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A New Iterative LT Decoding Algorithm for Binary and
Nonbinary Galois Fields

Yuexin Mao, Jie Huang, Bing Wang, Jianzhong Huang, Wei Zhou, and Shengli Zhou

Abstract: Digital fountain codes are record-breaking codes for era-
sure channels. They have many potential applications in both wired
and wireless communications. Most existing digital fountain codes
operate over binary fields using an iterative belief-propagation
(BP) decoding algorithm. In this paper, we propose a new itera-
tive decoding algorithm for both binary and nonbinary fields. The
basic form of our proposed algorithm considers both degree-1 and
degree-2 check nodes (instead of only degree-1 check nodes as in the
original BP decoding scheme), and has linear complexity. Extensive
simulation demonstrates that it outperforms the original BP decod-
ing scheme, especially for a small number of source packets. The
enhanced form of the proposed algorithm combines the basic form
of the algorithm and a guess-based algorithm to further improve
the decoding performance. Simulation results demonstrate that it
can provide better decoding performance than the guess-based al-
gorithm with fewer guesses, and can achieve decoding performance
close to that of the maximum likelihood decoder at a much lower
decoding complexity. Last, we show that our nonbinary scheme has
the potential to outperform the binary scheme when choosing suit-
able degree distributions, and furthermore it is insensitive to the
size of the Galois field.

Index Terms: Binary erasure channel (BEC), decoding algorithm,
digital fountain codes, Luby transform (LT) codes, nonbinary.

I. INTRODUCTION

Digital fountain codes [1]–[4] are record-breaking codes for
erasure channels [5]. In such codes, an encoder is a fountain
that produces an endless supply of water drops (encoded pack-
ets). For k original packets, a receiver only needs to receive
k′ (which is about 5% larger than k in practice) packets to re-
cover the original k packets [6]. Fountain codes are rateless in
the sense that the number of encoded packets that can be gen-
erated from a source is potentially limitless. Furthermore, the
number of encoded packets generated can be determined on the
fly. The first practical realization of digital fountain codes is
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Luby transform (LT) codes invented by Luby [7]–[9]. LT codes
are very similar to Gallager’s low-density parity-check (LDPC)
codes [10], but they use a highly irregular weight distribution
for the underlying graphs designed over the binary erasure chan-
nel (BEC) [11]–[14]. Later, an improved version, Raptor codes
[15], was invented by Shokrollahi. Raptor codes introduce a pre-
coding phase to relax the condition of LT codes: When a con-
stant fraction of source packets is decoded through LT codes,
all the source packets can be recovered through an erasure cor-
recting block code (while LT codes need to decode all source
packets successfully).

The properties of digital fountain codes have made them
attractive choices for both wired and wireless communica-
tions [4]. Firstly, since they do not need to feedback the inter-
mediate information to the transmitter immediately (only after
recovering all the source packets, the receiver sends the feed-
back information to the transmitter), and the amount of redun-
dancy can be determined on the fly, they are applicable to highly
asymmetric wireless links with unknown and/or time-varying
loss rates. Secondly, their efficient encoding and decoding al-
gorithms allow them to be executed on low-power embedded
devices, and these codes are universal in the sense that the de-
coder is capable of recovering the original symbols from any
set of output symbols whose size is close to the optimal size
with high probability. Last, they are very suitable for multi-
cast/broadcast applications: With fountain codes, repair packets
required by a receiver can be useful to all receivers in a multi-
cast group since each receiver only needs to receive any subset
of k′ packets to recover the original data. Indeed, recently, a ver-
sion of Raptor codes has been selected as the global standard for
multimedia broadcast/muticast services (MBMSs) to 3G mobile
devices [16].

For decoding, an iterative belief-propagation (BP) decoding
algorithm for LT codes is similar to that of LDPC codes over the
BEC. This decoding algorithm is near optimal for very large k,
while its performance may not be good for small k. For small to
moderate k, [17] has proposed near-linear decoding algorithms
for LDPC codes over BECs. Especially, when the number of
guesses is unlimited, the guess based algorithm (Algorithm C
in [17]) is an efficient implementation of the optimal maximum
likelihood (ML) decoder. The same idea has also been proposed
in [18].

In this paper, we propose a new hard iterative decoding al-
gorithm over the BEC for small to moderate k. The novelty of
our proposed algorithm lies in that it proceeds from check nodes
instead of source nodes as in [17] and [18]. Specifically, the ba-
sic form of the algorithm considers both degree-1 and degree-2
check nodes: When there is no degree-1 check node, it intro-
duces a merge function that merges the source nodes that are
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connected to degree-2 check nodes, and continues the decod-
ing process. This basic algorithm has linear complexity, and ex-
tensive simulation demonstrates that it significantly outperforms
the original LT decoding scheme (that only considers degree-1
check nodes), especially for small k. This algorithm is similar to
the algorithm in [19] that is proposed for LDPC codes. However,
our work is done independently and concurrently with the work
in [19]. We further propose an enhanced form of the algorithm
that combines the basic algorithm and a guess-based algorithm
that is inspired by [17]. The enhanced algorithm runs the basic
algorithm first, and then applies the guess-based algorithm when
the basic algorithm stops (i.e., no degree-1 or degree-2 check
node exists). Running the basic algorithm first reduces the de-
coding complexity, while running the guess-based algorithm af-
terwards further improves the decoding performance. Our simu-
lation results demonstrate that the enhanced algorithm can pro-
vide better decoding performance than the guess-based algo-
rithm with fewer guesses (and hence has lower decoding com-
plexity). Furthermore, the enhanced algorithm achieves decod-
ing performance close to that of the ML decoder with much
lower decoding complexity.

Our second main contribution is that we extend the proposed
iterative decoding scheme to nonbinary fields while most exist-
ing digital fountain codes operate over binary fields. With the
proposed decoder, we find that our nonbinary decoding scheme
has the potential to outperform its binary counterpart when the
degree distribution is chosen properly. Furthermore, our nonbi-
nary scheme is insensitive to the size of the Galois field, and a
small size, such as 4, is sufficient to realize most of the perfor-
mance gains.

The rest of the paper is organized as follows. Section II re-
views the encoding and decoding algorithms of LT codes and
Raptor codes. Section III presents our proposed decoding algo-
rithm in the binary field and evaluates its performance through
simulation. Section IV presents our proposed decoding algo-
rithms in nonbinary Galois fields. Last, Section V concludes the
paper and presents future work.

II. LT CODES AND RAPTOR CODES

In this section, we briefly describe LT codes and Raptor
codes. Consider k source packets, s1, · · ·, sk, and n encoded
packets , c1, · · ·, cn. We slightly abuse notation to use c1, · · ·, cn
to represent both check node c1, · · ·, cn and its related value, re-
spectively. Similarly, we use s1, · · ·, sk to represent source node
s1, · · ·, sk and its related value, respectively. In general, n is
slightly larger than k (about 5% larger for large k) [6]. In prac-
tice, LT encoding is applied on symbols at the same position
across different packets. For example, assume each packet has p
symbols, then p parallel LT codes are used to encode k packets
into n packets. Each packet has its own cyclic redundancy check
(CRC) bits to verify the correctness. Denote s = [s1, · · ·, sk]

T

and c = [c1, · · ·, cn]
T . A LT code can be described as c = Gs

where the matrix G defines a Tanner graph that specifies the
connections between source and encoded packets. Note that the
source and encoded packets in the Tanner graph are represented
by source nodes and check nodes, respectively. The iterative
LT decoding process is a hard decoding algorithm as described

Fig. 1. Illustration of the basic LT decoding algorithm in the binary field
(k = 3, n = 3).

in [6].
Raptor codes improve upon LT codes by introducing a pre-

coding phase that relaxes the condition of LT codes. In pre-
coding phase, m source packets encode to k intermediate pack-
ets with an (k,m) erasure correcting block code that ensures to
recover all the m source packets from l intermediate packets,
k ≥ l ≥ m. Then, k intermediate packets are encoded into n
packets using LT codes. Thus, LT codes only need to decode
a fraction of intermediate packets (l packets or more), then all
source packets can be decoded. Raptor codes are the first known
class of fountain codes with near-linear time encoding and de-
coding.

III. PROPOSED BINARY LT DECODING ALGORITHM

In this section, we describe the proposed LT decoding algo-
rithm in the binary field. The algorithm has two forms: Basic
form and enhanced form. The basic form improves upon the
original BP decoding algorithm by considering both degree-1
and degree-2 check nodes. In particular, when there is no degree-
1 check node, it introduces a merge function that merges the
source nodes that are connected to degree-2 check nodes, and
continues the decoding process. To further improve the decod-
ing performance, the enhanced form improves the basic form
by introducing a guess-based algorithm when neither degree-1
nor degree-2 check nodes exist. The decoding complexity is de-
fined as the number of addition and multiplication operations
per source packet. We may assign larger weights to multiplica-
tion operations since multiplications tend to be more complex
than additions. In this paper, for simplicity, we do not differenti-
ate addition and multiplication operations when calculating the
decoding complexity. Let N denote the number of addition and
multiplication operations in the decoding process. Then, the de-
coding complexity O=N/k. In the following, we first describe
the basic and enhanced algorithms along with their decoding
complexities, and then evaluate their performance through sim-
ulation.
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A. Basic Algorithm

We first use the example in Fig. 1 to illustrate the basic algo-
rithm, and then describe the algorithm formally. In this example,
three source nodes, s1, s2, and s3, connect to three check nodes,
c1, c2, and c3, satisfying

s1 ⊕ s2 = c1, (1)
s1 ⊕ s2 ⊕ s3 = c2, (2)

s2 ⊕ s3 = c3. (3)

The original BP decoding scheme fails to decode any of the
source packets because there is no degree-1 check node, while
it is easy to see that all the three source nodes can be de-
coded successfully: We can decode s3 by adding (1) and (2)
as s3 = c1 ⊕ c2, and after that, we can decode s2 through (3),
and then, decode s1 through (1). Our algorithm decodes all the
three source nodes successfully through message passing in the
Tanner graph. For ease of illustration, initially, we mark all the
check nodes and source nodes in the Tanner graph as grey, and
all the edges between check nodes and source nodes as solid
(see Fig. 1(a)). The basic algorithm proceeds as follows. First,
we find a degree-2 check node, c1. The two source nodes, s1 and
s2, that are connected to c1 satisfy (1), and hence, if one of them
is decoded, the other can be decoded through (1). Therefore, we
can merge these two source nodes into a single node. To reduce
the number of operations, we merge the node with a smaller de-
gree to the one with a larger degree. In this example, since s1
has a smaller degree, we merge s1 into s2 by representing s1
using s2 as s1 = c1 ⊕ s2, referred to as a merge function, and
store the merge function (since it will be used in later stages to
decode the node that is being merged). The above is represented
as a sequence of operations in the Tanner graph: We remove
c1, and two edges, (s1, c1) and (s2, c2), that are connected to c1
(for ease of illustration, we mark c1 and s1 as white and the two
edges, (s1, c1) and (s2, c1), as dashed in the Tanner graph), and
shift all the other edges that are connected to s1 to s2 (in this
example, edge (s1, c2) is shifted to s2, leading to an additional
edge from s2 to c2). In addition, the values of the check nodes
that are originally connected to s1 need to be updated by adding
c1 (since s1 = c1 ⊕ s2 and we use s2 to represent s1), which is
represented as s1 passing a value c1 to these check nodes (before
merging s1 into s2). In this example, s1 is connected to c1, and
hence, s1 passes a value c1 to c2 so that c2 can update its value
to c′2 = c1 ⊕ c2. Summarizing the above, we have the graph
in Fig. 1(b). In Fig. 1(b), c2 represents check node c2, not the
value of c2. Therefore, although the value of c2 has changed, we
still represent it as c2 in the figure. The same notation conven-
tion holds for all the figures in this paper. Then, the two edges
from s2 to c2 both have coefficients of 1, and hence, cancel each
other. This canceling is represented by removing the two edges
from s2 to c2, leading to Fig. 1(c). At this point of time, we have
a degree-1 check node, c2, that is connected to source node s3,
and hence s3 is successfully decoded as s3 = c′2 = c1 ⊕ c2. We
remove c2, pass the value of s3 to all the other check nodes that
are connected to s3, i.e., c3 in this case, and c3 updates its value
to c′3 = c3 ⊕ c′2 = c1 ⊕ c2 ⊕ c3. We then remove all the edges
from s3, i.e., (s3, c2) and (s3, c3), and remove s3, leading to
Fig. 1(d). Afterwards, s2 is connected to a degree-1 check node,

c3, and hence s2 can be decoded. This is represented as remov-
ing c3 and deleting edge (s2, c3) in the Tanner graph, leading to
Fig. 1(e). After decoding s2, we can decode s1 with the stored
merge function s1 = c1 ⊕ s2. The basic decoding algorithm is
described more formally as follows.

Basic Binary Decoding Algorithm
(1) Find a degree-1 check node ci that is connected to a single
source node sj .

(a) Set the value of ci to sj . Recover all the source nodes that
have been merged into sj (the merge operations are described
in step (2)). Increase the number of operations, N , by the num-
ber of source nodes thus recovered (since recovering each such
source node requires one addition).

(b) Pass the value of sj to all the other check nodes that are
connected to sj . For each such check node cl, update its value
to c′l = cl ⊕ ci. Increase the number of operations, N , by the
number of such check nodes (updating each check node requires
one addition).

(c) Delete all the edges connected to sj .
(2) When step (1) stops (i.e., no degree-1 check node exists),
find a degree-2 check node. If no degree-2 check node can be
found, stop the algorithm. Otherwise, suppose we find a degree-
2 check node, cl, that is connected to two source nodes si and
sj . Store the merge function cl = si ⊕ sj , and merge the source
node with a smaller degree into the one with a larger degree. In
the following, suppose we merge si into sj for illustration.

(a) Remove cl and the two edges (si, cl) and (sj , cl).
(b) Pass the value of cl to all the other check nodes that are

connected to si. Suppose there are m such check nodes. For
each such check node cr, update its value to c′r = cr ⊕ cl. Shift
edge (si, cr) to be an edge (sj , cr). If there exist two edges be-
tween sj and cr after edge shifting, cancel these two edges. In-
crease the number of operations N by 2m (since the above pro-
cedure incurs two additions, one for updating the value and one
for shifting the edge, for each of the m check nodes).
(3) Go to step (1) until all source nodes are determined, or no
degree-1 or degree-2 check node can be found.
It is clear that the above decoding algorithm has linear complex-
ity.

B. Enhanced Algorithm

The enhanced algorithm improves upon the basic algorithm
by continuing the decoding process through a guess-based algo-
rithm once the basic algorithm stops (i.e., no degree-1 or degree-
2 check node can be found). The guess-based algorithm is in-
spired by Algorithm C in [17] whose complexity is related to
the size of the graph. In this paper, we use a simpler rule to de-
termine the source nodes to guess. Furthermore, to reduce the
decoding complexity, we first start with the basic algorithm to
reduce the size of the graph, and then apply the guess-based al-
gorithm to improve the performance. As the number of guesses
increases, the performance of the guess-based algorithm can ap-
proach the optimal ML decoder with increased decoding com-
plexity. In the paper, we allow up to gmax guesses.

The guess-based algorithm chooses source nodes to guess
and follows a check node labeling procedure as follows. Recall
that the basic algorithm stores the merge functions, removes all
source nodes that have been decoded successfully, and removes
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Fig. 2. Illustration of the enhanced LT decoding algorithm (k = 5, n = 5).

all check nodes that have been used to decode source nodes or
used in the merge functions. When the guess-based algorithm
starts, it marks the source nodes that have not been decoded or
merged as unknown, and marks the remaining check nodes from
the basic algorithm as unlabeled. It then sequentially guesses
the values of up to gmax unknown source nodes. After guess-
ing a source node, it marks the source node as known. It then
sequentially checks all the unlabeled check nodes. Specifically,
consider an unlabeled check node, ci. If the values of all but one
of the source nodes that are connected to ci are known, then it
sets the value of the unknown source node to the XOR of the
known source nodes and ci, and then labels ci as finished; if all
the source nodes that are connected to ci are known, then it la-
bels ci as a basic equation. If all the check nodes are labeled or
the number of guesses reaches gmax, it then solves the set of ba-
sic equations to obtain values of guessed source nodes, and then
recovers the involved source nodes.

We next use the example in Fig. 2 to illustrate the decoding
process of the enhanced algorithm, and then describe the algo-
rithm in detail. In the example, five source nodes, s1, s2, s3,
s4, and s5, connect to five check nodes, c1, c2, c3, c4, and c5,
satisfying

s1 ⊕ s2 ⊕ s3 ⊕ s4 = c1, (4)
s1 ⊕ s2 ⊕ s3 = c2, (5)
s2 ⊕ s3 ⊕ s4 = c3, (6)
s1 ⊕ s3 ⊕ s4 = c4, (7)

s4 ⊕ s5 = c5. (8)

For ease of illustration, initially, all source nodes and check
nodes are marked as grey, and the connections between these
source nodes and check nodes are marked as solid (see
Fig. 2(a)). We first run the basic decoding algorithm, and find
a degree-2 check node, c5. The two source nodes, s4 and s5,
that are connected to c5 satisfy (8). So, we merge the node with
a smaller degree to the one with a larger degree. In this case, we
merge s5 into s4 by representing s5 using s4 as s5 = s4 ⊕ c5,
and store this merge function. We then, remove c5 and the two
edges (s4, c5) and (s5, c5) (correspondingly, we mark s5 and c5
as white, and the two edges (s4, c5) and (s5, c5) as dashed in
the Tanner graph, see Fig. 2(b)). Then, the basic decoding al-
gorithm fails to go further since there is no degree-1 or degree-

2 check node. So, we continue with the guess-based algorithm,
which starts with marking all grey source nodes as unknown and
all grey check nodes as unlabeled. We then find an unknown
source node with the largest degree (when there are multiple
such nodes, we select one of them arbitrarily), mark it as known,
and let x1 be its value. In this example, s3 has a degree of 4, all
other three nodes have the degree of 3. We, therefore, choose s3,
and mark it as known with the value of x1. This is represented
in the Tanner graph in Fig. 2(c), where we mark s3 in white,
and mark the edges incident to s3 as dashed. After that, we ex-
amine all the unlabeled check nodes, and find none of them can
be labeled. So, we make the second guess. The remaining un-
known source nodes has the same degree. We arbitrarily choose
s1, assume it is known, and let x2 be its value (in the Tanner
graph, we mark s1 as white, and the edges incident to s1 as
dashed, see Fig. 2(d)). After that, for check node c2, all but one
source node that are connected to c2 are known, we hence label
c2 as finished, and set the value of the unknown source node,
s2, to x1 ⊕ x2 ⊕ c2. Similarly, we label c4 as finished, and set
the only unknown source node that c4 connects to, i.e., s4, as
x1 ⊕ x2 ⊕ c4. The above operations are illustrated by marking
c2, s2, c4, and s4 as white, and marking the edges incident to
s2 and s4 as dashed in the Tanner graph (see Fig. 2(e)). Now,
since all the source nodes are known, we label c1 and c3 as ba-
sic equations, and mark them as white in the Tanner graph (see
Fig. 2(f)). Last, we solve the two basic equations of c1 and c3
based on (4) and (6). Substituting the values of s1, s2, s3, and
s4 into these two equations yields

x2 ⊕ x1 = c1 ⊕ c2 ⊕ c4, (9)
x1 = c2 ⊕ c3 ⊕ c4. (10)

From (9) and (10), we solve for x1 and x2 to obtain x1 =
c2 ⊕ c3⊕ c4 and x2 = c1 ⊕ c3, and hence decode s3 and s1 suc-
cessfully. Because s2 and s4 are represented by x1 and x2, we
can also decode s2 and s4. After we decode s4, we can decode
s5 based on the stored merge function as s5 = s4 ⊕ c5. Hence,
all the five source nodes are decoded successfully using the en-
hanced algorithm. Our enhanced algorithm is described more
formally as follows.

Enhanced Binary Decoding Algorithm
(1) Run the basic binary decoding algorithm.
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(2) When step (1) stops, start the guess-based algorithm. Let
g represent the number of guesses. Initialize it to be 1. Do the
following:

(a) Find the source node that has the largest degree among
all the unknown source nodes. Suppose it is si. Assume it is
known, and set its value to xg . Check all the unlabeled check
nodes. For a check node cj , suppose m source nodes are con-
nected to it. Consider the following two scenarios:

(a1) If all but one of the m source nodes are known, then label
cj as finished. Suppose the value of the lth known source node
is

a0,l ⊕ a1,lx1 ⊕ · · · ⊕ ag,lxg, {a0,l, . . . , ag,l} ∈ {0, 1}

where ag,l represents the coefficient of xg in the expression of
the lth source node. Then, the unknown source node is computed
as

(a0,1 ⊕ · · · ⊕ a0,m−1 ⊕ cj)
︸ ︷︷ ︸

b0

⊕ (a1,1 ⊕ · · · ⊕ a1,m−1)
︸ ︷︷ ︸

b1

x1 ⊕ · · ·

⊕ (ag,1 ⊕ · · · ⊕ ag,m−1)
︸ ︷︷ ︸

bg

xg

where {b0, b1, · · ·, bg} represent the numbers of non-zero val-
ues in the summations. Increase the number of operations N by
∑g

l=0 max(bl − 1, 0). The value of the unknown source node
can be represented as

a0,m ⊕ a1,mx1 ⊕ · · · ⊕ ag,mxg,

{a0,m, a1,m, · · ·, ag,m} ∈ {0, 1}.

(a2) If all the m source nodes are known, then label cj as a
basic equation. The basic equation can be represented as

(a1,1 ⊕ · · · ⊕ a1,m)
︸ ︷︷ ︸

b1

x1 ⊕ · · · ⊕ (ag,1 ⊕ · · · ⊕ ag,m)
︸ ︷︷ ︸

bg

xg

= (a0,1 ⊕ · · · ⊕ a0,m ⊕ cj)
︸ ︷︷ ︸

b0

.

Increase the number of operations N by
∑g

l=0 max(bl − 1, 0).
(b) If all the check nodes are labeled or the number of guesses

g reaches gmax, go to step (c). Otherwise, increase g by 1, and
go back to step (a).

(c) Solve the set of basic equations using Gaussian elimination
to obtain solutions to x1, · · ·, xg . If there exists a unique solu-
tion, all the source nodes that have been assigned x1, · · ·, xg are
decoded successfully; otherwise, a subset of the source nodes
are decoded successfully.

(d) For each source node decoded in step (c), recover all the
source nodes that have been merged into it (during the basic
algorithm). Increase the number of operations N by the number
of such recovered source nodes.
It is clear that the decoding complexity of the enhanced algo-
rithm increases with gmax. Since gmax is usually a small num-
ber, solving the basic equations using Gaussian elimination can
be done quickly. Based on [17], the decoding complexity of the
enhanced algorithm is O(g2maxkenh), where kenh is the number
of unknown source nodes when the enhanced algorithm starts.

C. Performance Evaluation

Assume that a sender uses Raptor codes to encode k source
packets into n encoded packets, and transmits these encoded
packets to a receiver. We use the degree distribution that has
been adopted as the standard for MBMS in 3GPP for encod-
ing [16]. More specifically, the degree distribution is

Ω(x) = 0.01563x40 + 0.07986x11 + 0.11134x10

+ 0.11339x4 + 0.21096x3 + 0.45905x2

+ 0.00977x. (11)

For convenience, we refer it to the MBMS degree distribution
henceforth. Our performance metrics are packet decoding rate,
i.e., the total number of packets that are decoded successfully
over the number of source packets, k, and decoding complex-
ity. Our results below are obtained from 200 simulation runs,
using randomly generated seeds. For each setting, we set k to
100, 200, 500, or 1000. The 95% confidence intervals are tight
and hence omitted from the figures.

In the following, we only report the results for k = 200
(the results for other values of k have similar trends). Fig. 3(a)
plots the packets decoding rates of five decoding algorithms:
(i) ML algorithm (implemented using Gaussian elimination),
(ii) the enhanced algorithm with gmax = 10 and gmax = 4,
(iii) the guess-based algorithm with gmax = 5 (which is sim-
ilar to Algorithm C in [17]), (iv) the basic algorithm, and (v)
the original BP algorithm (step (1) in the basic algorithm). We
can see that the basic algorithm can decode up to 55% more
packets than the original BP decoder. The packet decoding rate
of the enhanced algorithm improves as the number of allowed
guesses increases, and approaches that of the ML decoder when
gmax = 10. Fig. 3(b) plots the decoding complexity for the con-
sidered algorithms. As expected, the decoding complexity of the
original BP decoder is the lowest, followed by the basic algo-
rithm, the enhanced algorithm, and the ML decoder (the ML
decoder is implemented using Gaussian elimination and its de-
coding complexity is much higher than all the others. Hence,
it is omitted from the figure for clarity). The enhanced algo-
rithm with gmax = 10 is up to 90% lower than that of the ML
decoder. When gmax increases, the decoding performance ap-
proaches that of the ML decoder, while the decoding complexity
is also increasing. So, the optimal gmax, which is a tradeoff be-
tween the decoding complexity and the decoding performance
should be chosen depending on the requirements from the par-
ticular applications.

The enhanced algorithm runs the basic algorithm first, and
then starts the guess-based algorithm when no degree-1 or
degree-2 check node exists. For comparison, we also obtain
the results when running the guess-based decoding algorithm
alone. In Figs. 3(a) and (b), the enhanced algorithm with gmax =
4 achieves higher packet decoding rates for all values of n
and achieves lower decoding complexity for n > 215 than
the guess-based algorithm with gmax = 5. This demonstrates
the importance of running the basic algorithm first in the en-
hanced algorithm to reduce graph size, and hence the decod-
ing complexities. When n ≤ 215, the enhanced algorithm with
gmax = 4 has higher decoding complexity than the guess-based
algorithm with gmax = 5. This can be explained as that the
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Fig. 3. Performance of the proposed LT decoding algorithm and the guess-based algorithm in the binary field under the MBMS degree distribution,

k = 200 and n is varied from 200 to 295: (a) Packet decoding rate and (b) decoding complexity.

Fig. 4. Illustration of the basic LT decoding algorithm in nonbinary fields
(k = 3, n = 3).

decoding rate of the basic algorithm is low, a large number of
unknown source packets are left when the enhanced algorithm
starts. Last, we briefly compare the performance of the basic al-
gorithm and the guess-based algorithm. We find that the basic
algorithm can decode more packets than the guess-based algo-
rithm with gmax = 4 (not plotted), while decode less packets
than the guess-based algorithm with gmax = 5. On the other
hand, the basic algorithm has lower decoding complexity than
the guess-based algorithm (gmax = 4 or 5) for n > 200.

IV. PROPOSED NONBINARY LT DECODING
ALGORITHM

Most of existing digital fountain codes are defined over the
binary field [18]. In this section, we extend the proposed binary
LT decoding algorithm to nonbinary fields. The motivations are
two-fold: (i) Operating in nonbinary fields, the ML decoding
for LDPC codes can potentially have better performance than
its binary counterparts given the same sparsity of the encoding
matrix [20]. We expect that when choosing the degree distri-
butions properly, nonbinary LT decoding algorithms can out-
perform their binary counterparts. (ii) One unique advantage of

nonbinary codes over binary codes is that nonbinary codes can
match very well the underlying modulation scheme at the phys-
ical layer, and bypass the need for a symbol-to-bit conversion at
the receiver.

A. Basic Nonbinary Decoding Algorithm

Suppose the decoding is over a nonbinary field, GF(q), q >
2. We first use the example in Fig. 4 to illustrate this algo-
rithm, and then describe the algorithm formally. In this example,
three source nodes, s1, s2, and s3, connect to three check nodes,
c1, c2, and c3. Each edge is associated with a coefficient. Let
Gji be the coefficient on edge (cj , si), Gji ∈ GF∗(q), where
GF∗(q) = GF(q) \ {0}. We have

G11s1 ⊕G12s2 = c1, (12)
G22s2 ⊕G23s3 = c2, (13)
G31s1 ⊕G33s3 = c3. (14)

We first find a degree-2 check node, c1. The two source nodes,
s1 and s2, that are connected to c1 satisfy (12). Again, we merge
the node with a smaller degree to the one with a larger degree
(breaking tie arbitrarily). In this case, since s1 and s2 have the
same degree, without loss of generality, we merge s1 into s2 by
representing s1 using s2 as s1 = G−1

11 (c1 ⊕G12s2) = G−1
11 c1 ⊕

G−1
11 G12s2, and store this merge function. We then remove c1

and the two edges (s1, c1) and (s2, c1). Using s2 to represent
s1, (14) is transformed to

G31G12G
−1
11 s2 ⊕G33s3 = c′3, (15)

with c′3 = c3 ⊕ G31G
−1
11 c1. Therefore, s1 passes a value,

G31G
−1
11 c1, to check node c3, and c3 updates its value to

c′3. When merging s1 into s2, edge (s1, c3) is shifted to s2, lead-
ing to an edge from s2 to c3 with the coefficient of G31G12G

−1
11 ,

as shown in Fig. 4(b). We then find another degree-2 check
node, c2. The two source nodes, s2 and s3, that are con-
nected to c2 satisfy (13). Since s2 and s3 have the same de-
gree, without loss of generality, we use s2 to represent s3 as
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s3 = G−1
23 (c2 ⊕ G22s2) = G−1

23 c2 ⊕ G−1
23 G22s2, and remove

c2 and the two edges (c2, s2) and (c2, s3). Using s2 to represent
s3, (15) is transformed to

(G31G12G
−1
11 ⊕G33G22G

−1
23 )s2 = c′′3 , (16)

with c′′3 = c′3 ⊕ G33G
−1
23 c2. Therefore, s3 passes a value,

G33G
−1
23 c2, to check node c3, and c3 updates its value to

c′′3 . When merging s3 into s2, edge (s3, c3) is shifted to s2, lead-
ing to an edge from s2 to c3 with the coefficient of G33G22G

−1
23 ,

as shown in Fig. 4(c). The two edges from s2 to c3 can then
be merged into a single edge by adding their coefficients to-
gether on the Galois field, which only cancel out when the ad-
dition is zero which differs from the binary case where the two
edges cancel out each other. If the combined coefficient is not
equal to zero, then s2 can be recovered by (16). Furthermore,
given s2, we can decode s1 and s3 using the stored merge func-
tions. Hence, all the source nodes can be decoded successfully.

Remark: Note that if the above example were in the bi-
nary field (i.e., Gji = 1), none of the source nodes can be
decoded successfully. In general, if the connections among r
source nodes and r degree-2 check nodes are cyclic, with appro-
priate ordering, the corresponding equations can be represented
as c = Gs with c = [c1, c2, · · ·, cr]

T, s = [s1, s2, · · ·, sr]
T,

and G given by [21]

G =








G11 G12 0 . . . 0
0 G22 G23 . . . 0
...

...
. . . . . . . . .

Gr1 . . . 0 0 Grr








(17)

where Gijs are nonzero elements from a Galois field. In binary
field, all Gijs take value of 1, and the rank of G is r − 1. That
is, it loses rank, and thus none of the source nodes can be de-
coded. But, in the nonbinary field, it is possible that the rank
of G equals r. In that case, these equations are independent,
and all the source packets involved can be decoded by the pro-
posed decoder with linear complexity. In fact, for this particular
example, the basic nonbinary decoding algorithm is similar to
the algorithm presented in Lemma 4 of [21]. The basic nonbi-
nary decoding algorithm can be represented more formally as
follows.

Basic Nonbinary Decoding Algorithm
(1) Find a degree-1 check node ci that is connected to a single
source node sj .

(a) Set the value of G−1
ij ci to sj . Recover all the source nodes

that have been merged into sj (the merge operations are de-
scribed in step (2)). Increase the number of operations, N , by
two times the number of source nodes thus recovered as recov-
ering each such source node requires two operations, one multi-
plication and one addition.

(b) Pass the value of sj to all the other check nodes that are
connected to sj . For each such check node cl, update its value
to c′l = cl ⊕ Gljsj = cl ⊕ GljG

−1
ij ci. Increase the number of

operations, N , by two times the number of such check nodes
(one multiplication and one addition for each such check node).

(c) Delete all the edges connected to sj .
(2) When step (1) stops (i.e., no degree-1 check node exists),
find a degree-2 check node. If no degree-2 check node can be

found, stop the algorithm. Otherwise, suppose we find a degree-
2 check node, cl, that is connected to two source nodes si and
sj . Store the merge function Glisi ⊕ Gljsj = cl, and merge
the source node with a smaller degree into the one with a larger
degree. In the following, suppose we merge si into sj for illus-
tration. That is, we represent si as si = G−1

li cl ⊕G−1
li Gljsj . In-

crease the number of operations, N , by 2 (two multiplications
to get G−1

li cl and G−1
li Glj , respectively).

(a) Remove cl and the two edges (cl, si) and (cl, sj).
(b) Pass the value ofG−1

li cl to all the other check nodes that are
connected to si. Suppose there arem such check nodes. For each
such check node cr, update its value to c′r = cr⊕GriG

−1
li cl. In-

crease the number of operations N by 2m (one addition and
one multiplication for each of the m check nodes). Shift edge
(si, cr) to be an edge (sj , cr). The coefficient of the new edge
is G−1

li GljGri. If after shifting the edge, there exist two edges
between sj and cr, merge two edges to one and update the coef-
ficient on this edge to G−1

li GljGri ⊕ Grj . Increase the number
of operations N by 2m (since for each of the m check nodes,
obtaining the coefficient of the new edge and updating the coef-
ficient requires one multiplication and one addition).
(3) Go to step (1) until all source nodes are determined, or no
degree-1 and degree-2 check node can be found.
It is clear that the above decoding algorithm has linear complex-
ity.

B. Enhanced Nonbinary Decoding Algorithm

The enhanced nonbinary decoding algorithm is similar to its
binary counterpart. The only differences are in steps (2)(a1) and
(a2), which are
(a1) If all but one of the m source nodes are known, then label
cj as finished. Suppose the value of the lth known source node
is

a0,l ⊕ a1,lx1 ⊕ · · · ⊕ ag,lxg, {a0,l, · · ·, ag,l} ∈ GF(q)

where ag,l represents the coefficient of xg in the expression of
the lth source node. Then, the unknown source node is computed
as

G′−1
m [(G′

1a0,1 ⊕ · · · ⊕G′

m−1a0,m−1 ⊕ cj)
︸ ︷︷ ︸

b0

⊕ (G′

1a1,1 ⊕ · · · ⊕G′

m−1a1,m−1)
︸ ︷︷ ︸

b1

x1

⊕ (G′

1a2,1 ⊕ · · · ⊕G′

m−1a2,m−1)
︸ ︷︷ ︸

b2

x2 ⊕ · · ·

⊕ (G′

1ag,1 ⊕ · · · ⊕G′

m−1ag,m−1)
︸ ︷︷ ︸

bg

xg]

where {b0, b1, · · ·, bg} represent the numbers of non-zero values
in the summations, and {G′

1, · · ·, G
′

m} represent the coefficients
on the edges between the m source nodes and check node cj .
Increase the number of operations N by

∑g

l=0 2bl. The value of
the unknown source node can be represented as

a0,m⊕a1,mx1⊕· · ·⊕ag,mxg, {a0,m, a1,m, · · ·, ag,m}∈GF(q).
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(a2) If all the m source nodes are known, then label cj as a
basic equation. The basic equation can be represented as

(G′

1a1,1⊕· · ·⊕G′

ma1,m)
︸ ︷︷ ︸

b1

x1⊕(G′

1a2,1⊕· · ·⊕G′

ma2,m)
︸ ︷︷ ︸

b2

x2⊕· · ·

⊕(G′

1ag,1⊕· · ·⊕G′

mag,m)
︸ ︷︷ ︸

bg

xg = (G′

1a0,1⊕· · ·⊕G′

ma0,m⊕cj)
︸ ︷︷ ︸

b0

Increase the number of operations N by
∑g

l=0 max(2bl − 1, 0).
The decoding complexity of the nonbinary enhanced algo-

rithm is O(2g2maxkenh), where kenh is the number of unknown
source nodes when the enhanced algorithm starts.

Remark: Our nonbinary decoding algorithm operates on
symbol-level. In [22] and [23], the proposed nonbinary peel-
ing algorithm operates on bit-level. Let us take an example to
illustrate the difference between symbol-level and bit-level non-
binary decoding algorithms. Assume a receiver receives a sym-
bol x which has two bits over GF(4) over the BEC. The two
bits are represented as x1 and x2, respectively. If x1 is received
correctly and x2 is erased, x is discarded in symbol-level algo-
rithms. While in bit-level algorithms, x is still kept, and if bit x2

can be recovered in the further decoding process, then symbol
x can be reconstructed. If the nonbinary peeling algorithm pro-
posed in [22], [23] operates on symbol-level, the decoding pro-
cess corresponds to a check node of degree-1 in the setting of
step (1) in our basic nonbinary LT decoding algorithm. The rea-
son why we choose symbol-level algorithms is that symbol-level
algorithms can match very well with the underlying processing
at the physical layer. Indeed, as discussed in Section II, a packet
in a practical system is completely erased if it cannot pass the
CRC. Since our nonbinary enhanced algorithm can achieve de-
coding performance close to that of the ML decoder (see subsec-
tion IV-C), we hence omit the performance comparison between
symbol-level and bit-level nonbinary algorithms in this paper.

C. Performance Evaluation

We first evaluate the performance of our proposed nonbinary
LT decoder, and then compare the performance of binary and
nonbinary decoders. Last, we investigate the impact of the Ga-
lois field size on performance. The simulation setting is the same
as that in subsection III-C.

C.1 Nonbinary Decoders

We only report the results for k = 200 with n varies from
200 to 295 (the results for other values of k have similar
trends). Fig. 5(a) plots packet decoding rates with nonbinary ML
decoder, binary ML decoder, the enhanced nonbinary LT de-
coder, the nonbinary guess-based algorithm and the basic non-
binary LT decoder. We can see that nonbinary ML decoder out-
performs binary ML decoder under the same degree distribu-
tion, which has motivated our work to implement the nonbi-
nary decoding scheme. The performance of the enhanced algo-
rithm improves with g increases. In particular, when gmax = 15,
its performance is close to that of nonbinary ML decoder, and
furthermore it can decode up to 4% more packets than binary
ML decoder with n = 200. The basic algorithm dramatically
outperforms the original LT decoding scheme (see the packet

decoding rates of the original scheme in Fig. 3(a)). Fig. 5(b)
plots the decoding complexity of the enhanced and basic de-
coding algorithms. As expected, the decoding complexities of
the nonbinary algorithms are larger than their binary counter-
parts (see Fig. 3(b) on the decoding complexities of the binary
schemes). The decoding complexity of the enhanced nonbinary
algorithm increases with gmax, while is nearly 90% lower than
that of the nonbinary ML decoder. The decoding complexity of
nonbinary ML decoder is obtained through an implementation
using Gaussian elimination; it is not plotted in the figure for
clarity.

For comparison, we also obtain the results with the nonbinary
guess-based decoding algorithm. Our nonbinary enhanced algo-
rithm with gmax = 3 achieves higher packets decoding rates for
all values of n while has lower decoding complexity for n > 200
than the guess-based algorithm with gmax = 5, which demon-
strates the importance of running the basic algorithm before ini-
tiating the guess-based decoding algorithm in the enhanced de-
coder.

C.2 Binary versus Nonbinary Decoders

The performance of nonbinary decoders relative to binary de-
coders depends on the degree distribution. We have shown ex-
amples that are decodable in nonbinary fields while they are not
in the binary field (see subsection IV-A). We can also come up
with examples where the binary decoder outperforms the nonbi-
nary decoder. The binary decoder can perform better because
in the binary field, if two source packets si and sj are con-
nected to a check node cl that has degree of 2, we can merge
si into sj . Afterwards, if there are two edges from si to a check
node cr, these two edges cancel each other, and hence the degree
of cr is reduced. But, for nonbinary case, they may not cancel
each other. So, binary merge function can decrease the degree
of check node cr, and there is a chance that the degree of cr
decreases to 1 (an example is in Fig. 1), which is helpful for
continuing the decoding process.

We now compare the performance of our binary and nonbi-
nary decoders through simulation. Under the MBMS degree dis-
tribution, the performance of the basic algorithm in nonbinary
fields is similar to that in the binary field (figures omitted). On
the other hand, based on our prior experience on nonbinary
LDPC codes for channel coding [24], we expect the optimal
degree distribution in nonbinary fields to have a much smaller
average degree and higher density for degree of 2 than its coun-
terpart in the binary field. We, therefore, design another degree
distribution as

Ω(x) = 0.0649x15 + 0.9253x2 + 0.0098x. (18)

In this new degree distribution, the average node degree is 2.834,
much lower than 4.621 in the MBMS distribution; the highest
node degree is 15, much lower than 40 in MBMS degree distri-
bution. The much lower average node degree can lead to signifi-
cantly lower encoding and decoding complexities. On the other
hand, due to the much lower highest-node-degree, many source
nodes may have no connection to check nodes, leading to lower
block decoding rate than that under MBMS degree distribution.
This, however, is not much a concern since we use Raptor codes
(where packet decoding rate is a more important metric).
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Fig. 5. Performance of the proposed LT decoding algorithm and the guess-based algorithm in nonbinary fields under the MBMS degree distribution,

k = 200 and n is varied from 200 to 295: (a) Packets decoding rate and (b) decoding complexity.
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Fig. 6. Packet decoding rates of nonbinary and binary decoders under degree distribution (18): (a) k = 200 and (b) k = 1000.

Fig. 6(a) plots the packets decoding rate of our proposed al-
gorithms in both binary and nonbinary fields for k = 200 under
degree distribution (18). For comparison, we also plot the re-
sults of binary and nonbinary ML decoders. We observe that
the nonbinary enhanced algorithm with up to one guess slightly
outperforms the nonbinary basic algorithm, and both achieve
performance close to that of the nonbinary ML decoder. The
binary basic algorithm and binary ML decoder have similar per-
formance, which is worse than that of the nonbinary decoders
(the packet decoding rate is approximately 15%). The different
relative performance of nonbinary algorithms compared to their
binary counterparts in the two degree distributions (i.e., distri-
butions (18) and (11)) confirms that the relative performance
depends on the degree distribution, motivating our future work
to develop respective optimal degree distributions for our non-
binary and binary decoders. Fig. 6(b) plots the packet decod-

ing rates when k = 1000. We observe that the nonbinary ML
decoder performs similar to binary ML decoder, the nonbinary
basic algorithm only slightly outperforms the binary algorithm,
indicating that the benefits of decoding in nonbinary fields is
less dramatic for large k.

C.3 Impact of Galois Field Size

We now investigate the performance of the ML decoder when
varying the size of the Galois field from 2 to 1024 (it is the bi-
nary decoder when the size is 2). Fig. 7 plots the results using
the degree distribution in (18) for k = 200. As we can see, the
nonbinary decoders outperform the binary decoder, while the
performances of the various nonbinary decoders are similar, in-
dicating that our nonbinary scheme is insensitive to the size of
the Galois field, and a small size, such as 4, is sufficient to real-
ize most of the performance gains. However, these observations
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Fig. 7. ML packets decoding rate of GF(2), GF(4), GF(16), GF(256),
GF(1024) under degree distribution (18), k = 200 and n is varied
from 200 to 295.

may change as the degree distribution varies, which is left as
further research.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a new iterative LT decoding al-
gorithm for both binary and nonbinary fields. Our proposed
scheme differs from existing decoding schemes [17], [18] in that
it proceeds from check nodes instead of source nodes. The ba-
sic form of the algorithm considers both degree-1 and degree-
2 check node and has linear complexity. Simulation results
demonstrate that it significantly outperforms the original LT de-
coding algorithm, especially for small k. To further improve the
decoding performance, we developed an enhanced form of the
algorithm that combines the basic form of the algorithm and
a guess-based algorithm. Simulation results demonstrate that it
can provide better decoding performance than the guess-based
algorithm with fewer guesses. Furthermore, it can achieve the
performance of ML decoder as the number of guesses increases,
while its decoding complexity is much lower than of the ML de-
coder. In addition, our nonbinary decoding algorithms have po-
tential to outperform the binary algorithms when choosing suit-
able degree distributions. Last, our nonbinary scheme is insen-
sitive to the size of the Galois field. Our future research topics
include: (i) An analytical framework on performance analysis
for the proposed decoders and (ii) optimization of the degree
distributions especially for the nonbinary codes.
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