
BGPy: The BGP Python Security Simulator
Justin Furuness

University of Connecticut
Storrs, CT, USA

jfuruness@gmail.com

Cameron Morris
University of Connecticut

Storrs, CT, USA
cameron.morris@uconn.edu

Reynaldo Morillo
University of Connecticut

Storrs, CT, USA
reynaldo.morillo@uconn.edu

Amir Herzberg
University of Connecticut

Storrs, CT, USA
amir.herzberg@gmail.com

Bing Wang
University of Connecticut

Storrs, CT, USA
bing@uconn.edu

ABSTRACT
The security of Border Gateway Protocol (BGP), and inter-domain
routing in general, remains a challenge, in spite of its well-known
importance, repeated attacks and incidents, and extensive efforts
and research over decades. We present BGPy, an open-source, ex-
tensible, robust, easy-to-use and efficient BGP security simulator,
to be used for research and education. BGPy allows realistic simu-
lations of a large variety of BGP attacks and defenses. It is provided
as a Python package, and can be further customized and extended,
e.g., to investigate new attacks and new defense mechanisms. We
describe how BGPy is currently used by multiple BGP security
projects.
ACM Reference Format:
Justin Furuness, CameronMorris, ReynaldoMorillo, AmirHerzberg, and Bing
Wang. 2023. BGPy: The BGP Python Security Simulator. In 2023 Cyber
Security Experimentation and Test Workshop (CSET 2023), August 07–08,
2023, Marina del Rey, CA, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3607505.3607509

1 INTRODUCTION
BGP, the backbone protocol of the Internet’s inter-domain routing
system, lacks built-in authenticationmeasures and is frequently sub-
jected to misconfigurations and different attacks, with far-reaching
consequences [4, 49, 57, 58, 60]. Accordingly, there is extensive liter-
ature on BGP’s vulnerabilities, possible attacks, and defense strate-
gies (see surveys [8, 29, 30, 42, 52] and the references within). These
studies often rely on simulations for large-scale evaluation. Indeed,
the Internet is of an immense scale, with over 75K autonomous
systems (ASes) and 500K edges in the current AS topology [10],
and its inter-domain routing is highly complex, governed by many
economic and policy considerations, and the impact of BGP secu-
rity mechanisms depend on adoption and policy by many different
ASes. Hence, it is impractical to analytically study Internet routing
and its security. Emulation-based approaches (e.g., [19]) that run

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0788-9/23/08. . . $15.00
https://doi.org/10.1145/3607505.3607509

the exact BGP protocol also have limitations in that they can only
accommodate small topologies.

Therefore, simulations are the main tool to study BGP security.
However, existing BGP security simulators lack flexibility and are
hard to extend. They are in fact, mostly designed for specific at-
tacks and defenses. In this paper, we develop BGPy, a Python-based
simulator for studying BGP security. BGPy is designed to have the
following main features:
• Flexibility. BGPy allows different security policies to be easily
plugged in. It supports flexible configurations of attack scenarios
and defense strategies. For instance, it allows multiple-AS attacks
and real-world attacks (e.g., as reported in [6, 9, 39]). It supports not
only the common scenario of partial deployment of a security policy,
but also the realistic situation of mixed deployment of multiple
security policies, e.g., Route Origin Validation (ROV) [17, 33, 62] and
ROV++ [43], a security extension to ROV. Furthermore, BGPy can
take into account known adoption of specific policies and defenses.
• Efficiency. BGPy supports large-scale simulation of attacks and
defenses over empirically derived Internet-size topologies. It further
allows a large number of simulation runs in a short amount of time
to obtain statistical results.
• Benchmark evaluation and reproducibility. BGPy provides a set
of testing scenarios and security metrics that can be used to test a
wide range of security techniques to achieve repeatable and apples-
to-apples comparisons.
• Usability and availability. BGPy makes it easy to perform sim-
ulations to study BGP security, facilitating use by the research
community, and is available as open-source.

To realize the above design features, BGPy separates the ac-
tual simulation from the specification of the simulation into two
components, the Simulation Engine and the Simulation Framework.
The Simulation Engine achieves efficient propagation of BGP an-
nouncements over large AS topologies. It allows each AS to exe-
cute its specific policies, e.g., dropping announcements following
ROV [17, 33, 62], or adding blackhole or preventive announcements
following ROV++ [43]. This allows BGPy to easily support various
security policies, including simulating real-world deployment, as
well as partial or mixed deployment. It provides much more flex-
ibility than algorithm-based propagation as used by [26–28, 64],
which is only applicable to specific, ‘built-in’ security policies.

The Simulation Framework is a wrapper around the Simulation
Engine. It allows for trials on various attack and defense scenarios,
and obtaining important metrics for security evaluation. In addition,
BGPy has a third main component, the System Test Suite, which is

41

https://orcid.org/0009-0005-5459-6510
https://orcid.org/0009-0008-0383-4314
https://orcid.org/0000-0002-0144-5090
https://orcid.org/0000-0001-5586-5261
https://orcid.org/0000-0002-7632-6512
https://doi.org/10.1145/3607505.3607509
https://doi.org/10.1145/3607505.3607509
https://doi.org/10.1145/3607505.3607509
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607505.3607509&domain=pdf&date_stamp=2023-08-21

CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA Justin Furuness, Cameron Morris, Reynaldo Morillo, Amir Herzberg, and Bing Wang

Figure 1: Main components of BGPy. Each scenario selects the attacker strategy in the form of announcements, as well as
which ASes will adopt. The simulation engine receives this information and propagates these announcements throughout the
AS graph, returning the LocalRIB at each AS. The simulation Framework then generates metrics and graphs.

a testing framework that provides user-friendly tools that facilitate
easy modeling and debugging. BGPy is written in Python, a fast
prototyping language that allows easy further extension.

BGPy has been used in several projects on BGP security (§6).
These projects have demonstrated that BGPy is efficient, and can
run on standard laptops/desktops without the need of computing
clusters (Appendix C). In addition, it is easily extensible to support
new security policies, sometimes with just a few lines of additional
code. We have open sourced BGPy for facilitating BGP security
research: https://github.com/jfuruness/bgpy

Contributions. The contributions of this work include:
• Design and implementation of BGPy. We design and implement
BGPy as a Python-based simulation tool that aims to be efficient,
flexible and easily extensible to support a wide range of attacks and
security policies.
• Evaluation of BGPy. We present several use cases that use BGPy
for simulating defenses against prefix hijacks, subprefix hijacks,
and path manipulation, in partial and mixed deployment scenarios.
Our results demonstrate that BGPy realizes its design goals, and
can be a valuable tool for BGP security research.
Related work. Several studies have developed BGP simulators.
Specifically, SSFNet [16, 46], Genesis [55], and BGP++ [19] are BGP
simulators at the packet level. They provide fine-grained simulation,
but are difficult to scale, and hence not suitable for simulating
Internet-size topologies. BGPSIM [63] and CiscoWAE [54] abstracts
away some details in BGP, but still has high computational overhead.
The studies in [20, 21, 47] focus on the simulation at a single AS.
The above simulators are mainly designed for networking research
(e.g., studying convergence time and routing dynamics), not for
security.

For BGP security research, it is important to consider the full
Internet AS topology [26]. Existing studies used simulations that
are designed for specific security policies (e.g., [15, 25–28, 32, 64]),
rather than presenting general extensible simulation tools. Specifi-
cally, the studies in [26–28] use routing tree algorithms to compute
the best available paths from each AS to the destination (origin of
the prefix). While the algorithms are efficient, they cannot be easily
extended to simulate custom security protocols. We simulate the

propagation of BGP announcement inside an AS topology, where
each AS can plug in a specific security policy, which allows much
more flexibility, including easy support of mixed deployment of
security policies. In addition, the run time complexity of our Simu-
lation Engine is similar to that of the routing tree algorithms (see
§4). The simulator in [64] is also based on algorithms, instead of
actual propagation of BGP announcements, and their complexity is
worse than that of BGPy.

2 BGPY DESIGN OVERVIEW
In this section we present a high level overview of BGPy. BGPy
simulates BGP and allows comparison of security policies against
various attacks. It consists of three main components: Simulation
Engine, Simulation Framework, and System Test Suite.

Simulation Engine (§4). As shown in Figure 1, the simulation
engine abstracts away packet-level and intra-domain details to per-
form BGP simulations by propagating announcements across the
entire AS topology. The simulation engine receives an empirically
inferred ASes topology and relationships from the CAIDA Serial-2
[10] dataset, announcements to populate the AS graph, and ROV
adoption estimates from [14, 50, 51]. From there, the AS topology
is populated, along with the routing policies defined in the BG-
PAS class. Among other attributes, this class contains relationship
information, RIB information, and routing policies. This class is
easily extendable and ROVAS (performing ROV) and PeerROVAS
(performing an ROV variant) are included by default as well as sub-
classes. The simulation engine supports dynamic routing policies,
and can use any routing policy at any AS. After these announce-
ments are propagated throughout the AS topology, the Local RIB
at each AS is produced as output (and used by the framework).

Simulation Framework (§3). As shown in Figure 1, the simu-
lation framework is a wrapper around the Simulation Engine that
facilities the comparison of multiple security policies against attack
scenarios. It contains two major components - the main simulator
and the scenarios. The simulator controls all scenarios and aspects
of the simulation such as the number of trials, partial adoption
percentages, etc. The simulator has a list of several scenarios to
compare. Each scenario controls the attacking strategy, i.e. which

42

https://github.com/jfuruness/bgpy

BGPy: The BGP Python Security Simulator CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA

Figure 2: Example of one of the graphs displayed from the
simulation Framework.HereROVASes are compared against
an ROV variant, Peer ROV (where ROV is only applied to
peers, see Appendix E), against a subprefix hijack. Percent of
ASes hijacked on the data plane is measured on the Y axis.

.

ASes will be the attacker, which announcements they will send, etc.
Each scenario also controls the defensive strategy, such as which
ASes adopt defensive routing policies, which routing policies do
they adopt, etc.

System Test Suite (§5). The final component is the system test
suite. It contains useful tools for easy visualization and debugging,
which is useful when working with complex AS topologies and
routing policies. The tools enable the entire simulation to be con-
verted to and from YAML at any point, and allows the simulation
to be visualized in diagram form.

3 THE SIMULATOR FRAMEWORK
In this section we discuss the simulator framework, a wrapper
around the simulation engine which we describe in §4.

The simulation framework sets up the simulation engine, con-
trols all of the variables for comparing various attack defense scenar-
ios, performs the data analysis for these scenarios, and graphs the
output. We discuss all these features and more in this section. For a
full view of all components related to the simulation framework,
please see Figure 1.

3.1 Functionality
BGPy’s primary objective is to investigate the outcome of deploying
a defensive routing policy to a limited extent in response to specific
attack scenarios.

All of the variables, parameters, and functions used in such an
investigation are defined within a scenario; in particular, a scenario
defines the attack strategy and the routing policies and defenses
of different ASes. An attack strategy specifically consists of which
announcements the attacker and victim will announce, and the
defensive routing policy is the policy that will be adopted to defend
against such an attack by adopting ASes across the AS topology.
The scenario also controls other aspects of the simulation, such as
how attackers, victims, and adopting ASes get selected, and what
routing policies and defenses are used by specific ASes. The last
ability is critical, as it allows to take advantage of known policies
and known adoption of defenses, e.g., ASes known to adopt ROV.
For more details on parameters and extensions, see §3.2.

The simulation framework allows us to compare these various
scenarios under comparable conditions to let the user analyze vari-
ous pros and cons of different defense policies, and directly compare
them to one another in order to determine recommendations, trade-
offs, and effectiveness of security policies under specific conditions.

The following steps provide an overview of the operational
flow of the simulation framework, from initiation to completion.
Throughout the discussion, we will reference examples from a spe-
cific simulation that compares ROV with an ROV variant that only
filters announcements from peers, PeerROV (see Appendix E for
details). These security policies are used against a subprefix hi-
jack. This simulation produces output graphs Figure 2, and we also
include code snippets for multiple components.

1. Simulation Configuration: To initiate the setup of our sim-
ulation, we have the ability to adjust numerous options. For our
example simulation case, which yields the depicted outcomes in
Figure 2, our objective is to determine the most effective security
policy against a subprefix hijack. This hijack occurs when an at-
tacker falsely originates a subprefix of a larger IP space that is
legitimately announced by another AS. We compare the effective-
ness of two security policies: standard ROV and PeerROV. PeerROV
is a modified version of ROV that solely filters announcements
from peers, deployed by some ASes[7, 14], discussed further in Ap-
pendix E. In the provided code snippet responsible for generating
the results shown in figure Figure 3, we can observe that we have
specifically chosen to compare these two scenarios. Furthermore,
we are interested in assessing how these security policies perform
under partial adoption. Hence, in our example, we have opted to
test various levels of adoption, ranging from a single AS adopting
to all ASes except one adopting the policies. We have configured
the number of trials to be 1000, and we have allocated 12 CPU
cores, taking advantage of the fact that the trials are capable of
parallelization.

43

CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA Justin Furuness, Cameron Morris, Reynaldo Morillo, Amir Herzberg, and Bing Wang

1 Simulation(
2 percent_adoptions = (
3 SpecialPercentAdoptions.ONLY_ONE,
4 .1, # This means 10 percent of ASes adopt
5 .2,
6 .4,
7 .8,
8 SpecialPercentAdoptions.ALL_BUT_ONE
9),
10 scenarios=(
11 SubprefixHijack(AdoptASCls=ROVSimpleAS),
12 SubprefixHijack(AdoptASCls=PeerROVSimpleAS),
13),
14 output_path=Path("~/Desktop/cset23_graphs").expanduser(),

15 num_trials=1000,
16 parse_cpus=12,
17).run()

Figure 3: Simulation Example code used to generate Figure 2
and other graphs not depicted here. This simulation com-
pares both ROV and an ROV variant, Peer ROV (an ROV
variant that only filters peers, see Appendix E for details),
against a subprefix hijack. It does so for multiple partial
adoption percentages, for 1000 trials, using 12 cores for mul-
tiprocessing.

All of these options are configurable. For a full list of simulator
parameters, see Table 3. We could also compare any number of
scenarios, and each scenario is also highly configurable (see Table 4
for a full list of parameters).

2. Attacker and Victim Selection: Before each scenario runs,
the simulator randomly selects attacker and victim ASes. A victim is
an AS that is the origin of a legitimate announcement. An attacker
is an AS that announces an announcement that is illegitimate for
any reason. Perhaps the announcement is invalid by ROA, or the
announcement is a route leak, etc. The goal of the attacker(s) could
be to attract, to itself, traffic sent to the victim, to cause a Denial of
Service, e.g., preventing traffic from reaching the victim, or another,
user-defined goal. A scenario can select any number of attackers
or victims as a parameter (see Table 4); this capability was used in
some use-cases (see §6). The default is one attacker and one victim.

The same attacker(s) and victim(s) are used across all scenarios in
a trial to maintain comparability. By default, attackers are selected
from either stubs or multihomed ASes, since edge ASes are more
likely to be malicious [12, 37, 66].

3. Adopting ASes: Then the adopting ASes will be chosen. The
simulator will take each scenario and run the scenario across a con-
figurable set of different partial adoption percentages. For example,
in our code used in figure Figure 3, we are testing six scenarios:
one AS adopting, 10%, 20%, 40% and 80% adopting ASes, and fi-
nally, when all ASes, except one, adopt. For each of these adoption
percentages, adopting ASes must be chosen. One challenge we ex-
perienced when adopting ASes is that there is a wide variety in
connectivity between the ASes. A stub AS adopting will not have
nearly as much impact as a highly connected AS adopting. This
can result in large variance when using uniform random selection
of ASes. To decrease the variance, we separate the ASes into three

subcategories: ASes that are stubs or multihomed, ASes that are a
part of the input clique defined by CAIDA [10], and other ASes (to
which we refer as etc ASes). For example, if 50% of all ASes should
adopt the defensive policy, 50% of the input clique ASes will be
chosen, 50% of the etc ASes will be chosen, and 50% of the stubs or
multihomed ASes will be chosen.

Attacker and Victim ASes are by default excluded from these se-
lections. By default, attacker ASes are not adopting, and victim ASes
are adopting, although this can easily be extended and modified.

Note that these subgroupings are configurable. A user can specify
any subgroupings according to one’s preferences. Similar to the
attacker and the victim, the ASes chosen to be adopting ASes will
remain the same across all defensive policies for each trial to enforce
comparability.

4. Engine Setup: After the adopting ASes are using the routing
policies chosen as the defense for the scenario, the attacking strat-
egy is utilized to create and insert the originating announcements
at the local RIBs of both the victims and the attackers. This func-
tionality is contained within the scenario class, and creating the
attacker strategy is discussed in §3.2.

The simulator includes by default six different attacking strate-
gies, that cover the typical ‘family’ of ‘generalized prefix attacks’
that are commonly used when studying ROV and ROV++. They
are defined in Table 5.

5. Engine runs: Then the simulation engine, described in §4,
is run. The attackers and victims announcements are propagated
throughout the AS topology, and the defensive routing policies for
the adopting ASes are used. At the conclusion of this stage, the
simulation engine contains an AS topology where each AS will have
a local RIB containing some subset of the attacker’s and victim’s
announcements.

6. Data Analysis: At this point, the framework begins to per-
form data analysis. To start with, we perform traceback, a process
in which, at each AS, we trace back each prefix to it’s origin on the
data plane. Figure 7, which describes a subprefix hijack originating
at AS 666, shows an example for the importance of traceback. .
Without traceback, i.e., looking only at the control-plane data, it
would seem that AS 3 is not hijacked by AS 666, since AS 3 would
be routing according to the legitimate announcement (from AS
777). However, in reality, and as the framework finds by traceback,
the traffic is hijacked once it reaches AS 1 (the provider of AS 3),
since AS 1 routes according to the subprefix hijack from AS 666.
This is since Internet Protocol (IP) routing prefers the most-specific
route. For this reason, it is not enough to simply look at the local
RIB at each AS. We must perform traceback, tracing the prefixes
back to their origins, in order to determine the true outcome of the
traffic. During traceback, we start at each AS, and trace back the
prefixes on the data plane to the origin AS. The outcome of the
traceback is then used to analyze a multitude of metrics. The default
metrics included are percent of ASes hijacked (indicating that the
announcement at an individual AS was traced back to the attacker),
percent of ASes disconnected (indicating that the announcement
was traced back to neither the attacker nor the victim), and percent
of ASes successfully connected (indicating that the announcement
was traced back to the victim AS). We further divide these met-
rics into various subgroups, such as in Figure 2, the percent of
stub or multihomed ASes that were adopting and traced back to

44

BGPy: The BGP Python Security Simulator CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA

the attacker, indicating attacker success. These metrics are easily
extendable to keep track of custom metrics the user wants to track.

7. Graphs and Example Simulation From here, the resulting
data is output into a CSV, and 18 default graphs are output as well.
The user can also use the resulting CSV to create their own graphs
as they wish. The CSV contains, for each scenario, for each percent
adoption, the average tracked metrics (percent of ASes that were
hijacked, disconnected, or successfully connnected). An example
of these graphs can be seen in Figure 2.

3.2 Refining the Framework: Empowering
Customization

The simulation framework offers a wide range of optional parame-
ters that can be easily configured during setup, providing flexibility
for customization. Moreover, its design enables straightforward sub-
classing and the creation of simple, personalized functions, which
we will explore through various examples in the following sections.

Configurable Parameters. There are many parameters that
can be set when running a simulation that can affect various aspects
of the analysis. The parameters for the simulator can be seen in
Table 3. While the simulator parameters affect all scenarios that a
user wants to compare (for example, setting the python_hash_seed
will make all scenarios deterministic), there are also configuration
options for each individual scenario. For example, setting the Adop-
tASCls to ROV will set that specific scenario to defend using ROV,
but other scenarios may have different values for AdoptASCls and
different defensive strategies. The parameters for the various scenar-
ios can be seen in Table 4. We offer a range of preconfigured attack
strategies accompanied by various scenarios for a users selection
(refer to Table 5). It is crucial to distinguish between the defensive
and attacking strategies implemented in our system. The defensive
strategy can be customized through the parameter AdoptASCls,
whereas the attacking strategy necessitates the use of its dedicated
subclass. As a result, the scenarios listed in the table implement
their own attacking strategy in a subclassed function, while the pa-
rameters still accommodate different defensive strategies, attacker
counts, and more.

Extendable Classes. There are also many functions and classes
that have been written in such a way that users can easily subclass
and override them to control almost any aspect of the simulations.
For example, §6 lists drastically different simulations that did not
need to modify the source code of the simulator and were facil-
itated by subclassing, made possible by BGPy’s modular design.
Subclassing allows basically unlimited customizations, and was ex-
tensively used in different simulations. Here we describe the three
most common classes that get extended:
• AS Class The AS class controls the routing policy for a given AS.
Within this AS class, a user can easily control decisions such as path
selection and export policy. Two common functions that are often
overridden in this class is the function used to rank announcements
(called ‘_new_ann_better’, detailed in §4.2) and the function used
to determine the announcement validity (called ‘_valid_ann’, an
example shown in Figure 4).

The ranking of announcements follows the Gao Rexford model
by default, but, when needed, can be tailored, for example, to imple-
ment policies such as ‘security first’ or ‘security second’, see §6.1.
The user can also easily modify the tie-breaking mechanisms.

The announcement validity function can be overridden, e.g.,
to implement policies such as ROV. The default announcement
validity function only checks for loop-prevention, i.e., returns a
Boolean indicating if the ASN (of the AS class) is contained within
the AS Path of the announcement (if so, the announcement is in-
valid). Notice that default function already allows simulation of path
poisoning[35], as used either by attacks or for traffic engineering.

The code in Figure 4 is an example, showing the simple derivation
of the ROV-AS validity function from BGP-AS. As shown, this only
requires eight lines of code, where we check if the announcement
is invalid due to a ROA, and otherwise, simply invoke the default
BGP validity function. Other examples can be seen in Figure 9 and
Figure 10.

1 class ROVAS(BGPAS):
2 def _valid_ann(self, ann: Ann) -> bool:
3 # If ROA is invalid, ROV says announcement is invalid
4 if ann.invalid_by_roa:
5 return False
6 # If ROA is valid, determine validity with BGP
7 else:
8 return super(ROVAS, self)._valid_ann(ann)

Figure 4: A subclass of BGP AS that implements ROV.

•Scenario Class The Scenario class, used to control attack and
defense strategy, can also be easily extended. Common examples
include modifying how attackers and victims are selected, how
adopting ASes are selected, how various metrics get recorded, etc.
Below we show an example for how easy it is to create a non routed
prefix hijack scenario (defined in Table 5). With just 15 lines of
code, we can create a completely new attack strategy. Multiple use
cases listed in §6 implement a wide variety of custom attacking
strategies.

1 class NonRoutedPrefixHijack(Scenario):
2 def _get_announcements(self) -> List["Announcement"]:
3 """Returns announcements used to seed the engine"""
4 anns = list()
5 for attacker_asn in self.attacker_asns:
6 anns.append(self.AnnCls(
7 prefix='1.2.0.0/16',
8 as_path=(attacker_asn,),
9 timestamp=1,
10 seed_asn=attacker_asn,
11 roa_valid_length=True,
12 roa_origin=0,
13 recv_relationship=Relationships.ORIGIN
14))
15 return anns

Figure 5: A scenario subclass that demonstrates how to im-
plement a non routed prefix hijack

45

CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA Justin Furuness, Cameron Morris, Reynaldo Morillo, Amir Herzberg, and Bing Wang

•Announcement Class The Announcement class (containing
the information used for the BGP announcements that are prop-
agated) is often extended to contain attributes specific to each
simulation. This can be accomplished easily by simply overriding
the init function of the Announcement class in a subclass with just
a few lines of code, as shown in Figure 6. This is an example of the
announcement class used to simulate the announcements described
in ROV++ [43], which contains a few additional attributes, such as
the holes in the announcement, whether or not the announcement
is a blackhole or a preventive announcement, etc.

1 @dataclass(frozen=True, slots=True)
2 class ROVPPAnn(Announcement):
3 holes: tuple[str] = ()
4 blackhole: bool = False
5 # V3 attributes
6 preventive: bool = False
7 attacker_on_route: bool = False

Figure 6: A subclass of Announcement that implements ad-
ditional attributes needed to simulate ROV++ [43]

4 THE BGPY SIMULATION ENGINE
In this section we describe various aspects of the simulation en-
gine, used to simulate BGP with given security policies and attacks.
The simulator engine abstracts away packet level interactions, and
simulates BGP from a high level, propagating BGP announcements
across the AS topology to produce as local RIB at each AS for data
analysis within the Simulation Framework (see §3.1).

4.1 AS Graph
To start our simulations, we build an AS Graph. The simulator
receives the topology information in the CAIDA serial-2 format
[10], and, by default, uses the latest CAIDA topology. This topology
is a directed acyclic graph consisting of ASes for nodes and peer to
peer connections as well as provider to customer connections for
edges.

Nodes. The nodes in this graph are ASes, by default performing
BGP (for further detail, see §4.2). We differentiate between four
types of ASes:

• Stubs. These are ASes that have only one provider and no
peers or customers.

• Multihomed. These are ASes which do not have any cus-
tomers, but do have more than one provider, or have one or
more peers. Often this is done for backup purposes or load
balancing [59].

• Input Clique. The CAIDA AS topology [10] provides a
strongly connected clique of ASes at the top of the graph
with less than 20 ASes.

• Etc. These are ASes that don’t fit into the other categories
Edges (relationships).We use the standard edges associated

with ASes and as defined by the CAIDA topology [10, 24]. Peer-
to-peer connections, where traffic flows freely from AS to AS, and
customer-provider connections, where providers are paid by their

customers to provide traffic. IXPs and sibling relationships are ex-
cluded, as these are also excluded in the provided CAIDA topology.

4.2 Vally Free Assumptions and Other Routing
Policies

By default the base AS class (BGPAS) uses BGP and adheres to Gao-
Rexford valley-free routing rules, which is in line with other works
that evaluate the security of inter-domain routing [24]. By default,
the BGPAS class also utilizes an export-to-all policy, meaning a
route exported to one provider is exported to all providers. The
same applies to peers and customers.

Gao-Rexford defines rules for ranking received announcements
based on relationship (peer-to-peer or provider-to-customer) and
export policies based on those relationships. These rules are usually
implemented in routers using the Local Preference mechanism in
the BGP Best-Path Selection process, which follows several steps
to determine the best path for a particular prefix. The steps are:
• Local Preference. The local preference of the AS follows the
business incentives of that AS. First, announcements from cus-
tomers are given the highest priority, because customers are paying
for the traffic. Then, announcements from peers are considered,
since traffic to and from peers is free. Lastly, announcements from
providers are considered. Provider announcements are the lowest
for the local preference because this traffic must be paid for.
• Shortest AS Path. If multiple announcements have the same
relationship, the announcements are ranked by shortest AS Path.
• Tiebreakers. If all other aspects of announcements are equal,
then the AS defaults to tiebreakers. In our simulations, we default
to the lowest ASN to win ties to be consistent with [45] but this
can easily be changed and is extendable.

Export Policies. The export policies also follow the business
incentives for an AS by default in the BGPAS class. Announce-
ments from customers are sent to peers, providers, and customers.
Announcements from both peers and providers are sent only to
customers. By default the BGPAS uses an export to all methodology.

Accuracy of the Valley Free Routing model This method-
ology is one that is widely used across various routing security
studies [11, 25, 28], although we do acknowledge that in the real
world ASes do not always adhere to this [1, 36, 40, 44]

Prefix Aggregation. The BGPAS class by default does not do
any prefix aggregation. That is to say that the BGPAS class will
select an announcement for every single prefix, regardless of the
existence of subprefixes or superprefixes.

4.3 Real World Data
There are currently several sources of data that provide information
on routing policies, particularly for ROV (Route Origin Validation).
In Table 4, it is explained that any Scenario class can receive a dic-
tionary of ASN-AS Class key-value pairs as a parameter using the
hardcoded_asn_cls_dict. This section provides an explanation of the
data sources utilized in a utility function that is integrated within
the system. This function generates a hardcoded_asn_cls_dict con-
taining actual ROV data from the real world. This enhancement
ensures that real-world ROV can be employed in any simulation,
resulting in improved accuracy compared to previous simulators.
It is important to highlight that users have the flexibility to input

46

BGPy: The BGP Python Security Simulator CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA

any dataset or routing policy for a given ASN. As additional rout-
ing policies become available, they will be incorporated into our
datasets and simulations.
• ROV RPKI. https://rov.rpki.net/ [50] is a website detailing ASN’s
and their corresponding ROV confidence.
• Cloudflare’s https://isbgpsafeyet.com. [14] This website accu-
rately identifies a user’s ISP’s properties, including its ROV adop-
tion and whether it follows the default policy or a variant that only
filters announcements from peers.
• Revisiting RPKI Route Origin Validation on the Data Plane.
[51] Various metrics were utilized in this study to acquire ROV
ASNs along with their corresponding confidence levels.

4.4 Running a Scenario with the Simulation
Engine

When we are running a Scenario class , we must first insert the
attacker’s announcements in the local RIB of the attacker AS, and
the victim’s announcements in the local RIB of the victim AS. These
initial announcements are defined in the Scenario class, for an
example see Figure 5. After inserting these announcements, we
then run the simulation engine. This performs propagation, to
propagate the announcements throughout the internet and the AS
topology.
• To start with, we propagate the announcements from customers
to providers, all the way up the graph.
• Then, we propagate announcements across peer connections.
• Finally, we propagate announcements from providers to cus-
tomers.

We perform the propagation of announcements in this way to
simulate a moment in time for the AS topology. With this method-
ology, our simulator converges after a single round of propagation,
which significantly reduces the run time of simulations. With this
method we avoid a lot of the run time constraints detailed in many
other packet-level or discrete event simulators that must converge
where simulations required convergence [13, 18, 19, 22, 55], result-
ing in many rounds of propagation for a single trial, drastically
increasing the runtime.

Our method of propagation has time complexity of 𝑂 (𝐸) per
propagation round, where 𝐸 is the number of edges in the AS
topology. By default the AS graph converges after a single round of
propagation, however, if there are user-defined routing policies that
delay the convergence of the AS graph, the propagation_rounds
is a parameter that is easily modifiable. This runtime allows us to
be able to run our simulations on a standard laptop. For more per-
formance enhancements, future improvements, and various bench-
marks, refer to Appendix C.

5 VERIFICATION AND TESTING
Routing attacks and defenses are subtle; it is all too easy to make
hard-to-detect errors. Therefore, verification and testing are critical.
BGPy includes the following mechanisms to assist in testing and
verification.
• Deterministic randomness Setting the PYTHON_HASH_SEED
in both the Python interpreter’s environment and the simulator
parameters (which seeds the random module, as shown in Table 3)

ensures that running simulations multiple times will yield identical
outcomes, despite the initial random generation. This functionality
greatly facilitates the reproduction of specific issues and repro-
ducible results that might otherwise be challenging to recreate.

• YAMLable Every object in BGPy can be seamlessly converted
to and from YAML, providing us with a convenient way to save
different parts of the state. For instance, we can easily dump the
entire AS graph along with all the announcements into YAML. Ad-
ditionally, we can save traceback results and other metrics in YAML
format. This greatly simplifies the comparison between the YAML
generated during testing and the ground truth YAML files we gen-
erate ourselves. This functionality is made possible by YAMLable
[61], which necessitates custom functions for YAML conversion
in each class. We prefer YAML over JSON because it allows direct
conversion between Python objects, unlike JSON. While pickling
in Python also supports this feature, pickled objects are not easily
readable by humans, and pickling highly recursive objects such as
the AS graph proved quite challenging. YAML, on the other hand,
is both human-readable and supports conversion to and from even
the most complex and recursive Python objects.
• Diagrams Our test suite includes a feature that allows users to
visually represent smaller AS graphs, the local RIB, and various
metrics as diagrams prior to running newly implemented routing
policies on the full topology. These diagrams are generated using
graphviz [2] and serve as valuable tools for debugging. Without a
visual representation of the AS topology in small graphs, identifying
logic problems becomes extremely challenging.

To generate these diagrams, input requirements include an AS
topology and a scenario. The simulation is then executed, resulting
in the display of the AS graph and associated metrics.

For instance, consider Figure 7. Each AS in the diagram contains
the ASN, policy information (in other words the label of the AS
class), and its local RIB. The local RIB table includes the prefix, AS
Path, and origin for each announcement. Circular shapes repre-
sent BGP ASes (as also indicated in their policies listed), while the
octagon shapes denote adoption of a different policy (as seen in Fig-
ure 7 with ASes 3 and 4 adopting ROV). ASes 666 (the attacker) and
777 (the victim) have an additional ring around them, signifying that
they are the origins of announcements. The arrows between ASes
represent provider-to-customer connections, while peer-to-peer
connections (shown in Figure 11) are denoted by dashed lines.

The color automatically determined for each AS indicates the
outcome of the AS on the data plane for the most specific prefix
(in Figure 7, it is /24). Differentiating between the control plane
and the data plane is crucial for understanding these outcomes, as
they often differ. For example, in the control plane of Figure 7, AS
3 appears unaffected by hijacking, as it does not contain any of
the attacker’s announcements within it’s local RIB. However, upon
performing traceback, we discover that on the data plane, traffic
for AS 3 is routed to AS 1, which then forwards all traffic within
the /24 prefix to AS 666, the attacker. Green represents successfully
routed announcements to the victim for the most specific prefix
(/24 in Figure 7). Gray (shown in Figure 11) indicates that an AS
is disconnected. An aggregated table presents the metrics for at-
tacker success, victim success, and disconnections. Additionally,

47

https://rov.rpki.net/
https://isbgpsafeyet.com

CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA Justin Furuness, Cameron Morris, Reynaldo Morillo, Amir Herzberg, and Bing Wang

users have the option to label the graph and provide a description.
The emoji on the rightmost column denotes the origin, with the
angel being the victim, the ‘devil’ being the attacker, and a shield
being a preventive announcement (as shown in Figure 11)

Figure 7: Test Suite Diagram Example that was dynamically
generated from an input AS topology and the origin an-
nouncements. For a detailed description of this diagram,
please refer to §5 under the bullet ‘diagrams’. For a larger
version, please see Figure 8 in the appendix. For an example
of disconnections and peering, see Figure 11.

.

System Test Suite All of the features listed in this section are
utilized in our system test suite. A user has the ability to define a
custom AS topology, along with a custom scenario, and the system
test suite will automatically perform the following:

(1) Creates an AS topology with custom routing policies.
(2) Runs a scenario on said AS topology, such as a subprefix

hijack.
(3) Records all the metrics associated with that topology, such

as number of ASes hijacked, etc.
(4) Displays this topology and resulting output in a diagram for

easy visualization (described in the bullet for diagrams, see
an example in Figure 7).

(5) Compares it to ground truth YAML that is saved and vetted
in advance.

Additionally, the ground truth would be difficult and time con-
suming for a user to generate due the vast amount of text that
would be required to write these YAML AS graphs by hand. Instead,
the ground truth can be auto generated, and the user can simply
verify that it is accurate, saving countless hours of manual work.

Across all of our various use cases we have hundreds of sys-
tem tests. The system tests suite can even be used to verify other
simulation engines.

6 USE CASES
This section describes some ways in which BGPy has been used
for BGP security research so far. All of these use cases involved

extensions to the core BGPy mechanisms and did not require any
modification to the simulator source code. Not only do these use
cases use the wide variety of parameters available, they also have
implemented many of their own AS subclasses for their defensive
policies, many different attacker scenarios, subclassed many differ-
ent aspects of the simulations themselves, etc.

6.1 ROV++ and Mixed Deployment
We simulate the policies described in [43] using BGPy. This only
required us to implement a custom announcement class (see Fig-
ure 6, an announcement class that contains attributes for holes and
preventive announcements) and custom AS classes for ROV++ V1,
V2, V3 (along with the corresponding lite versions). The ease of
use is important to highlight, as only the ideas described in [43] re-
quired implementation, while the rest of BGPy remained untouched
without modification to the source code.

For the AS classes themselves, the announcement rank functions
were modified to include security policies after local preference
but before AS path length and tiebreaks. An example of an ROV++
V2 AS class is included in Figure 10, requiring less than 20 lines of
code to implement. Additionally, all of these policies were verified
through over 100 new system tests using the existing test suite. An
example of one of these tests can be seen in Figure 11.

This work is currently being extended to also include mixed
deployment scenarios where ROV++ has partial adoption amongst
real world ROV ASes. This extension required only a parameter
change to pass in a list of real world ROV ASes, without any modi-
fication to the simulation code or even the ROV++ code (for a full
list of parameters, see Table 4).

6.2 Attacker Collusion
The simulator’s versatility is supported by its use in developing
and simulating policies that can cope with multi-attacker hijack
scenarios; ones of which the attackers may or may not be colluding.
This means orchestrating a number of attackers as a group/team to
launch an attack on a target to achieve a particular goal, such as
decreasing successful connections to the origin.

A policy that deals with such attacks was created by subclassing
the BGP_AS and override method(s) related to how it processes
the announcements. In order to vary the number of attackers, one
simply needs to provide an argument of how many attackers are
in the system via the Simulation class (see Table 3 for a full list
of parameters), and the attacker announcements would need to be
constructed and coordinated in a subclass of the Scenario class.

Auxiliary entities, such as a centralized server, were integral
to this policy. Although BGPy doesn’t have a centralized server
as a component of its architecture, it provides the flexibility to
incorporate it. As in this case, the server was created as a class
which became a member attribute of the new Scenario class.

6.3 Path Security Policies
BGPy has been extended to evaluate defenses against path manip-
ulation attacks, where an attacker modifies the AS Path or other
attributes of an announcement. Notably, this facilitates evaluation

48

BGPy: The BGP Python Security Simulator CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA

of BGPsec [34] and alternative mechanisms that provide Path Secu-
rity. The BGPsecAS class extends the default path selection mecha-
nism to validate and prefer signed paths over unsigned paths and
extends the default export function to add signatures in outgoing
announcements. The Announcement class is extended to support
propagating signatures. A new scenario subclass evaluates defenses
against origin hijacks, where the attacker announces an AS path
indicating it is a neighbor of the legitimate origin. These attacks
evade detection by ROV since the origin is valid, and may become
more common as RPKI/ROV adoption continues to increase. A
mechanism like BGPsec is necessary to detect and prevent such
attacks.

The Path Security extensions also include support for evaluating
defenses against route leaks [53], where an AS announces routes in
violation of common export policy. Importantly, a route leak may
redirect a substantial amount of traffic even without manipulating
the AS path. In other words, even if BGPsec was fully deployed, a
route leak could still have the potential to cause harm and redirect
internet traffic. Separate solutions, such as ASPA [3] are needed to
protect against route leaks.

7 CONCLUSION
We presented BGPy, an open-source BGP Python simulator de-
signed to analyze various attack and defense security scenarios
https://github.com/jfuruness/bgpy. We showcased the simulator
framework and functionality, and demonstrated it’s ease of ex-
tensibility and use. We detailed the simulation engine and design,
documenting how we model the AS topology and it’s correspond-
ing routing policies. We also demonstrated the BGPy test suite,
and showed how it can make simulations both easy to debug and
robust. We cataloged numerous performance metrics and enhance-
ments. We described several use cases where BGPy is already in use,
and highlighted it’s extendability and usefulness. We will continue
to improve upon it’s limitations as future work, as described in
Appendix A.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their suggestions. This
manuscript is based upon work supported by the National Science
Foundation under Grant No. 2247810. Prof. Herzberg was partially
supported by an endowment from Comcast. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation or of Comcast.

REFERENCES
[1] Ruwaifa Anwar, Haseeb Niaz, David Choffnes, Italo Cunha, Phillipa Gill, and

Ethan Katz-Bassett. 2015. Investigating Interdomain Routing Policies in the Wild.
In Proc. of ACM IMC.

[2] The NetworkX Developers Aric Hagberg. 2022. Graphviz. https://graphviz.org/
[3] Alexander Azimov, Eugene Bogomazov, Randy Bush, Keyur Patel, and Job Sni-

jders. 2022. BGP AS_PATH Verification Based on Resource Public Key Infrastruc-
ture (RPKI) Autonomous System Provider Authorization (ASPA) Objects. Internet-
Draft draft-ietf-sidrops-aspa-verification-09. Internet Engineering Task Force.
https://datatracker.ietf.org/doc/draft-ietf-sidrops-aspa-verification/09/ Work in
Progress.

[4] Hitesh Ballani, Paul Francis, and Xinyang Zhang. 2007. A Study of Prefix Hi-
jacking and Interception in the Internet. In Proc. of ACM SIGCOMM. 265–276.
https://doi.org/10.1145/1282380.1282411

[5] Tony Bates, Geoff Huston, and Philip Smith. [n. d.]. CIDR REPORT for 15 May
23. https://www.cidr-report.org/as2.0/

[6] BGPStream. 2018. BGPMON’s BGP Stream incident alert service. https:
//bgpstream.com.

[7] Jay Borkenhagen. 2019. AT&T/as7018 now drops invalid prefixes from peers.
Email. https://mailman.nanog.org/pipermail/nanog/2019-February/099501.html
NANOG Mailing List Archive.

[8] Kevin Butler, Toni R. Farley, Patrick McDaniel, and Jennifer Rexford. 2010. A
Survey of BGP Security Issues and Solutions. Proc. IEEE 98, 1 (2010), 100–122.

[9] CAIDA. [n. d.]. CAIDA BGPStream twitter. https://twitter.com/bgpstream/.
[10] CAIDA. 2016. The CAIDA AS Relationships Dataset.

http://www.caida.org/data/as-relationships/.
[11] Haowen Chan, Debabrata Dash, Adrian Perrig, and Hui Zhang. 2006. Modeling

Adoptability of Secure BGP Protocols. In Proc. of SIGCOMM. ACM.
[12] Zhiguo Chen, Xin Wang, Rui Zhang, Vern Paxson, and Stefan Savage. 2014.

Characterizing and detecting malicious behavior in bgp routing. In Proceedings
of the 2014 ACM SIGCOMM conference on computer and communications security.
ACM, 103–114.

[13] Zhe Chen, Daqiang Zhang, and Yinxue Ma. 2015. Modeling and analyzing the
convergence property of the BGP routing protocol in SPIN. Telecommunication
Systems 58 (03 2015). https://doi.org/10.1007/s11235-014-9870-y

[14] Cloudflare. 2023. Is BGP Safe Yet? https://isbgpsafeyet.com/
[15] Avichai Cohen, Yossi Gilad, Amir Herzberg, and Michael Schapira. 2016. Jump-

starting BGP security with path-end validation. In Proc. of ACM SIGCOMM. ACM,
342–355.

[16] J.H. Cowie, D.M. Nicol, and A.T. Ogielski. 1999. Modeling the global Internet.
Computing in Science & Engineering 1, 1 (1999).

[17] Remy de Boer and Javy de Koning. 2013. BGP Origin Validation (RPKI). Technical
Report. Univeristy of Amsterdam, Systems and Network Engineering Group.

[18] Christos Dimitropoulos and Greg Riley. 2008. SSFNet: A Scalable Simulation
Framework for BGP. IEEE Journal on Selected Areas in Communications 26, 1
(2008), 158–167. https://doi.org/10.1109/JSAC.2007.357111

[19] Xenofontas A. Dimitropoulos and George F. Riley. 2006. Efficient Large-Scale
BGP Simulations. Comput. Netw. 50, 12 (aug 2006), 2013–2027. https://doi.org/
10.1016/j.comnet.2005.09.033

[20] Nick Feamster, Jonathan Winick, and John Rexford. 2004. A model of BGP
routing for network engineering. In Proceedings of the 2004 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems. ACM,
191–202. https://doi.org/10.1145/1012888.1005726

[21] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, and John Rex-
ford. 2000. Netscope: Traffic engineering for ip networks. IEEE Network 14, 2
(2000), 11–19.

[22] Tony Feng and Rob Ballantyne. 2004. Implementation of bgp in a network
simulator. Proc. Applied Telecommunications Symposium, ATS’04 (01 2004).

[23] Python Software Foundation. 2023. Python 3.11. https://www.python.org/
downloads/release/python-311/

[24] Lixin Gao and Jennifer Rexford. 2001. Stable Internet Routing without Global
Coordination. IEEE/ACM Trans. Netw. 9, 6 (dec 2001), 681–692. https://doi.org/
10.1109/90.974523

[25] Yossi Gilad, Avichai Cohen, Amir Herzberg, Michael Schapira, and Haya Shulman.
2017. Are We There Yet? On RPKI’s Deployment and Security. In NDSS. The
Internet Society.

[26] Phillipa Gill and Nick Feamster. 2012. Modeling on Quicksand: Dealing with
the Scarcity of Ground Truth in Interdomain Routing Data. ACM SIGCOMM
Computer Communication Review 42, 4 (2012), 107–118. https://people.cs.umass.
edu/~phillipa/papers/QuickSand.pdf

[27] Phillipa Gill, Michael Schapira, and Sharon Goldberg. 2011. Let the market
drive deployment: A strategy for transitioning to BGP security. ACM SIGCOMM
Computer Communication Review 41, 4 (2011), 14–25.

[28] Sharon Goldberg, Michael Schapira, Pete Hummon, and Jennifer Rexford. 2014.
How secure are secure interdomain routing protocols? Computer Networks 70
(2014), 260–287.

[29] Amir Herzberg, Matthias Hollick, and Adrian Perrig. 2015. Secure Routing for
Future Communication Networks (Dagstuhl Seminar 15102). Dagstuhl Reports 5,
3 (2015), 28–40. https://doi.org/10.4230/DagRep.5.3.28

[30] G. Huston, M. Rossi, and G. Armitage. 2011. Securing BGP: A literature survey.
IEEE Communications Surveys & Tutorials 13, 2 (2011), 199–222.

[31] Cheng Jin, Qian Chen, and Sugih Jamin. 2000. Inet: Internet Topology Generator.
IEEE/ACM Transactions on Networking 8 (11 2000), 753–765. Issue 6. https:
//doi.org/10.1109/TNET.2000.880966

[32] Josh Karlin, Stephanie Forrest, and Jennifer Rexford. 2008. Autonomous security
for autonomous systems. Computer Networks 52 (10 2008), 2908–2923. https:
//doi.org/10.1016/j.comnet.2008.06.012

[33] S. Kent and K.seo. 2012. An Infrastructure to Support Secure Internet Routing. RFC
6480. The Internet society. http://tools.ietf.org/html/rfc6480

[34] M. Lepinski (Ed.) and K. Sriram (Ed.). 2017. BGPsec Protocol Specification. RFC
8205 (Proposed Standard). https://doi.org/10.17487/RFC8205 Updated by RFC
8206.

49

https://github.com/jfuruness/bgpy
https://graphviz.org/
https://datatracker.ietf.org/doc/draft-ietf-sidrops-aspa-verification/09/
https://doi.org/10.1145/1282380.1282411
https://www.cidr-report.org/as2.0/
https://bgpstream.com
https://bgpstream.com
https://mailman.nanog.org/pipermail/nanog/2019-February/099501.html
https://twitter.com/bgpstream/
https://doi.org/10.1007/s11235-014-9870-y
https://isbgpsafeyet.com/
https://doi.org/10.1109/JSAC.2007.357111
https://doi.org/10.1016/j.comnet.2005.09.033
https://doi.org/10.1016/j.comnet.2005.09.033
https://doi.org/10.1145/1012888.1005726
https://www.python.org/downloads/release/python-311/
https://www.python.org/downloads/release/python-311/
https://doi.org/10.1109/90.974523
https://doi.org/10.1109/90.974523
https://people.cs.umass.edu/~phillipa/papers/QuickSand.pdf
https://people.cs.umass.edu/~phillipa/papers/QuickSand.pdf
https://doi.org/10.4230/DagRep.5.3.28
https://doi.org/10.1109/TNET.2000.880966
https://doi.org/10.1109/TNET.2000.880966
https://doi.org/10.1016/j.comnet.2008.06.012
https://doi.org/10.1016/j.comnet.2008.06.012
http://tools.ietf.org/html/rfc6480
https://doi.org/10.17487/RFC8205

CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA Justin Furuness, Cameron Morris, Reynaldo Morillo, Amir Herzberg, and Bing Wang

[35] Thomas B London, Stephen R Hanna, and Kevin L Carter. 2000. Path poisoning in
bgp. In Proceedings of the 2000 IEEE international conference on network protocols.
IEEE, 191–198.

[36] H. Madhyastha, E. Katz-Bassett, T. Anderson, A. Krishnamurthy, and A.
Venkataramani. 2009. iPlane Nano: Path Prediction for Peer-to-Peer Applications.
In Proce of NSDI.

[37] Mohammadreza Maleki, Mohammad Mahdi Hajian, and Mohammad R Sadeghi.
2018. BGP anomalies: A survey of detection methods and their limitations. IEEE
Communications Surveys & Tutorials 20, 3 (2018), 2028–2055.

[38] Niko Matsakis. 2023. PyO3: Bringing Python to Rust. https://github.com/PyO3/
pyo3.

[39] Jared Mauch. [n. d.]. BGP Routing Leak Detection System. https://puck.nether.
net/bgp/leakinfo.cgi/leaks-majornet.txt.

[40] R. Mazloum, M. Buob, J. Auge, B. Baynat, D. Rossi, and T. Friedman. 2014. Viola-
tion of Interdomain Routing Assumptions. In Proc. of Passive and Active Measure-
ment Conference (PAM).

[41] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. 2001. BRITE:
an approach to universal topology generation. In MASCOTS 2001, Proceedings
Ninth International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems. 346–353. https://doi.org/10.1109/MASCOT.2001.
948886

[42] Asya Mitseva, Andriy Panchenko, and Thomas Engel. 2018. The state of affairs
in BGP security: A survey of attacks and defenses. Computer Communications
124 (June 2018), 45–60.

[43] Reynaldo Morillo, Justin Furuness, Amir Herzberg, Cameron Morris, James Bres-
lin, and Bing Wang. 2020. ROV++: Improved Deployable Defense against BGP
Hijacking. In Proceedings of the Network and Distributed System Security Sympo-
sium. https://doi.org/10.14722/ndss.2021.24438

[44] W.Mühlbauer, A. Feldmann, O.Maennel, M. Roughan, and S. Uhlig. 2006. Building
an AS-topology model that captures route diversity. In Proc. of SIGCOMM.

[45] C. Perkins, P. Calhoun, and J. Bharatia. 2007. Mobile IPv4 Challenge/Response
Extensions (Revised). RFC 4721 (Proposed Standard). https://doi.org/10.17487/
RFC4721

[46] Brian J. Premore. 2003. An Analysis of Convergence Properties of the Border
Gateway Protocol Using Discrete Event Simulation. Ph. D. Dissertation. Dartmouth
College.

[47] B. Quoitin and S. Uhlig. 2005. Modeling the routing of an autonomous system
with C-BGP. IEEE Network 19, 6 (2005), 12–19. https://doi.org/10.1109/MNET.
2005.1541716

[48] Y. Rekhter (Ed.), T. Li (Ed.), and S. Hares (Ed.). 2006. A Border Gateway Protocol 4
(BGP-4). RFC 4271 (Draft Standard). https://doi.org/10.17487/RFC4271 Updated
by RFCs 6286, 6608, 6793, 7606, 7607, 7705, 8212, 8654, 9072.

[49] Renesys. [n. d.]. The New Threat: Targeted Internet Traffic Misdirection. http:
//www.renesys.com/2013/11/mitm-internet-hijacking/.

[50] Andreas Reuter, Randy Bush, Italo Cunha, Ethan Katz-Bassett, Thomas C Schmidt,
and Matthias Wählisch. 2018. Towards a rigorous methodology for measuring
adoption of RPKI route validation and filtering. ACM SIGCOMM Computer
Communication Review 48, 1 (2018), 19–27. Online service: https://rov.rpki.net/.

[51] Nils Rodday, Ítalo S. Cunha, Randy Bush, Ethan Katz-Bassett, Gabi Dreo Rodosek,
Thomas C. Schmidt, and Matthias Wählisch. 2021. Revisiting RPKI Route Origin
Validation on the Data Plane. In 5th Network Traffic Measurement and Analy-
sis Conference, TMA 2021, Virtual Event, September 14-15, 2021, Vaibhav Bajpai,
Hamed Haddadi, and Oliver Hohlfeld (Eds.). IFIP. http://dl.ifip.org/db/conf/tma/
tma2021/tma2021-paper11.pdf

[52] Muhammad S. Siddiqui, Diego Montero, Rene Serral-Gracia, Xavi Masip-Bruin,
and Marcelo Yannuzzi. 2015. A survey on the recent efforts of the Internet
Standardization Body for securing inter-domain routing. Computer Networks 80
(April 2015), 1–26.

[53] K. Sriram, D. Montgomery, D. McPherson, E. Osterweil, and B. Dickson. 2016.
Problem Definition and Classification of BGP Route Leaks. RFC 7908 (Informa-
tional). https://doi.org/10.17487/RFC7908

[54] Cisco Systems. 2023. Cisco WAN Automation Engine (WAE). https://www.cisco.
com/c/en/us/products/routers/wan-automation-engine/index.html

[55] Boleslaw Szymanski, Yu Liu, and Rashim Gupta. 2003. Parallel network simu-
lation under distributed Genesis. In Proceedings of the 2003 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems. 61–
68. https://doi.org/10.1145/824475.825869

[56] PyPy Team. 2023. PyPy. https://pypy.org/
[57] Andree Toonk. 2011. Indosat a Quick Report. http://www.bgpmon.net/hijack-

by-as4761-indosat-a-quick-report/.
[58] Andree Toonk. 2014. Turkey Hijacking IP Addresses for Popular Global DNS

Providers. BGPMon.
[59] Maarten C van Steen, Arno P Akkermans, and Henk J Sips. 2008. Multihoming

in the internet: A survey. IEEE Communications Surveys & Tutorials 10, 2 (2008),
372–392.

[60] Pierre-Antoine Vervier, Olivier Thonnard, and Marc Dacier. 2015. Mind Your
Blocks: On the Stealthiness of Malicious BGP Hijacks. In NDSS.

[61] Jacob Vlijm. 2022. yamlable. https://github.com/jacobvlijm/yamlable
[62] Matthias Wählisch, Olaf Maennel, and Thomas C. Schmidt. 2012. Towards

detecting BGP route hijacking using the RPKI. In Proc. of ACM SIGCOMM. 103–
104. https://doi.org/10.1145/2342356.2342381

[63] M. Wojciechowski. 2008. Border gateway protocol modeling and simulation. Mas-
ter’s thesis. University of Warsaw.

[64] J. Wu, Y. Zhang, Z. M. Mao, and K. Shin. 2007. Internet routing resilience to
failures: Analysis and implications. In Proc. of CoNEXT.

[65] Ellen W Zegura, Kenneth L Calvert, and Samrat Bhattacharjee. 1996. How
to model an internetwork. In Proceedings of the IEEE conference on computer
communications (INFOCOM), Vol. 2. IEEE, 594–602.

[66] Rui Zhang, Zhiguo Chen, Xin Wang, Vern Paxson, and Stefan Savage. 2015.
BGPMon: A system for monitoring and detecting malicious behavior in bgp. In
Proceedings of the 2015 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1591–1602.

A FUTUREWORK AND LIMITATIONS
BGPy is also currently being iterated on, and we leave a few im-
provements as future work.
• Python BGPy is implemented in Python [23], which unlike lower
level languages has higher runtime and memory constraints. We
recommend for BGPy to set aside 1-2GB per core used in simulations
and for 1000 trials it takes about 16 minutes per policy per core. In
our experience working on these types of simulations, the pros with
the faster development time and flexible extensions far outweighs
the negatives of a higher level language. We found that developer
time was the main constraint as we wanted to evaluate security
ideas quickly. However, we plan on improving on this, and we
believe that we can use Rust bindings using the PyO3 crate [38]
for the speed of a lower level language while still maintaining the
flexibility and ease of development of a higher level language. See
a more in depth discussion in C.
• Discrete Event Simulations BGPy is not designed to be a dis-
crete event simulator. BGPy assumes a completely synchronous
system for each propagation round for efficiency purposes. By
avoiding discrete event simulations, we can avoid the need to allow
the AS graph to converge, which significantly reduces the runtime
for these simulations. However, as a parameter in the simulator, a
user of the simulator can set the amount of rounds of propagation,
so in theory they can do as many as they need. BGPy is also extend-
able, and can be extended to propagate until convergence, and we
can add this as a core feature if other developers wish. That being
said, propagating more rounds quickly becomes infeasible due to
runtime constraints. We hope to revisit this as future work once
the simulator contains Rust bindings using the PyO3 crate [38]. See
C for a more in depth discussion on performance enhancements.
• High Level BGP BGPy focuses on high level aspects of BGP,
such as best announcement selection, import and export policy,
etc. Due to runtime constraints we do not simulate many of the
lower level BGP aspects. We also have limited knowledge of the
AS graph. For example, the CAIDA topology [10] does not include
sibling relationships or IXPs. We do not include information about
prefix aggregation, AS blacklists, etc. However, all of these can be
addressed and added by a user to any level of granular detail. The
graph and routing policies are extendable, and just like we have
added support for ROV, with the appropriate data sources a user
can add support for any number of these enhancements. We leave
this as future work.

50

https://github.com/PyO3/pyo3
https://github.com/PyO3/pyo3
https://puck.nether.net/bgp/leakinfo.cgi/leaks-majornet.txt
https://puck.nether.net/bgp/leakinfo.cgi/leaks-majornet.txt
https://doi.org/10.1109/MASCOT.2001.948886
https://doi.org/10.1109/MASCOT.2001.948886
https://doi.org/10.14722/ndss.2021.24438
https://doi.org/10.17487/RFC4721
https://doi.org/10.17487/RFC4721
https://doi.org/10.1109/MNET.2005.1541716
https://doi.org/10.1109/MNET.2005.1541716
https://doi.org/10.17487/RFC4271
http://www.renesys.com/2013/11/mitm-internet-hijacking/
http://www.renesys.com/2013/11/mitm-internet-hijacking/
https://rov.rpki.net/
http://dl.ifip.org/db/conf/tma/tma2021/tma2021-paper11.pdf
http://dl.ifip.org/db/conf/tma/tma2021/tma2021-paper11.pdf
https://doi.org/10.17487/RFC7908
https://www.cisco.com/c/en/us/products/routers/wan-automation-engine/index.html
https://www.cisco.com/c/en/us/products/routers/wan-automation-engine/index.html
https://doi.org/10.1145/824475.825869
https://pypy.org/
http://www.bgpmon.net/hijack-by-as4761-indosat-a-quick-report/
http://www.bgpmon.net/hijack-by-as4761-indosat-a-quick-report/
https://github.com/jacobvlijm/yamlable
https://doi.org/10.1145/2342356.2342381

BGPy: The BGP Python Security Simulator CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA

B TEST SUITE EXAMPLE
In this section of the appendix, we showcase an example of one of
the diagrams auto generated from a single system test in figure 8,
a larger version of Figure 7. There are hundreds like it across the
many use cases the simulator is used for. For a detailed description
of this diagram, please refer to 5 under the bullet ‘diagrams’

C PERFORMANCE AND BENCHMARKS
The Internet is large, with over 80,000 ASes [5], hence, simulations
of BGP attacks and defenses can require significant computation
time. This can be a concern, especially considering that BGPy uses
Python, an interpreted language which is not as efficient as com-
piled language such as C or C++. However, we found that BGPy
is sufficiently efficient, to allow simulations on standard laptops
to complete in reasonable time frames. For our benchmarks (in
Table 1), we used the following parameters defined in Table 2:

Python 3.11 [23] was used as the default interpreter, for a total
runtime of about 30 minutes per adopted policy on a laptop. We
highly recommend the use of PyPy [56], a just-in-time Python
compiler that requires no changes to the Python code. With PyPy,
on the same machine, the total runtime was about 16 minutes per
adopted policy.

We also showcase how the simulations scale linearly with the
number of CPU cores, which is made possible because trials are
treated as independent so each CPU core can run any subset of
trials. We present several instances where utilizing cloud compute
services can drastically speed up runtimes.We recommend allowing
for 1-2GB per core for RAM.

Optimizations. The performance breakdown reveals that 70%
of the total run time is dedicated to running the simulation engine
and propagating the announcements. Another 25% is allocated to
performing the traceback and data analysis (refer to §3.1). Interest-
ingly, BGPy employs a naive recursive traceback approach (without
memoization) that may trace back the same sub-path multiple times.
Surprisingly, we discovered that this method is more efficient than
storing the results for already traced paths. The reason behind this
lies in the shallow nature of the AS graph, where the average path
length is just 4. Thus, the savings achieved from reduced tracebacks
outweigh the overhead of storage and lookup operations, including
hashing.

In the real world, it is common for each autonomous system (AS)
to calculate the ROV validity for every announcement, resulting in
a run time of O(V*A), where V represents the number of ASes (ver-
tices) and A denotes the number of announcements. To avoid this
lengthy computation, for our simulations we simplify the process
by determining the ROV validity at the originating AS and adding it
as an attribute to the announcement. As the announcement spreads
across the internet, the ROV validity remains constant since it is
based on the prefix-origin pair. Consequently, there is no need to
recalculate the ROV validity, reducing the run time for this calcu-
lation to O(A). Typically, our simulations involve only one or two
announcements at the victim and attacker, making this operation
exceptionally fast.

Anticipated Performance Enhancements .Our performance
profiling has revealed that more than 70% of the overall run time
is dedicated to executing the simulation engine and duplicating

announcements across the graph. However, due to the inherent
slowness of constructing these objects in Python, we have devised
a plan for performance enhancements for future work. Our strat-
egy involves transitioning to Rust bindings within Python using
powerful tools like PyO3 [38]. By leveraging this approach, we will
be able to facilitate a Python package that incorporates Rust’s capa-
bilities. This transition is expected to yield significant performance
enhancements without sacrificing extensibility whilst maintaining
all of the functionality of the current implementation.

Tradeoffs between speed and ease of use. The BGP Rout-
ing Information Base (RIB) contains the routes known by a BGP
router, and it is divided into three parts. The Adj-RIBs-In holds all
routes received from neighbors, the Local RIB holds the currently
selected best routes, and the Adj-RIBs-Out holds routes selected
for advertisement to neighbors. The BGP RFC [48] emphasizes that
the distinction between these parts is purely conceptual and that
implementations need not actually maintain separate copies of the
data in memory. Omitting copies of data can substantially decrease
run time and memory use, however, in some cases it is convenient
to have these data structures easily accessible. Searching for alter-
nate routes, for example, is straightforward when the Adj-RIBs-In
is available. Similarly, withdrawn routes can be easily computed
from the Adj-RIBs-Out.

For this reason, we offer users a choice between two base BGP
ASes. The BGPAS class maintains copies of the RIB data structures
as they are defined in the RFC. This class is best suited for poli-
cies that require multiple rounds of propagation and may cause
withdrawn routes. We also offer a light-weight alternative class,
BGPSimple. The BGPSimple class only has a Local RIB and does not
simulate withdrawn routes, the Adj-RIBs-In, or the Adj-RIBs-Out.
For many defenses, including ROV and the policies defined in [43],
the simplified AS model is sufficient. This drastically reduces the
complexity of simulating scenarios with these policies, saving time
and memory by avoiding the operations to populate those data
structures.

Other simulators in the past have employed various techniques
for speedups, such as modifying the AS graph to reduce it in size
[31, 41, 65]. This can be done by doing things such as removing stub
ASes (since they should have identical Local RIBs to their providers),
amongst other techniques. For our simulations we do not employ
these techniques, since certain policies and scenarios may utilize
the ASes that were removed for attack or defense, based on their
respective policy.

D SIMULATOR AND SCENARIO PARAMETERS
In this section of the appendix, we include parameters to the simu-
lator (Table 3) and to the scenario class (Table 4). We also showcase
a table of provided scenario’s in Table 5.

In the simulator parameters, we detail various options that af-
fect the entire simulation and all scenarios contained within that
simulation. For instance, by setting the number of trials to 1000, all
scenarios will be run 1000 times.

In contrast, each scenario that is being compared is also highly
configurable. As in the example showcased in Figure 3, one scenario
has an adopting AS of ROV, and a different scenario has an adopting
AS of a different ROV variant that filters only by peers.

51

CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA Justin Furuness, Cameron Morris, Reynaldo Morillo, Amir Herzberg, and Bing Wang

Table 1: Benchmark tests. See Table 2 for benchmark parameters

Hardware CPUs RAM Peak RAM Interpreter Runtime per policy
ThinkPad P1 Gen 3, CPU model Intel(R) Core(TM) i7-
10750H CPU @ 2.60GHz

12 32GB 6GB Python 3.11 59 minutes

ThinkPad P1 Gen 3, CPU model Intel(R) Core(TM) i7-
10750H CPU @ 2.60GHz

12 32GB 10GB PyPy 3.10 16 minutes

c6a.32xlarge AWS EC2 instance, CPU model AMD EPYC
7R13 Processor

128 256GB 83GB PyPy 3.10 < 1 minute

High Performance Computing Cluster with AMD EPYC
128

66 298GB Unknown Python 3.11 15 minutes

Table 2: Parameters for benchmarks

Attack Strategy: Subprefix Hijack
Adopted AS Class: ROV and an ROV variant that filters only peers
Percent Adoptions: ONLY_ONE_AS AS, 10%, 20%, 40%, 80%, ALL_BUT_ONE_AS
Trials: 1000
Assertions: Off (-O flag)

Parameter Description
percent_adoptions A list of percentages representing the adoption rate of the defensive policy among ASes (Autonomous

Systems). Special options are available to set the adoption rate to 0% (with only one AS adopting) or
100% (with all but one AS adopting).

scenario A list of configuration to be analyzed in the simulation. For example, analyzing the effects of subprefix
hijack by an attacker and the adoption of ROV (Route Origin Validation) by the victim. Refer to table 5
for the default available scenario options, and see 3 for usage examples

num_trials The total number of trials to be executed. Even a small number of trials (e.g., 100) can provide a clear
understanding of the graph, but we typically recommend running 1000 or more trials in our simulations.

propagation_rounds The number of rounds of propagation. In most cases, the graph converges after a single round of
propagation. However, in certain scenarios, multiple rounds are necessary. An attacker that behaves
differently based on how other ASes respond to its attack, for example, would require multiple rounds
to simulate.

output_path Specifies the output path for the generated graphs.
parse_cpus The number of CPU cores to be utilized for multiprocessing. For the scenario’s included by default,

approximately 1-2GB of memory is required per core.
python_hash_seed When set to an integer, enables deterministic runs. The AS graph is complex, and certain edge cases

may only arise when running thousands of trials. This option facilitates debugging such problems and
enables reproducibility.

Table 3: Parameters for the Simulator. To see an example of usage, see figure 3. Simulator parameters affect the entire simulation
and all scenarios.

The wide variety of parameters offer ease of customization to
each unique simulation without requiring any code changes.

E PEER ROV
In this section of the appendix, we describe PeerROV. PeerROV is
an ROV variant that only drops announcements invalid by ROA
that are received from peers. Several ISPs deploy this variant of
ROV, notably, AT&T [7], Zayo, and Digital Energy Technologies
Limited (Global) [14]. The code for PeerROV can be seen in Figure 9.
When simulated, we found that this ROV variant was insecure and
ineffective. This wasmainly due to hijacks often being received from

customers and providers, so this routing security policy offered
little benefit, as shown in Figure 2.

F ROV++
In this section of the appendix, we detail further extensions that
were made to support the ROV++ policies described in [43] that did
not fit in the main text. The announcement class was extended to
support the blackhole and preventive attributes required for ROV++
V1, V2, and V3, and can be seen in Figure 6. The ROVAS class was
also extended to support V1, V2, V3, and the corresponding lite
versions that were described in [43]. An example of ROV++ V2
can be seen in Figure 10. The system test suite was also used to

52

BGPy: The BGP Python Security Simulator CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA

Parameter Description
AnnCls Announcement class to be used in the simulation. This allows users to easily create their own an-

nouncements with additional path attributes. This ability have been used in several use cases including
the one described in section § 6.1).

BaseASCls Base AS class to be used in the simulation. This is the default class that all ASes will adopt unless
otherwise specified in the hardcoded_asn_cls_dict. The default base AS class is BGP.

AdoptASCls This is the adopting AS class that will be adopted at each data point for the specified
percent_adoptions in the simulation parameters. For example, at 5% adoption, 5% of the AS graph will
adopt this class for its routing policies. One example of this would be ROV (Route Origin Validation).

num_attackers The number of attackers that will be randomly selected. The default value is one attacker.
num_victims The number of victims that will be randomly selected to announce the legitimate announcement. The

default value is one victim.
hardcoded_asn_cls_dict A dictionary of key-value pairs, where the key is the ASN (Autonomous System Number), and the

value is the class that the ASN should adopt. By default, this dictionary is empty. For example, there is
a utility function included that can pass in the real-world ROV ASes to be set into this dictionary.

adopting_subcategories This is a collection of subcategories in which the adoption will be evenly distributed. Presently, it
comprises stubs and multihomed ASes, input clique ASes, and the remaining ASes referred to as "etc
ASes." To clarify, if we specify a 10% adoption rate for ASes, it means that 10% of stubs and multihomed
ASes, 10% of input clique ASes, and 10% of etc ASes will adopt.

Table 4: Additional Parameters for the scenarios contained within the simulation. To see an example of usage, see Figure 3.
Scenario parameters affect only a single scenario that is being compared (for example, one scenario may adopt ROV, while the
other scenario may adopt a different ROV variant), not the entire simulation.

Scenario Description
PrefixHijack Both the attacker and the victim announce the same prefix. The victim’s announcement is

covered by a ROA.
SubprefixHijack The victim announces a prefix that is covered by a ROA. The attacker announces a subprefix of

this.
NonRoutedPrefixHijack The attacker announces a non-routed prefix that is not covered by a ROA (Route Origin

Authorization), while the victim announces nothing.
NonRoutedSuperprefixHijack The attacker announces the superprefix of a non-routed prefix. The non-routed prefix is covered

by a ROA; however, the superprefix is not. The victim announces nothing.
NonRoutedSuperprefixPrefixHijack The attacker announces the superprefix of a non-routed prefix, as well as the non-routed

prefix. The non-routed prefix is covered by a ROA; however, the superprefix is not. The victim
announces nothing.

SuperprefixPrefixHijack The victim announces a prefix that is covered by a ROA. The attacker announces the same
prefix as the victim, as well as a superprefix that is not covered by a ROA.

Table 5: Default scenarios included in the simulator. Hijacks come from [43, 60].

create over 100 examples of ROV++ policies being used in various
scenarios, and an example is included in Figure 11

53

CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA Justin Furuness, Cameron Morris, Reynaldo Morillo, Amir Herzberg, and Bing Wang

Figure 8: Test Suite Diagram Example. This diagram was dynamically generated from an input of an AS topology and the two
originating announcements (at AS 666 and AS 777). For a detailed description of this diagram, please refer to §5 under the bullet
‘diagrams’. For a more complex example containing disconnections, peers, and different types of announcements, see Figure 11.

1 class PeerROVAS(BGPAS):
2 def _valid_ann(self, ann: Ann) -> bool:
3 # If ROA is invalid and announcement is from a peer this ROV variant says the announcement is invalid
4 if (ann.invalid_by_roa and ann.recv_relationship == Relationships.PEERS):
5 return False
6 # If ROA is valid or announcement is not from a peer, determine validity with BGP
7 else:
8 return super(PeerROVAS, self)._valid_ann(ann)

Figure 9: A subclass of BGPAS that implements PeerROV, an ROV variant that only filters announcements received from peers.

54

BGPy: The BGP Python Security Simulator CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA

1 class ROVPPV2LiteSimpleAS(ROVPPV1LiteSimpleAS):
2

3 def _policy_propagate(self, neighbor, ann, propagate_to, *args):
4 """Deals with blackhole propagation"""
5

6 if ann.blackhole:
7 if self._send_competing_hijack_allowed(ann, propagate_to):
8 self._process_outgoing_ann(neighbor, ann, propagate_to, *args)
9 return True
10 else:
11 return False
12

13 def _send_competing_hijack_allowed(self, ann, propagate_to):
14 return (ann.recv_relationship in [Relationships.PEERS,
15 Relationships.PROVIDERS,
16 Relationships.ORIGIN]
17 and propagate_to == Relationships.CUSTOMERS
18 and (not ann.roa_valid_length or not ann.roa_routed))

Figure 10: A subclass that implements ROV++ V2 [43].

55

CSET 2023, August 07–08, 2023, Marina del Rey, CA, USA Justin Furuness, Cameron Morris, Reynaldo Morillo, Amir Herzberg, and Bing Wang

Figure 11: ROV++ Test Suite Diagram Example. This diagram was dynamically generated as a test case to ensure the correct
functionality of ROV++ V3 described in [43]. The gray indicates disconnected. The shield indicates preventive announcements
from ROV++ V3. The blackhole indicates a blackhole announcement.

56

	Abstract
	1 Introduction
	2 BGPy Design Overview
	3 The Simulator Framework
	3.1 Functionality
	3.2 Refining the Framework: Empowering Customization

	4 The BGPy Simulation Engine
	4.1 AS Graph
	4.2 Vally Free Assumptions and Other Routing Policies
	4.3 Real World Data
	4.4 Running a Scenario with the Simulation Engine

	5 Verification and Testing
	6 Use Cases
	6.1 ROV++ and Mixed Deployment
	6.2 Attacker Collusion
	6.3 Path Security Policies

	7 Conclusion
	Acknowledgments
	References
	A Future Work and Limitations
	B Test Suite Example
	C Performance and Benchmarks
	D Simulator and Scenario parameters
	E Peer ROV
	F ROV++

