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Abstract— Human thermal sensation in an environment may
be delayed, which may lead to life threatening conditions, such
as hypothermia and hyperthermia. This is especially true for se-
nior citizens, as aging alters the thermal perception in humans.
We envision a decision support system that predicts human
thermal comfort in real-time using various environmental
conditions as well psychological and physiological features, and
suggest corresponding actions, which can significantly improve
overall thermal comfort and health of individuals, especially
senior citizens. The key to realize this vision is an accurate
thermal comfort model. We propose a novel machine learning
based approach to learn an individual’s thermal comfort model.
This approach identifies the best set of features, and then
learns a classifier that takes a feature vector as input and
outputs a corresponding thermal sensation class (i.e. “feeling
cold”, “neutral” and “feeling warm”). Evaluation using a large-
scale publicly available data demonstrates that when using
Support Vector Machines (SVM) classifiers, the accuracy of
our approach is 76.7%, over two times higher than that of the
widely adopted Fanger’s model (which only achieves accuracy
of 35.4%). In addition, our study indicates that two factors, a
person’s age and outdoor temperature that are not included
in Fanger’s model, play an important role in thermal comfort,
which is a finding interesting in its own right.

I. INTRODUCTION

Human thermal comfort, i.e., their condition of mind that
expresses their satisfaction with the thermal environment [1],
has tremendous impact on their health and productivity.
Perception of thermal comfort in an environment, i.e., feeling
too warm, too cold, or comfortable, however, may exhibit de-
lays. This is particularly true for senior citizens, who do not
sense the heat or cold in overly warm or cold environments
until after an extended time period. This delayed perception
makes them vulnerable to hypothermia [10] or hyperthermia
[21] conditions, which can be life threatening in severe cases.

We envision a decision support system that automatically
predicts an individual’s thermal comfort in an environment
in real-time and suggests the corresponding recommended
actions. For instance, this decision support system may
suggest to a person that the current condition is too cold
for him and suggests him to put on an additional layer of
clothing. It may also suggest changes to the set point of
the HVAC (heating, ventilating, and air conditioning) inside
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a building, e.g., increase the temperature by two degrees.
An individual’s thermal comfort can be predicted by the
decision support system well ahead of the actual perception
of the thermal comfort settles in. The suggested actions can
improve the thermal comfort and prevent harmful conditions
(e.g., hypothermia or hyperthermia) from happening, which
is tremendously helpful to people, particularly for senior
citizens with delayed perception of thermal sensations.

The key to the decision support system is a thermal
comfort model that accurately predicts the thermal sensation
for a person. Human thermal perception has been shown to
be a complex process, depending on various environmental
conditions as well psychological and physiological attributes
of a person. Fanger’s model [13] is the most widely accepted
thermal comfort model. It has been adopted as part of
ASHRAE (American Society of Heating, Refrigerating, and
Air-Conditioning Engineers) 55 standard. On the other hand,
despite being widely accepted, Fanger’s model has been
shown to have various drawbacks (see [11], [22] and the
references within).

In this paper, we propose a novel machine learning based
approach to learn an individual’s thermal comfort model.
Specifically, our approach identifies the best set of fea-
tures (including various environmental, psychological and
physiological attributes), and then learns a classifier that
takes a feature vector as input and outputs a corresponding
thermal sensation class (i.e. “feeling cold”, “neutral” and
“feeling warm”). Our approach differs radically from existing
regression-based approaches [12], [13], [18], [19]. Evaluation
using a publicly available large-scale data set demonstrates
that when using Support Vector Machines (SVM) classifiers,
the accuracy of our approach is 76.7%, over two times higher
than that of Fanger’s model (which only achieves accuracy
of 35.4%). In addition, hypothesis tests demonstrate that our
approach outperforms Fanger’s model with strong statistical
significance. Last, our study indicates that two factors, a
person’s age and outdoor temperature that are not included in
Fanger’s model, play an important role in thermal comfort,
which is a finding interesting in its own right.

The rest of the paper is organized as follows. Section II
briefly reviews related work. Section III presents our ap-
proach. Section IV describes the dataset. Section V evaluates
the performance of our approach. Last, Section VI concludes
the paper and suggested future work.

II. RELATED WORK

Broadly, two approaches are used to define thermal com-
fort, viz., heat balance approach and the adaptive approach.



Fanger’s model [13] is a widely accepted model that is is
based on Fanger’s comfort equation [13], a heat balance
equation that works on the principle of balance between
metabolic heat production and the overall heat losses to the
environment. The equation is derived using the thermal sen-
sation data collected from subjects in a thermally controlled
experimental chamber. The thermal sensation of the subjects
is monitored for three hours, during which the subjects’
responses are collected with the help of a questionnaire.
The model maps physiological and indoor environmental
parameters to a seven point ASHRAE thermal sensation scale
named Predicted Mean Vote (PMV). PMV value is then
used to propose the percentage of Dissatisfied (PPD) index,
which finds the percentage of dissatisfied persons in certain
settings. The PMV/PPD model is incorporated in ASHRAE
guidelines for the thermal comfort of occupants in buildings,
and ASHRAE suggests that at least 80% of the building
occupants should be satisfied by the thermal conditions
within the building. Despite success and widespread use
of the Fanger’s model, many researchers found significant
discrepancies between the PMV and the Actual Mean Vote
(AMV) [11], [22] .

Adaptive approach considers physiological, behavioral and
psychological factors in a thermal comfort model. According
to [4], adaptation is an important factor to consider when
people interact with their environment. Adaptive approaches
for thermal comfort are based on data collected from field
studies. The goal of such studies is to understand the effects
of “real” environment on thermal comfort. The adaptive
model is primarily proposed for the naturally ventilated
buildings. The model is part of ASHRAE (2004) Standard 55
as an optional method for naturally ventilated buildings. Var-
ious field studies are conducted across the globe to develop
adaptive models. For example, [9] conducted a field study in
Australia during the summer season and found a temperature
difference of 1.7 Kelvin to −1.3 Kelvin between HVAC and
naturally ventilated buildings. For further information, one
may refer to [7].

Recently, the prevalence of smartphones have inspired
many researchers to use participatory sensing to develop
thermal comfort models. Several recent studies [12], [18],
[19] have used participatory sensing to collect individual
user response on thermal perception and proposed the con-
comitant thermal comfort models. These models range from
individualized to thermal models for groups. Authors in [19]
proposed “CarryEn” that combines the advantages of both
PMV and adaptive thermal comfort to find user’s comfort
temperature. A weighing factor is used to incorporate the
effect of outdoor temperature. Their idea is applicable to
both single users and groups. In [12], authors proposed
“Thermovote”, a mobile application to improve occupant’s
thermal comfort. They used PMV and added humans as
sensors to improve the thermal comfort. Humans’ thermal
sensation data are collected through smartphone app and
are used in real-time to control the room temperature. The
authors in [18] proposed SPOT+ that provides a measure of
thermal comfort by predicting the future room occupancy
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Fig. 1. High-level overview of our approach.

and optimal room temperature. Using the prediction model,
SPOT+ finds a control schedule that optimizes both energy
usage and thermal comfort.

Most existing thermal comfort models use a regression
based approach, i.e., use a function to approximate the
relationship between thermal sensation and various environ-
mental, psychological and physiological factors. Our study
differs from them in that we use a novel machine learn
based approach. While machine learning based approach has
also been used in prior studies [2] [14], they are motivated
by the observation that PMV calculation in Fangers model
involves an iterative process that is slow and incurs variable
execution time. Therefore, their goal is to speed up PMV
calculation so that it can be used for real-time control. In
contrast, our study proposes a new thermal comfort model
that significantly outperforms Fangers model.

III. LEARNING THERMAL MODEL

Our goal is to derive a thermal comfort model that
determines an individual’s thermal sensation in real-time.
Specifically, we consider three types of sensations, “uncom-
fortably warm (1)”, “neutral (0)”, and “uncomfortably cold
(-1)”. To learn an individual’s thermal sensation, data are
collected from various environmental and human (physical)
sensors and are preprocessed. The feature vector is extracted
from the raw data and a supervised classifier is trained
using the features and the ground-truth thermal sensation as
inputs. The trained classifier is then used for prediction and
decision support. Figure 1 summarizes our approach, where
the left part of the figure illustrates the training process, and
the right part of the figure illustrates deploying the model
for thermal comfort prediction in practice; n environmental
sensors (e.g., sensing temperature, air turbulence) and m
human sensors (e.g., related to metabolic rate, clothing) are
being preprocessed to obtain a feature vector.

The following sub-sections first describes the feature se-
lection and then the classification aspects of our approach.

A. Feature Selection

Human thermal sensation is influenced by both envi-
ronmental and physiological factors. To understand their



effects on thermal sensation, seven features are selected
to train our thermal comfort model. Broadly, these fea-
tures can be divided into three classes, viz., physiological
features, and indoor and outdoor environmental features.
Physiological features are used because thermal sensation
is a subjective measure; different individuals perceive the
same environment differently. Similarly, indoor environment
(especially in HVAC settings) directly affects the occupant’s
comfort. Lastly, outdoor air temperature is used to include
the psychological effects of seasons on thermal sensation
and clothing preferences of individuals. To summarize, the
following features are used to classify thermal sensation:

F = [A,C,M, Ta, Tm, At, To] (1)

Here A represents age of the individual, C is the clothing
insulation of the person, and M represents the metabolic rate.
Ta, Tm and At represent the indoor environmental features
corresponding to air temperature, mean radiant temperature
and air turbulence, respectively. To consider the effect of
outdoor environment, outdoor air temperature (T o) is taken
as the seventh features.

Our intuition to select age as one of the features is in-
spired by the fact that human thermoregulation and sensation
change with aging. There is significant literature available
that highlight these changes [10], [21]. Clothing is considered
as one of the features in our model because it directly influ-
ences thermal sensation of a person. Additionally, the first
step in dealing with thermal discomfort is change in clothing.
Metabolic rate changes with the activity level and affects the
thermal sensation; a physically active person has a different
sensation than a sedentary one. Similarly, to understand the
effect of indoor environment on human thermal sensation,
indoor air temperature, mean radiant temperature and air tur-
bulence are used as features for training the classifier. Since
seasons have psychological effects on thermal perception, to
understand this, outdoor air temperature is used as one of
the features in our prediction model.

In Section V-A.1, we quantitatively evaluate the perfor-
mance of using various feature sets using a publicly available
data set. As we shall see, the feature set that provides
the best performance conforms to our intuition. The only
difference is that mean radiant temperature, Tm, does not
help significantly to the data set we chose (it might be helpful
in other data sets), and is omitted in our final selection of
feature sets.

B. Machine Learning Algorithms

We experiment with a number of state-of-the-art machine
learning classifiers. An overview of each of the classification
algorithms is discussed below.

1) Support Vector Machine (SVM): SVM has a wide
range of applications in machine learning and human behav-
ior prediction [6]. It is a supervised learning algorithm that
transforms training examples to a higher dimensional space
and builds a linear model. This model is then used to classify
the new training examples. In our work, we used LIBSVM
[5] primarily because it can deal with multiple classes. To

fine tune the SVM performance, we used C-support vector
classification (C-SVC) with Radial Basis Function (RBF) as
the kernel function. For tunable parameters, viz., cost and
gamma (γ), we searched the space to find their optimal
values.

2) Random Forest: It uses decision trees as a base clas-
sifier. The classifier combines the output of several decision
trees and uses voting to predict the class for a given input
data. It builds several classification trees, with each tree
voting for a class. Random forest chooses the class label to
be the one with the maximum votes. For more information
on Random Forest, the reader is referred to [3].

3) Adaboost algorithm: Adaboost algorithm uses pseudo-
loss as an error measure for training N observations with c
classes. Since we consider three thermal comfort classes, we
use a multiclass extension of Adaboost, i.e., Adaboost.M2
algorithm, in this paper. Adaboost.M2 uses decision stumps
as the base classifiers. The input to the algorithm is training
tuples (xn, yn), where xn represents the features extracted
from the data and yn is a value representing the class of
xn. This algorithm, like other boosting algorithms, converts
the weak classifiers to the strong ones. For details on
Adaboost.M2, one may refer to [17].

IV. DATASET

We used the publicly available RP-884 database [7] to
evaluate the performance of our approach. RP-884 contains
data relevant to human thermal comfort and was developed
as part of ASHRAE RP-884 project “developing an adaptive
model of thermal comfort and preference”. Specifically,
ASHRAE funded a series of field studies that cover four
different climatic zones, mainly focusing on office settings,
following standardization as suggested by ASHRAE. The
resulting database contains approximately 21,000 rows of
data, collected from 160 different buildings in four different
continents [8].

Since our goal is to analyze data collected from HVAC
buildings only, the first step in our analysis was to ex-
tract data corresponding to HVAC buildings. Approximately
half of the dataset in [7] contains HVAC data, comprising
approximately 12, 000 rows of raw data. These data are
obtained from 16 individual studies, covering four seasons
(summer, winter, dry and wet), across 4 continents. Each
row of the database contains physiological parameters (e.g.,
age, clothing and metabolic rate), indoor climate observation,
user thermal sensation feedback, outdoor climate observation
(collected at various intervals), and several thermal indices
(including PMV). In addition, it also contains the AMV
(actual mean vote), which is used as the ground-truth thermal
comfort. For further information, one may refer to [7], [8].

A. Preprocessing

After feature extraction, the following preprocessing steps
are taken to prepare data for input to the classifier.

• Some rows do not contain the complete set of features.
All such rows are removed so that the classification



algorithm only uses the rows with the complete set of
features.

• The data for each feature is normalized to have zero
mean and unit standard deviation. This allowed us to
convert the data to the same scale, yet retains the shape
properties of the data.

• The AMV in each row is a real value in [−3, 3].
Following [11] (and the references with in), we map
the AMV into three classes: “Uncomfortably warm (1)”
when AMV is larger than α, “Neutral (0)” when AMV
is in [−α, α], and “Uncomfortably cold (-1)” when
AMV is smaller than α. We refer to α as comfort
threshold, and set α = 0.5 or 1.0 in the rest of the
paper.

• The original data set contains an unbalanced number
of votes for each of the classes. To resolve any over
training issues, equal number of instances are extracted
from each class. Specifically, when α = 0.5, there are
respectively 944, 1124, and 1178 instances of classes
1, 0, -1 in the original data set. To maintain the same
number of instances in each class, 944 instances are
extracted for each class, leading to a total of 2832
instances. When α = 1.0, there are respectively 352,
2460, and 434 instances of classes 1, 0, -1 in the original
data set. To maintain the same number of instances in
each class, 352 instances are extracted for each class,
leading to a total of 1056 instances.

V. PERFORMANCE EVALUATION

In the following, we first present the evaluation results us-
ing ASHRAE’s recommended range of the comfort threshold
i.e. α = 0.5. Additionally, as α = 1.0 represents thermally
acceptable range, we also present the results when α = 1.0.
In each case, we first present the results on feature set
optimization, and then present the classification results under
the three machine learning algorithms to find the algorithm
that provides the best performance. We further compare the
performance of the machine learning algorithm with that of
Fanger’s model. At the end, we present the overall accuracy
of the various algorithms using 10-fold cross validation.

A. Performance Results When α = 0.5

When α = 0.5 and using feature set F in (1), prepro-
cessing (see Section IV-A) results in a data set with 944
instances for each class and a total of 2832 instances over all
the three classes. We randomly choose 70% of the instances
as training set and the remaining 30% as testing set. In the
following, we first investigate what subset of F leads to
the best performance, and then present the evaluation results
using the best feature set. We only report the results under
SVM and Random Forest since both of them outperform
Adaboost; we briefly report the accuracy of Adaboost in
Section V-C.

1) Feature Set Optimization: Let us consider all the sub-
sets, F ′ ⊆ F , F ′ �= ∅. For each F ′, we use the corresponding
training set to obtain the thermal comfort model for each
machine learning algorithm. We then apply the model to the
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Fig. 2. Feature set optimization results, α = 0.5.

testing set and choose F ′ that provides the best accuracy.
Fig. 2 presents the prediction accuracy versus the choice of
the feature sets (i.e., we index F ′ from 1 to 27 − 1 = 127
since there are 7 features in F and we exclude the null
set) when using SVM. The subset F ′ that provides the best
accuracy is

F ∗ = [A,C,M, Ta, At, To] = F \ {Tm} (2)

That is, the optimal feature set does not include mean radiant
temperature Tm in F . We verified this results using multiple
simulation runs (by choosing the training and testing sets
differently). We also verify that F ∗ to be the optimal feature
set when using Random Forest, as is shown in Fig. 2. The
rest of the paper uses F ∗ as the feature set for the machine
learning algorithms.

2) Accuracy Results: We next compare the performance
of the various machine learning algorithms to identify the
best machine learning algorithm for our study. Table I lists
the confusion matrix for SVM and Random Forest, where 1,
0 and -1 represent the three classes, “uncomfortably warm”,
“comfortable”, and “uncomfortably cold”, respectively. The
diagonal of the matrix represent the correct classification
results. The overall accuracy of these two classifiers over
the three classes is approximately 56% and 52%, respec-
tively. We observe that SVM outperforms Random Forest for
classes -1 and 1, while performs worse than Random Forest
for class 0. To compare the accuracy between SVM and
Random Forest across all the three classes, we use macro-
average modified test [15]. This test treats all the classes
equally, and computes the geometric mean and average
correct classification rate over the classes. Specifically, it
calculates the following test value

0.75

(
c∑

i=1

PiPii

)
+ 0.25c

⎛
⎝ c

√√√√ c∏
i=1

PiPii

⎞
⎠ ,

where Pi is the probability of class i and Pii is the probability
of correct classification, i.e., the fraction of correct classifi-
cation results for prior class i, and c is the number of classes
(i.e., c = 3 in our context). Using SVM confusion matrix data
from Table I, the macro-average modified test value is 0.54



for SVM and 0.50 for Random Forest, thus demonstrating
that SVM slightly outperforms Random Forest.

Classifier Predicted Label

SVM

A
ct

ua
l

L
ab

el

-1 0 1
-1 235 40 14
0 111 62 88
1 55 61 184

Random Forest -1 196 68 25
0 90 84 87
1 47 98 155

TABLE I

CONFUSION MATRIX FOR SVM AND RANDOM FOREST, α = 0.5.

We next compare the performance of SVM and Random
Forest with that of Fanger’s model using McNemar test [20].
This test is applied to a 2×2 contingency table to determine
whether the classification errors of two algorithms are sta-
tistically different. Table II lists the 2× 2 contingency table
between the SVM classifier and Fanger’s model, where 1
represents the number of “correctly classified” instances and
0 represents the number of “incorrectly classified” instances.

����������SVM

Fanger’s Model
1 0 Total

1 127 354 481
0 156 213 369

Total 283 567 850

TABLE II

CONTINGENCY TABLE BETWEEN THE SVM CLASSIFIER AND FANGER’S

MODEL, α = 0.5.

Let nA denote the number of classification errors made
by Fanger’s model but not by SVM classifier, and let nB

denote the number of errors made by SVM classifier but not
by Fanger’s model. From Table II, nA = 354, nB = 156, and
nB is significantly smaller than nA. We next use McNemar
test to determine the statistical significance that nB is smaller
than nA. Specifically, the null hypothesis, Ho, is

Ho : nA = nB, (3)

whereas the alternate hypothesis, Ha, is

Ha : nB � nA. (4)

McNemar’s test [20] is given as:

χ2 =

( |nA − nB| − 1√
nA + nB

)2

(5)

Substituting the values in the “discordant cells” in Table II
yields

χ2 =

( |354− 156| − 1√
354 + 156

)2

≈ (8.7)2≈ 75.7 (6)

When the number of discordants (i.e., nA and nB) is
sufficiently large, χ2 has a chi-squared distribution with 1
degree of freedom. We therefore determine the statistical
significance by evaluating the p-value for the χ2 distribution.

In this case, using table from [16], for 1 degree of freedom,
the p-value is found to be < 0.01. Therefore, we reject
the null hypothesis and accepts the alternate hypothesis that
nB � nA.

����������Random Forest

Fanger’s Model
1 0 Total

1 121 314 435
0 162 253 415

Total 283 567 850

TABLE III

CONTINGENCY TABLE BETWEEN THE RANDOM FOREST BASED

CLASSIFIER AND FANGER’S MODEL, α = 0.5.

We next compare the classification errors of the Random
Forest classifier and Fanger’s model. Table III lists contin-
gency table between these two approaches. Substituting data
from “discordant cells” in the table into equation (5) yields

χ2 =

( |314− 162| − 1√
314 + 162

)2

≈ 6.92≈ 47.6 (7)

Again, for one degree of freedom, the p-value is < 0.01,
indicating a strong statistically significant result to reject the
null hypothesis and accept the alternate hypothesis.

B. Performance Results When α = 1.0

When α = 1.0, preprocessing (see Section IV-A) results
in a data set with 352 instances for each class and a total
of 1056 instances over all the three classes. We randomly
choose 70% of the instances as training set and the remaining
30% as testing set. In this case, we again find that the
feature set F ∗ defined in (2) provides the best performance.
In addition, macro-average modified test again indicates that
SVM slightly outperforms Random Forest. In the following,
we only present the results obtained using the SVM classifier.
Table IV lists the confusion matrix for matrix for the SVM
classifier. The overall accuracy over the three classes is
approximately 75%. Table V lists the 2 × 2 contingency
table between the SVM classifier and Fanger’s model. Using
McNemar’s test, we have

χ2 =

( |150− 10| − 1√
150 + 10

)2

≈ 10.92≈ 118.8 (8)

Again the p-value indicates a statistically significant result to
reject the null hypothesis and accept the alternate hypothesis.

����������Actual Label

Predicted Label
-1 0 +1

-1 70 37 5
0 10 88 0

+1 11 15 81

TABLE IV

CONFUSION MATRIX FOR THE SVM CLASSIFIER, α = 1.0.



����������SVM

Fanger’s Model
1 0 Total

1 89 150 239
0 10 68 78

Total 99 218 317

TABLE V

CONTINGENCY TABLE BETWEEN THE SVM CLASSIFIER AND FANGER’S

MODEL, α = 1.0.

C. 10-Fold Cross Validation

We now use 10-fold cross validation to evaluate the
prediction accuracy of the various approaches. Specifically,
for a given α, we divide the corresponding data set into
10 equal-size subsets, and construct ten training and testing
sets, each training set uses 90% of the data and the testing set
uses the remaining 10% of the data. Table VI summarizes the
results for both α = 0.5 and α = 1.0. We observe that all the
machine learning based algorithms significantly outperforms
the Fanger’s model, and the SVM based classifier outper-
forms the Random Forest and Adaboost based classifiers.

���������Classifier

Threshold
α = 0.5 α = 1.0

SVM 56.7% 76.7%
Random Forest 52.1% 74.1%
Adaboost.M2 51.1% 61.4%

Fanger’s Model 33.2% 35.4%

TABLE VI

10-FOLD CROSS VALIDATION

VI. CONCLUSION AND FUTURE WORK

We have described a vision of a decision support system
that predicts an individual’s thermal comfort in real-time and
suggests corresponding actions. The real-time prediction and
the corresponding suggested action can significantly improve
the overall thermal comfort and health of individuals, espe-
cially of senior citizens, as aging often leads to less acute
and delayed thermal sensation. To realize this vision, we
proposed a novel machine learning based approach to learn
an individual’s thermal comfort model. Specifically, this
approach identifies the best set of features, and then learns
a classifier that takes a feature vector as input and outputs
a corresponding thermal sensation class. Evaluation using a
publicly available large-scale data set demonstrates that when
using SVM classifiers, the accuracy of our approach is 76.7%
versus 35.4% for Fanger’s model. In addition, hypothesis
tests demonstrate that our approach outperforms Fanger’s
model with strong statistical significance. Last, our feature
selection study indicated that two factors, a person’s age and
outdoor temperature that are not included in Fanger’s model,
play an important role in thermal comfort, which is a finding
interesting in its own right.

As future work, we plan to test our approach in a re-
tirement community. We are also planing to improve the
proposed technique so that it can predict the missing values

from the data. Additionally, we plan to use feature selec-
tion methods, such as regularization or discriminative based
methods, to identify the optimal feature set for our approach
and compare the results with other existing methods.
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