering, while not degrading the quality of video and audio, and hence leading to improved QoE
and resource usage tradeoffs.

4.2 High-Level Design Choices

C2-based filtering requires meshing various information from the server and client, including spec-
ifying properly the media attributes at the server, parsing the media attributes properly at the
client, and obtaining the current C2 of the client. Such C2 information needs to be obtained during
the entire streaming session since the display/speaker setting and the type of network connection
may change over time. We next outline several design choices; our proposed design is deferred to
Section 4.3.

Server-based or client-based. In a server-based design, the client sends its C2 information to
the server, which, in turn, selects a subset of the audio/video tracks, creates a C2-specific manifest
file with this subset of tracks, and sends it to the client so as to restrict the track selection to
those suitable to the C2. This approach is a significant step forward over the use of device-specific
manifest files in some services, which, although customize the manifest files separately for small-
screen and large-screen devices (e.g., allowing high bitrate tracks only for large-screen devices),
still does not address the scenario where a small-screen device might in reality be used with a
different C2, e.g., when it displays the video on an external large-screen peripheral.
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Fig. 5. High-level design of client-based C2-cognizant ABR streaming.

Importantly, the C2 is not static, it can change during the playback, and therefore needs to be
tracked and accounted for automatically in a dynamic manner during playback. A challenge for the
above server-based approach is that, if the C2 at the client changes in the middle of a streaming
session, the changed information needs to be sent to the server so that the server can send an
updated manifest file to the client. The above involves communication of device capabilities and
C2 information to the server, and appropriate updates to the ABR manifest file and communication
of the same to the client in the middle of the session. This communication can be realized in
a variety of ways in the context of today’s ABR workflows, e.g., using an HTTP-based query-
response interface between the client and server. A longer term solution would involve building
in such communication capability into the ABR protocol itself.

Compared to the server-based design, a client-based approach is easier to deploy: the client is
cognizant of its current C2, and can filter out audio/video tracks accordingly. As a result, a subset of
audio/video tracks is fed to the ABR logic, restricting it from selecting tracks that are not suitable
for the current C2. On the other hand, as explained earlier, if desired, one can also adopt a server-
based approach, at the cost of more communication between the server and client.

Inside or outside the player. Another design issue is whether C2-based filtering is best ac-
counted for inside the player or outside the player (e.g., as additional customization policies de-
termined by the users). We argue for the former design because: (i) making users account for C2
appropriately is not practical since it requires them to have detailed knowledge about the differ-
ent dimensions of the C2 to be able to select the appropriate options in a meaningful way. When
incorporating C2 inside the player, it becomes easier for a streaming service to create customized
C2-cognizant experiences for end users based on its specific business needs. (ii) C2 needs to be
accounted for automatically in a dynamic manner during the playback, and hence is ideally incor-
porated at the player level, based on dynamic C2 collected in real time by the player, requiring no
manual input from the users.

4.3 Proposed Design

Summarizing the above, we develop a client-based design that resides inside the player software,
as shown in Figure 5. Two new components are added in the player, highlighted in green: one is
C2 Collector, which collects C2 information from the lower layers (the underlying OS and other
sources) and the server, and the other is C2-based Filtering, which filters out audio/video tracks
based on the current C2. The output of C2-based Filtering leads to a subset of audio and video
tracks (also highlighted in green in Figure 5), which is fed to the ABR logic for track selection.
Both components (C2 Collector and C2-based Filtering) run continuously during the playback,
determining dynamically the subset of audio and video tracks for C2-cognization rate adaptation.
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Existing customization polices such as “Play HD on WiFi only” can be provided as done today as
UI-based user configurable options outside the core ABR player system. The C2-based Filtering
module considers this policy information together with the C2 information received from the C2
Collector for making track filtering decisions.

Our design essentially extends the OS by adding a layer of automatic and realtime C2 informa-
tion collection and filtering inside the player. This added layer is outside the ABR logic and can
be easily incorporated in existing players, without any changes to the ABR logic. By filtering out
audio/video tracks inappropriate for the current C2, and feeding only the C2-appropriate tracks to
the player ABR logic, this added layer makes it easier for the ABR logic to then select the appropri-
ate tracks to achieve a better tradeoff between QoE and resource usage. This approach also makes
it easier and more practical to realize the benefits of C2-appropriate choices for ordinary users,
who do not have deep technical understanding of the various resource and performance tradeoffs.
In summary, using our approach, the player uses the choices appropriate for the current C2, not
requiring users to know the exact C2 all the time, while still allowing users to provide their input
to customize the C2-based filtering.

Under the above design, we provide the following best-practice suggestions for the design of C2
Collector and C2-based Filtering, and for the player to use C2 information.

4.3.1 C2 Collector. This module runs throughout the playback. When a player starts, it is
desirable to obtain the C2 details such as (i) the specific setup of the audio and video devices,
e.g., playing directly using the built-in speaker or native display of the phone or external pe-
ripherals, (ii) the capabilities of the audio/video device used for playback, e.g., stereo speaker, or
5.1 channel surround sound system, screen size and resolution of the display, and (iii) the net-
work connection, i.e., cellular or WiFi. Such information can be obtained through the APIs pro-
vided by the underlying system and other auxiliary information if needed; see more discussion in
Section 4.4.

During playback, it is necessary for C2 Collector to dynamically determine the current C2, and
update the the C2-based Filtering module accordingly. This can be achieved by registering an intent
to receive information about C2 changes from the underlying system as they occur.

4.3.2 C2-Based Filtering. This module also runs throughout the playback. At each point of time,
it should take the C2 information from the C2 Collector, and use C2 holistically. The decision on
what to be filtered should not be limited only by the available network bandwidth and what can be
decoded and played, but also should take account of the capabilities of the output devices and the
type of network connection. Both audio and video track selection needs to be moderated by taking
C2 into account based on what really brings value to the users in the specific C2. For example, for
a 1440p display, there is no need to bring in a 4K video track even if a phone can play it, since
the player will need to downsample the resolution to the lower screen resolution (1440p) before
displaying the video. In addition, it may not even need to bring in a 1440p track for a small phone
screen (see Section 2.2). Similarly, given a 2-channel speaker, there is no utility in streaming in a
high-bitrate 6-channel audio track, since it needs to be downmixed to a 2-channel version in any
case (see Section 2.1). A non-holistic piecemeal treatment of C2 can lead to undesirable outcomes;
see one example regarding ExoPlayer in [56].

4.3.3 C2-Cognizant Player. The client player should only consider the subset of audio and video
tracks determined by the C2-based Filtering module in its rate adaptation. In addition, it should
explicitly consider and tailor its C2-aware adaptation decisions based on the specific ABR protocol
being used and the information it provides. Which ABR protocol is used between the server and
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Table 2. APIs for Obtaining C2 Information on Android and Chrome Browser

Android Chrome

Audio device AudioManager navigator.mediaDevices

Display device DisplayManager, WindowManager devicePixelRatio, HTMLElement

Network type ConnectivityManager navigator.connection

client is an important component of C2, since it leads to different ways of representing information
included in the manifest file (e.g., bitrate representation for audio and video tracks), and somewhat
different types of information in the manifest file, which can have significant impact on the C2-
aware adaptation and resultant QoE. In particular, as we showed in Section 3.2.4, the DASH and
HLS specifications (the two predominant ABR protocols) have subtle but significant implications
that need to be explicitly accounted for by any client player that serves both protocols. This is
true even in the presence of CMAF packaging [11], which allows a single packaging to be used for
DASH and HLS, obviating the need for multiple packaged copies of the same underlying content.
In that case, the differences between DASH and HLS specifications still matter (e.g., different types
of information exchanged in the manifest file) and require careful treatment.

In our approach, the client is cognizant of its current C2, and therefore can take all the required
actions (e.g., C2-based filtering and track selection). Certainly, the server, which has more knowl-
edge of the content, can assist the client in its C2 decisions through some additional hints. For
example, for a high-motion sports content, it might indicate a subset of tracks suitable for a cer-
tain C2, e.g., a small screen versus a large TV. These hints could be included in the manifest file
or shared out-of-band. But even with the information in today’s manifest file, it is possible for the
client side to be C2-cognizant, as demonstrated in our prototype implementation (Section 5).

4.4 Obtaining C2 from the Underlying Platform

Our C2-cognizant ABR streaming design requires knowing C2 information. We next investigate
the availability of C2 information to the player through standard APIs on two state-of-the-art
platforms: Android as an example popular mobile phone OS, and Chrome as an example popu-
lar browser-based platform. Table 2 lists the APIs for accessing C2 for audio/video devices and
network type on these two platforms.

We test the Android APIs on two phones, Samsung Galaxy S21 Ultra 5G and Pixel 4a (both run-
ning Android 12), and test the Chrome APIs on a Windows laptop (Chrome 91.0.4472.124) and the
Samsung phone (Chrome 91.0.4472.120). We find that the required C2 information is available for
all the above cases, modulo some device-specific exceptions for the Pixel 4a phone (see Section 5).
Since C2 information is readily available to the players, our best-practice guidelines can be easily
incorporated into existing players.

5 Proof-of-Concept Implementation and Experimental Results

5.1 Proof-of-Concept Implementation for ExoPlayer

As a proof-of-concept, we modify ExoPlayer following our framework and best-practice guidelines
in Section 4. The modifications include:

— Audio. For audio, we first remove the logic that filters audio tracks based on the primary
audio track (Section 3.2.1). We then add a function in class DefaultTrackSelector in
ExoPlayer to set the maximum number of channels that can be played as follows. When
the player starts up, we use Android API AudioManager to get information about the
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capabilities of the audio device over which the audio will be played. If the built-in speakers
are used, we use AudioManager to obtain the number of channels supported by the device
(i.e., two channels) and then set the maximum number of channels to that value. After that,
we use setMaxAudioChannelCount function in ExoPlayer to only retain the audio tracks
whose number of channels do not exceed that maximum value. If an external audio device
is attached to the phone (again detected using AudioManager), we similarly obtain the
number of channels supported by the external device (e.g., 8eight channels for a surround
sound system) and set the maximum number of channels accordingly.

— Video. For video, we use Android’s DisplayManager API to detemrine the capabilities of
the display device on which the video will be shown. (i) If the built-in phone screen is used
for display, we restrict the video tracks to be no more than resolution k (e.g., 480p or 720p)
by using setMaxVideoSize function in Exoplayer. This setting is based on the small phone
screen and the diminishing gain of video perception quality [58]. Hence larger resolutions
only bring marginal benefits to users, while, because of their significantly higher bitrates,
they lead to substantially more energy and bandwidth consumption for the phone, the
network, and the server [76]. (ii) If an external large display is connected to the phone, we
determine the maximum resolution as the resolution of the external display (obtained from
DisplayManager); the video tracks with resolution up to this maximum value are allowed
to be selected. This design is made because when a user makes the effort of connecting the
phone to an external display, the external display will most likely be the primary display
device. Therefore, we use its resolution to dictate the selection of the maximum resolution.

— Other choices. The above choices are the defaults that we decide based on device capa-
bilities. Other choices are possible and our implementation can be easily extended to other
defaults. In addition, the default choices can be overwritten by users, e.g., through the
customization policies in Figure 5. As an example, a user may specify that, if the connection
is over a cellular network, then the phone should not choose 4K tracks even if it is connected
to an external 4K large display. This can be easily translated into C2-based filtering, by
detecting the network connection type using ConnectivityManager and limiting the
maximum video track using setMaxVideoSize.

— Dynamic settings. We use Android’s BroadcastReceiver to obtain notification on
speaker/display device changes and network type changes. Specifically, we use
ACTION_AUDIO_BECOMING_NOISY intent to catch changes in audio output. After that,
we obtain the maximum number of audio channels supported by the current audio device
and use it to filter audio tracks as described earlier. For display, we use the ACTION_HDMI_
AUDIO_PLUG intent to catch when HDMI is plugged or unplugged, and then set the
maximum allowed video resolution accordingly as described earlier. To identify changes in
network type, we use NetworkTypeObserver class, which has a onNetworkTypeChanged
listener that is called when network type is changed.

We tested the above modifications on two recent phones: Samsung Galaxy S21 Ultra 5G and
Pixel 4a (both running Android 12). The testing includes various realworld scenarios, including
standalone mode and connecting phones to peripheral devices (see details in Section 5.2). The Sam-
sung phone was able to identify the current C2 correctly in all the settings and our modifications
achieved the desired behaviors (see results in Section 5.2). Pixel 4a has several limitations in C2 in-
formation flow. First, AudioManager did not return the current number of channels for the built-in
speaker. To address this issue, we added a mechanism in our implementation that involves using
auxiliary device information: we use Android’s getDevices to obtain the device model (e.g., “Pixel
4a”), and then use a lookup table to determine the number of audio channels for the built-in speaker
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for that device model (e.g., 2 for “Pixel 4a”). Such mappings can be created based on widely avail-
able device specifications. Second, unlike the Samsung phone, external audio/video devices that
are connected to Pixel 4a cannot be directly detected through AudioManager and DisplayManager,
which might be because Pixel phones do not support video/HDMI output [13, 28, 70].

5.2 Proof-of-Concept Results for ExoPlayer

We next use our proof-of-concept implementation for ExoPlayer in a wide range of realworld sce-
narios, including playback on the phone over cellular or home WiFi networks, playback when
connected to peripheral devices over home WiFi networks. In addition, we test in dynamic set-
tings, e.g., starting in a stand-alone mode and then connecting an external speaker or display to
the phone, and vice versa. We next report the results in static settings; in dynamic settings, our
prototype correctly identifies the changes and filters audio/video tracks accordingly. All the results
are obtained using Exoplyer with DASH running on a Samsung Galaxy S21 phone. ExoPlayer with
HLS needs further improvement in the ABR logic (see Section 3.2.4), which is beyond the scope of
this article.

5.2.1 Experiment Setting. All the experiments are conducted between the Samsung phone and
a server that we set up. The phone has a stereo speaker and a 6.7-inch built-in screen with the
maximum resolution of 3200 × 1440. We consider three types of peripheral devices that can be
attached to the phone: a 1080p large-screen (24-inch) display, a 4K large-screen (32-inch) display,
and a surround sound system (VIZIO 5.1 channel).

Videos and audios. We consider the two 6-track videos, ED and ToS, both with four audio tracks,
in Table 1. In the interest of space, we only report the results for ED; the results for ToS show
similar trends. In addition, we consider another 7-track video, BBB (Big Buck Bunny), which
has six video tracks of the same resolutions as those for ED, and an additional 2160p (4K) track.

Network settings. We use trace-driven experiments for apples-to-apples comparison of our pro-
totype with the standard ExoPlayer. Specifically, the network bandwidth between the server and
the client is controlled using tc [52] at the server to emulate realworld network scenarios. We
consider both cellular and WiFi network settings. For cellular, we use 10 traces that we collected
from two commercial LTE networks under various scenarios (stationary, walking, driving). The
bandwidths of these traces are scaled to four settings, with the average bandwidth as 1, 1.5, 2.5, or
5 Mbps, respectively. For WiFi, we use four traces that we collected from a home network under
loaded conditions, with the average bandwidth varying from 15.7 to 19.0 Mbps.

Performance metrics. We use (i) quality of played back video segments: measured using a state-of-
the-art perceptual quality metric, VMAF [50]; we refer to the segments with VMAF below 40 as low-

quality and those with VMAF above 80 as good-quality, (ii) quality of playbed back audio segments:

measured using ViSQOL and PEAQ, (iii) rebuffering duration: the total duration of rebuffering in a
streaming session, (iv) quality changes: including the magnitude of quality change and frequency
of track level changes for video and audio, (v) data usage: the total amount of data downloaded, and
(vi) percentage of wasted data: measured as the amount of wasted data due to chunk replacement
(i.e., the sizes of the segments downloaded, but later replaced and not played back) divided by the
total data usage.

5.2.2 Playback on Phone over Cellular Networks. We use ED in this setting. Since the phone
has a stereo speaker, our prototype limits the audio tracks to the two 2-channel tracks, A1-A2,
while the standard ExoPlayer allows only A3-A4. For video, our prototype caps the video tracks
due to the small phone screen. Specifically, we show the results when capped to 480p or 720p; the
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Fig. 6. Comparison of our prototype and the standard ExoPlayer for 6-track ED (playback on phone over

cellular network settings). The two rows are the results when the average network bandwidth is 1.0 and 5.0

Mbps, respectively. The arrows point to the directions of better results (arrows in the bottom row omitted).

standard ExoPlayer allows all the six tracks (including 1080p) to be selected. We show the results of
three scenarios: from the standard ExoPlayer, from our prototype when capping the video tracks
to 480p or 720p. For all the scenarios, the percentage of chunk replacement tends to be lower when
the network bandwidth is higher since higher video tracks were selected initially and hence less
replacement is needed. For all the network settings, none of the runs has rebuffering.

The top row of Figure 6 plots the results when the average network bandwidth is 1.0 Mbps.
(i) Our prototype leads to significantly better video quality than the standard ExoPlayer: across the
10 traces, our prototype with 480p and 720p caps both reduce the percentage of low-quality video
segments by up to 17%, with the average reduction being 6%. This is because in our prototype, based
on the audio device capabilities, only the two lower bitrate audio tracks, A1 and A2, are allowed
to be selected, leaving more bandwidth for video selection, while in the standard ExoPlayer, the
selected audio tracks are exclusively the higher bitrate A3 or A4 tracks. For our prototype, we see
the video quality when capping to 480p and 720p is similar. This is because when the network
bandwidth is low, the choice of video tracks is mainly limited by the network bandwidth, not
the cap. (ii) When using ViSQOL, the audio quality of our prototype is slightly better than the
standard ExoPlayer: for our prototype, 92% and 90% of the segments have ViSQOL quality above
4 with 480p and 720p caps, respectively, while the percentage for the standard ExoPlayer is 84%.
This is because A2 has higher quality than A3’, i.e., the downmixed 2-channel version A3 that is
selected by the standard ExoPlayer. When using PEAQ, we see more lower quality audio segments
from the standard ExoPlayer, again due to the selection of A3. Specifically, for our prototype with
480p and 720p caps, respectively 1% and 6% of the segments have PEAQ lower than -2, while the
percentage for the standard ExoPlayer is 15%. (iii) The data usage of our prototype is slightly lower:
86% and 83% of what is used by the standard ExoPlayer for 720p and 480p caps, respectively, since
the low network bandwidth is the main constraint.

The bottom row of Figure 6 shows the results when the average network bandwidth is 5 Mbps.
We see all the three cases have good audio quality and close to zero low-quality segments. The data
usages of our prototype with 720p and 480p caps are 58% and 33% of what is used by the standard
ExoPlayer, respectively. For audio, our prototype chooses the C2 appropriate stereo A2 track, while
the standard ExoPlayer chooses the 6-channel A4 track. Both tracks have good quality based on
ViSQOL and PEAQ, with ViSQOL rating them as similar, while PEAQ rating A2 worse than A4. For
video, our prototype with 720p cap has almost the same amount of good-quality segments as the
standard ExoPlayer; capping to 480p leads to less good-quality segments, but more data savings.
Considering both quality and data usage, capping to 720p appears to achieve the best tradeoffs.
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Fig. 7. Quality change results of our prototype (blue and orange curves for limit of 720p and 480p, respec-

tively) and the standard ExoPlayer (red curve) for the two settings in Figure 6.

Quality change. Figure 7 compares the quality change of our prototype and standard ExoPlayer.
In the top row (average network bandwidth of 1.0 Mbps), we see that our prototype has slightly
lower quality change than the standard ExoPlayer for video. For audio, the quality change in
ViSQOL is similar for the three cases, and the standard ExoPlayer has slightly lower quality change
in PEAQ. The frequency of video track level changes for our prototype is comparable to that of the
standard ExoPlayer, while for audio tracks, our prototype has slightly lower frequency of change.
In the bottom row (average network bandwidth of 5.0 Mbps), the standard ExoPlayer has slightly
lower quality change than our prototype, while our prototype has lower frequency of track changes
for both video and audio.

Other bandwidth settings. Last, when the average network bandwidth is 1.5 or 2.5 Mbps, the
performance shows similar trends as above: our prototype leads to less low-quality video segments
and lower data usage than the standard ExoPlayer. The figures are omitted in the interest of space.

5.2.3 Playback on Phone over Home WiFi. For this setting, we first use ED and then BBB, both
with the four WiFi network traces. For ED, since the network bandwidth is high, the standard
ExoPlayer always selects A4 and the 1080p track, while our prototype always selects A2 and 480p
or 720p (depending on the configured cap). The results are similar to the bottom row of Figure 6:
on average, our prototype with 720p and 480p caps uses 54% and 30% of the data as that used by the
standard ExoPlayer, the audio quality is similar, and the video quality under 720p cap is similar to
that of the standard ExoPlayer, while the 480p cap leads to less number of good-quality segments.

For BBB, the average bitrates of the 480p, 720p, 1080p, and 4K are 0.4, 1.2, 2.1, and 10.8 Mbps,
with the corresponding declared bitrate in the manifest file being 0.7, 2.0, 3.3, and 16.8 Mbps, re-
spectively. We first test the case when only the first 6 tracks (up to 1080p) are included in the
manifest file. Across the four WiFi traces, our prototype with 720p and 480p caps uses 1.2 and 0.4
Mbps bandwidth on average, 58% and 18% of what is used by the standard ExoPlayer, respectively;
the video quality with the 720p cap is very close to that of the standard ExoPlayer, while the qual-
ity with 480p cap is lower (figures omitted). When including the 4K track in the manifest file, our
prototype makes the same choices as before, while the standard ExoPlayer allows the 4K track to
be selected. As a result, the bandwidth usage gap between our prototype and the standard Exo-
Player becomes even larger: our prototype only uses 13% and 4% of what is used by the standard
ExoPlayer (9.1 Mbps on average). For the standard ExoPlayer, the downloaded 4K segments have
to be downsampled to fit the phone screen resolution. Therefore, the resulting perceptual video
quality of the displayed content is still comparable to what is achieved by our prototype with 720p
cap, which already has very good quality.
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5.2.4 Connected to Large Screen in Home WiFi. We again use the 7-track BBB video. The phone
is attached to a 1080p or 4K external display in a home WiFi network setting. When connected
to the 1080p display, our prototype only allows up to 1080p track, while the standard ExoPlayer
allows up to the 4K track. The average bandwidth usage of our prototype is 2.1 Mbps, only 23% of
what is used by the standard ExoPlayer (i.e., 9.1 Mbps). Again, the 4K segments downloaded by the
standard ExoPlayer need to be downsampled to fit the 1080p display resolution. When connected
to the 4K display, both our prototype and the standard ExoPlayer allow the 4K track to be selected
(for different reasons: due to the resolution of the 4K display and the phone display resolution,
respectively), and have identical results.

5.2.5 Connected to Surround Sound System in Home WiFi. We use ED with four audio tracks
for this setting. Our prototype recognizes the surround sound system that supports up to eight
channels, and hence allows 6-channel audio tracks to be selected, i.e., all the four audio tracks,
A1-A4, can be selected. The standard ExoPlayer allows only A3-A4 to be selected due to over-
specification, not based on C2 (see Section 3.2.1). Because of the high network bandwidth, both
players choose the highest audio track (A4), and the respective highest resolution video track
(480p or 720p for our prototype and 1080p for the standard ExoPlayer). As a result, they have
similar audio quality; for video, the results are similar to those described in Section 5.2.3 for ED.
Our prototype still uses less bandwidth: 62% and 38% of what is used by the standard ExoPlayer
under the 720p and 480p caps, respectively.

6 Exploring C2-Cognizance for dash.js

We now present the results when C2 considerations are incorporated in dash.js. Since the
original dash.js player has no limitation on video and audio track selection, we are particularly
interested in scenarios where C2-based audio/video track selection is desirable. Specifically, we
focus on ABR streaming on a phone over cellular networks (see Section 5.2.2), where it is desirable
to filter out the 6-channel audio tracks to match the stereo speaker on the phone, and cap the video
track selection to 480p or 720p to match the small phone display. This exploration on dash.js
is complementary to that on ExoPlayer since these two players use very different ABR schemes
that represent the ABR design space in existing players (see more details in [56]). In the following,
instead of developing yet another full-fledged C2-cognizant prototype for dash.js, we emulate
different types of C2-based filtering by passing different manifest files from the server to the player.
Specifically, we use a manifest with only two audio tracks to emulate that only these two tracks are
left after C2-based filtering. C2-based video filtering (up to 480p or 720p video track) is achieved in a
similar manner.

The performance metrics are the same as those presented in Section 5.2.1 except for wasted
amount of data due to chunk replacement (since it is not in the dash.js player we use). As in
Section 5.2.1, we consider four settings of cellular network bandwidth (i.e., the average network
bandwidth scaled to 1, 1.5, 2.5, or 5 Mbps), each with 10 cellular network traces.

Figure 8 (top row) shows the results for dash.js when the average network bandwidth is
1.0 Mbps. We see that the C2-based audio and video track filtering leads to significantly lower
rebuffering than the original dash.js player: with the filtering, 70% and 80% of the traces have no
rebuffering for 720p and 480p cap, respectively, while only 20% of the traces have no rebuffering
for the original player. For the other performance metrics, we see similar results as those for Ex-
oPlayer. (i) The C2-based filtering leads to significantly improved video quality compared to the
original player: imposing 480p and 720p caps (and allowing up to stereo audio tracks) reduces the
percentage of low-quality video segments by 8.6% and 7.5%, respectively. (ii) The C2-based filter-
ing leads to slightly higher audio quality in ViSQOL (92% of the segments have ViSQOL quality
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Fig. 8. Experimental results for dash.js over cellular networks; the two rows are the results when the average

network bandwidth is 1.0 and 5.0 Mbps, respectively.

above 4 for our prototype, versus 85% for the original player), and less low-quality audio segments
in PEAQ (0% and 1% of the segments have PEAQ quality below -2 for 480p and 720p caps, versus
12% for the original player). (iii) The data usage of the original dash.js player is slightly higher
than the two cases with C2-based filtering since the low network bandwidth is the main constraint
on data usage in this setting.

Figure 8 (bottom row) shows the results when the average network bandwidth is 5.0 Mbps. In
this case, the original dash.js has rebuffering in one trace, while no rebuffering is present when
using C2-based filtering. For the other performance metrics, the results are consistent with those
for ExoPlayer: all three cases (with and without C2-based filtering) leads to good video and audio
quality, while the original player uses significantly more data.

For the above two bandwidth settings, the quality change results are similar to those in Figure 7,
and hence are omitted in the interest of space. Last, as in Section 5.2.2, the results for the two
intermediate average network bandwidth (1.5 and 2.5 Mbps) show consistent trends as the above
two bandwidth settings: C2-based filtering leads to lower rebuffering, less or similar low-quality
video segments, and similar quality audio segments.

7 Related Work

This article substantially extended our preliminary version in [56]. First, we added the current C2
practices of YouTube player on both Andriod and iOS platforms (Section 3.4). Second, we formu-
lated C2-cognizant ABR streaming as an optimization problem, and used it to illustrate the benefit
of C2-cognizance in leading to better QoE and resource usage tradeoffs (Section 4.1). Last, we
added experimental results that show the benefits of using C2-based filtering for dash.js player
(Section 6). We next briefly review other related work.

Objective perceptual audio assessment. In Section 2.1, we consider three audio quality assess-
ment models: ITU-T Rec. P.1203.2 [46], ViSQOL [24, 37, 66], and PEAQ [43]. In addition, there are
other models, e.g., POLQA [45], PEMQ-Q [41], DNSMOS [62]. DNSMOS is recently proposed, but
is used for content that has been noise suppressed, and does not use clean audio as reference. The
above tools are only for assessing audio quality. We are not aware of any study that uses perceptual
audio quality to drive audio track selection as in our study.

ABR rate adaptation. Many ABR schemes have been proposed in the literature (see surveys
in [22, 48, 64]). Several schemes [40, 67, 68] are buffer-based. The schemes in [25, 29, 57, 59, 71, 74]
are based on control theory. The schemes in Pensieve [53], D-DASH [31], Comyco [39], and
GreenABR [72] leverage machine learning. QDASH [54] tries to reduce quality switches during
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adaptation. PANDA/CQ [51] jointly considers network bandwidth and video bitrate variability.
Oboe [17] pre-computes the best possible ABR parameters for different network conditions and
dynamically adapts the parameters at runtime. The main focus of the above ABR schemes is on
addressing one aspect of C2, i.e., dynamic network bandwidth. Our study builds on existing ABR
schemes, and focuses on incorporating other aspects of C2 (audio and video device capabilities,
and ABR protocols) to supplement existing schemes. In addition, the above ABR schemes are not
designed specifically for demuxed audio and video streaming. Our work expands the study in [60]
to highlight the subtle interactions between audio and video rate adaptation in demuxed ABR
streaming, and the benefits of incorporating C2 in such scenarios for the overall QoE.

Limiting track selection. Most ABR schemes aim to maximize quality; only several studies con-
sider additional factors. The study in [58] assumes a user-specified target quality and aims to
achieve the target quality to reduce data usage. The study in [61] proposes a framework and two
strategies that use a per-session data budget to guide ABR rate adaptation to deliver good QoE
while satisfying the data budget constraint. QBR [26] aims to improve existing ABR schemes by
reducing the data usage while potentially increasing QoE. The work in [76] proposes two simple
strategies to limit the track selection to achieve significant energy savings with little degradation
in viewing quality. Some commercial streaming services provide options to cap the track selection
to tradeoff the quality and data usage when streaming over cellular (see Section 2.2). Our work dif-
fers from them in that we identify C2 as an additional factor and demonstrate that C2-cognizance
provides substantially improved tradeoffs in QoE and data usage.

8 Conclusions and Future Work

In this article, we identified C2 as an important factor to consider in ABR streaming, and explored
its potential for realizing better tradeoffs between QoE and resource usage. We identified limi-
tations in existing players in using C2 and developed practical best-practice guidelines that can
be easily incorporated in existing player frameworks to realize the benefits of C2-cognizant ABR
streaming. Furthermore, we developed a proof-of-concept prototype in the widely used ExoPlayer
platform to instantiate and validate the guidelines. Our evaluations demonstrate that the approach
has substantial benefits over the state-of-the-art.

As future work, we plan to extend C2-cognizant ABR streaming to a wider range of C2, e.g.,
streaming in moving vehicles versus stationary environment, in a quiet room versus a noisy envi-
ronment, for far versus near user-screen distances, with and without other running applications
on the device, and for different types of content being consumed. While some aspects have been
explored in existing studies (e.g., [23, 35]), an interesting question is how to address the various
aspects of C2 in a unifying framework to achieve C2-cognizance considering all these aspects. In
addition, this study focuses on mobile devices. Another interesting direction is exploring C2 for
other types of devices (e.g., laptops).
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