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Abstract—Many smartphone applications are web based and
rely on cookies to maintain the status of a web session. Cookies,
however, may lead to security threats since they may contain
sensitive information. In addition, an attacker having access to a
cookie can easily impersonate the legitimate user. In this paper,
we propose and implement a system that securely outsources
browser cookies to the cloud and ensures user privacy using
Private Information Retrieval. Experimental evaluation using
traces collected from operational cellular and WiFi networks
demonstrates that our system achieves satisfactory performance
for most real-life web browsing scenarios: the average latency
is within 1.0 to 1.2 seconds (well within users’ tolerance) even
when retrieving tens of cookies over an LTE or WiFi network,
and the amount of generated traffic is significantly lower than
that when downloading the entire cookie database.
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I. INTRODUCTION

Smartphones have become a prevalent computing platform.
Their small physical forms make them particularly convenient
computing devices to be used anytime anywhere, for a wide
range of applications including surfing web, checking email,
watching video, accessing social networking services, and
online games. Many of these applications are web based. A
widely used mechanism to keep the state of a web session is
through cookies. Cookies may contain sensitive information,
such as usernames, passwords, and credit card numbers [3]. In
addition, unexpired cookies can be used even after restarting
the web browser or the device. An attacker having access to a
cookie can easily impersonate the legitimate user and continue
the user’s web sessions, thus leading to severe security threats.

The security threats posed by cookies have been well recog-
nized (see [21] and the references within). Modern web brow-
sers have implemented native protection mechanisms based
on Secure and HttpOnly flags. These protection mechanisms
however have only seen limited adoption [6]. In addition,
while they have been designed to deal with various web and
network attacks, they do not protect plaintext cookies that are
stored on a device. Since smartphones are small devices that
are more prone to loss and theft, plaintext cookies stored on
smartphones are more vulnerable than those stored on laptops
and desktops.

One way to protect cookies is not storing them locally, rather
outsourcing them to secure external servers in the cloud. When
a cookie is needed on a device, it is downloaded to the device,

temporarily stored in the memory, and then removed from the
memory after a short period of time (e.g., a few minutes or
tens of minutes). In addition to security, this approach allows a
user to conveniently switch among multiple platforms. Indeed,
while relying on smartphones on the go, many people use
different computing platforms depending on time and location.
Outsourcing cookies allows the different platforms to share the
cookies. As a result, a user can continue using a cookie when
switching platforms, leading to seamless transition among the
platforms.

Outsourcing cookies to the cloud, however, may not pre-
serve user privacy as database servers may learn which cookies
are requested. While encrypting the cookies provide confiden-
tiality, it does not prevent statistical analysis attacks, which
can be used to determine some (if not all) cookies (and
hence the preferences of a user). To address this problem,
we propose to use private information retrieval (PIR), which
allows users to securely retrieve cookies from the servers
while the servers never learn which cookies are requested. A
trivial PIR technique is downloading the entire cookie database
when any cookie is needed. This technique consumes a lot
of network bandwidth. It is particularly problematic when
the data are downloaded over a cellular network since users
typically only have limited cellular data plan. In addition,
downloading the entire cookie database may also lead to
higher latency, affecting user experience.

In this paper we propose a system that allows users to
securely outsource web browser cookies using state-of-the-art
PIR techniques. To ensure privacy and confidentiality for the
users, our system securely stores encrypted cookies in database
servers in the cloud and uses a PIR protocol to retrieve cookies
from the servers. The servers will send the requested cookies
but will never know which cookies are requested.

Our main contributions are as follows:
• To the best of our knowledge, this is the first work that

proposes outsourcing web browser cookies using PIR.
This approach provides security while preserving user
privacy. In addition, it allows cookies to be conveniently
shared across multiple platforms.

• We design and implement a Firefox add-on that automat-
ically requests and retrieves cookies required by a visited
web page from the cloud using PIR.

• We use traces collected from operational cellular and
WiFi networks to evaluate the performance of our system.



Evaluation results demonstrate that our system achieves
satisfactory performance for most real-life web browsing
scenarios: the average latency is within 1.0 to 1.2 seconds,
well within users’ tolerance [19], even when retrieving
tens of cookies from the cloud over a cellular or WiFi
network, and the amount of generated traffic is much
lower than that when downloading the entire cookie
database.

The rest of the paper is organized as follows. Section II
briefly describes background. Section III describes the problem
setting. Section IV describes the design and implementation of
our system. Section V presents performance evaluation. Sec-
tion VI reviews related work. Finally, Section VII concludes
the paper.

II. BACKGROUND

A. Web Cookies

A cookie is a small piece of data generated by a server,
sent to and stored in a user’s browser to maintain the state of
a web session [3]. In this way, the server can track the user’s
multiple requests. A web browser cookie contains several
fields: cookie name, cookie value (often a long string of
random data), creation time, expiration date, path and domain
that the cookie is valid for, and whether secure connection is
needed (i.e., whether a cookie can only be sent over a secure
connection, e.g., through SSL). Some cookies expire at the end
of a session, e.g., those for online banking websites. For other
cookies, the expiration date varies, often in days, months or
years. Such cookies, when stolen, can be used to impersonate
a legitimate user, causing severe security threats.

Our approach is outsourcing (encrypted) cookies to the
cloud, and only downloading them when needed. The benefit
of this approach is two-fold. First, it leads to better security.
While a cookie may be stored in memory for a short period of
them after being downloaded (e.g., for 10 minutes), the short
storage period can make it more difficult for an attacker to
steal the cookies. Second, it is convenient for a user to share
cookies across multiple platforms. Cookie values (often times
random strings) can be used across a wide range of platforms
for maintaining the session status with a server. Therefore,
smooth browsing experience can be enabled by downloading
the relevant cookies when a user switches from one device to
another. For instance, we have tested Alexa’s top 10 websites,
and verified that cookies for all these websites can be used
across multiple platforms for smooth browsing.

B. PIR

PIR allows a user to retrieve an item out of multiple items
from a database, while hiding from the database which item
has been retrieved [17]. The database can be an electronic
library, stock exchange share prices, pharmaceutical database,
etc. In our context, the database stores web browser cookies.

The literature on PIR is extensive [15], [7], [17], [12].
Broadly, there are two types of PIR: information theoretic
PIR and computational PIR. Information theoretic PIR pro-
vides absolute guarantee that each server participating in

protocol execution gets no information about what users are
after [31]. Computational PIR provides a weaker guarantee
in that users have privacy against computationally bounded
database servers. We consider information theoretic PIR in
this paper since it provides better security guarantee.

One trivial form of PIR is that a database server sends
the entire database to a client. For information theoretic PIR,
Chor et al. [7] show that this trivial form of PIR is optimal
when there is a single server. When there are multiple servers,
each holding a copy of the database, they show that the
communication overhead can be much lower. Therefore, we
use multi-server information theoretic PIR in this paper.

Chor et al. propose a simple multi-server information the-
oretic PIR scheme that works over GF (2) (binary arith-
metic) [7]. This scheme, however, requires all the servers to
respond to a query, and cannot deal with the situation when
one server returns the wrong answer. In this paper, we use
Goldberg’s PIR scheme [12] that is more robust. Specifically,
we use t-private k-out-of-` PIR, which allows up to t servers to
collude and it is sufficient when k out of the ` servers respond,
t < k ≤ `. For completeness, we briefly review Goldberg’s
PIR scheme. Before that, we briefly describe Shamir secret
sharing, which is used in Goldberg’s PIR scheme.

1) Shamir Secret Sharing: The classic Shamir secret shar-
ing scheme [24] allows a dealer to choose a secret value σ,
and distribute shares of that secret to ` players. If t or fewer of
the players come together, they learn no information about σ.
Specifically, let σ be an arbitrary element of some finite field
F (not necessary uniformly distributed). The dealer selects `
arbitrary distinct non-zero indices α1, . . . , α` ∈ F, and selects
t elements a1, . . . , at ∈ F uniformly at random. The dealer
constructs a polynomial f (x) = σ+a1x+a2x

2+ . . .+atx
t,

and gives to player i the share (αi, f (αi)) ∈ F × F for
1 ≤ i ≤ `. Note that the secret σ is just f(0). Now any t+ 1
or more players can use Lagrange interpolation to reconstruct
the polynomial f , and evaluate f(0) to yield σ. However, t or
fewer players learn absolutely no information about σ.

Sharing a vector of r elements in Fr (instead of a single
field element) can be done in a straightforward manner: each
coordinate of the vector is a secret shared separately, using r
independent random polynomials.

2) Goldberg’s PIR Scheme: Instead of working over GF (2)
as in the scheme by Chor et al. [7], Goldberg’s PIR scheme
works over a larger field F, where each element can represent
w bits (w = blog |F|c). The database D is an r × s matrix
of elements of F. In Goldberg’s simplest construction, as with
Chor’s scheme, each server gets a copy of the database.

A client wishing to retrieve row β of the database generates
a vector eβ that consists all zeros except for a single 1 in the
coordinate β. To transform this into a t-private PIR protocol,
the client uses (`, t) Shamir secret sharing to share the vector
eβ ∈ Fr into ` independent shares (α1, v1), . . . , (α`,v`). That
is, the client creates r random degree-t polynomials f1, . . . , fr
satisfying fj (0) = eβ [j] and chooses ` distinct non-zero
elements αi ∈ F. Server i’s share will be the vector vi =
〈f1 (αi) , . . . , fr (αi)〉. Each server then computes the product



Fig. 1. Architecture of cookie outsourcing system.

ri = viD = 〈
∑
j fj (αi)wj1, . . . ,

∑
j fj (αi)wjs〉 ∈ Fs.

(
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...
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...

wr1 wr2 · · · wrs

 =
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∑
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)
By the linearity property of Shamir secret sharing, since
{(αi,vi)}`i=1 is a set of Shamir secret shares of eβ ,
{(αi, ri)}`i=1 is a set of Shamir secret shares of eβD, which
is row β of the database. Goldberg’s scheme further handles
the case when only k out of the ` servers respond to a query,
providing k-out-of-` PIR.

III. PROBLEM SETTING

Fig. 1 presents the high level architecture of our system. A
user outsources his cookies to multiple PIR servers. When the
user browses a web page using a web browser and a cookie
is needed, an add-on inside the web browser will contact the
servers through a PIR protocol to retrieve the cookies. We
next describe the security and attack models. The design and
implementation of our system are deferred to Section IV.

A. Security Model

We assume ` ≥ 2 servers, and the PIR scheme is t-private
k-out-of-` PIR, t < k ≤ `. That is, up to t servers can
collude and it is sufficient when k out of the ` servers respond
correctly to a query (the rest of the ` − k servers either do
not respond because they are down or their data is not up to
date). We assume all the servers are semi-honest, in that they
follow the protocol specifications and do not change any data
stored in users’ database, do not change queries (from the web
browser add-on), and do not change the query results, but they
might try to learn extra information. This semi-honest server
model is also used in other studies (e.g., [30], [22]) and is
consistent with the cloud setting. The web browser add-on
that communicates with the servers is fully trusted. We use
the PIR protocol described in Section II-B2.

B. Attack Model

In our system, once a cookie is downloaded, decrypted
and stored temporarily in memory in a device, it suffers
the same types of attacks for web cookies. The attacks can
be web attacks (e.g., cross-site scripting), network attacks

(e.g., an attacker can intercept a plaintext cookie transmitted
over the network) or end-system attacks (e.g., an attacker
copies a plaintext cookie from the memory or hard disk of
a device) [21], [6]. Cookies stored on smartphones are even
more vulnerable because malicious apps can be downloaded
from official application stores [28], which can access a user’s
private files stored on the device and sends them to an attacker.
In addition, smartphones are more prone to theft and loss
because their small form factors, making them more vulnerable
to end-system attacks. As an example, an attacker, once gets
hold of a smartphone, can uses special hardware/tools to access
a device’s memory and read confidential files or information
stored in the memory.

Our approach of outsourcing cookies is complementary to
other approaches in making cookies more secure (see related
work in Section VI). In particular, since our system outsources
encrypted cookies to external servers and only stores cookies
temporarily in memory for a short period of time (a tunable
parameter), it makes end-system attacks more difficult.

IV. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we first describe the design of our system to
show what entities are involved and how they interact to each
other. At the end, we present our system implementation.

A. Design Overview

Fig. 2 shows the design of our system. It consists of two
parts: the client and the PIR servers. Each server stores an
exact copy of cookie database in the encrypted form. The client
is a web browser. It contains a web browser add-on, which
contains an index database, a PIR query generator, and a PIR
reply decoder. Each server contains the same encrypted cookie
database, where an encrypted cookie is stored as a row in the
database.

When a user visits a web page that requests a cookie, if the
cookie is not stored in the web browser, the browser add-on
checks the index database (along with other parameters) to
find the index of the cookie (e.g., row β of the database), and
passes it to the query generator. The query generator generates
queries to request the cookie from the multiple servers using
the PIR query generation scheme. When a server receives
the corresponding query, it computes the response and sends
the reply to the PIR reply decoder in the browser add-on,
which performs additional computations over the responses
from the multiple servers to recover the encrypted cookie.
Finally, the browser add-on decrypts the cookie, and passes
it to the accessed web page.

The above description assumes that a user has already
authenticates himself to an authentication server. Only after
the authentication, the web browser add-on can send queries
to the PIR servers. We next describe the authentication process
and cookie encryption in more detail.

B. Authentication and Confidentiality

A user authenticates himself to an authentication server. The
authentication can be through password or other means. To
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protect our system against brute force attacks, a standard rate-
limiting mechanism can be enabled for failed authentication
attempts (e.g., the system waits for 30 seconds before ac-
cepting new authentication attempts after 5 consecutive failed
attempts). Once authenticated, the user will be able to use
the add-on for a limited amount of time, T , referred to as
threshold. Specifically, within time T , any new request for
a cookie will be directed to the servers; after time T , the
user will be asked to authenticate himself again if a cookie
is needed. The value of T presents a tradeoff: shorter T is
more secure but inconvenient; longer T is less secure but
convenient. It can be set by a user based on his preference.
It can also be set automatically based on a user’s browsing
characteristics and time of the day. For instance, if a user
typically checks emails and social network accounts every
morning (e.g., 8-10am) for around half an hour, then T can
be set automatically to half an hour for the morning; it can be
set to a lower value in the afternoon when a user is busy with
work and does not access the Internet often. When cookie i
is downloaded, the amount of time that the cookie is kept in
memory, Ti, can also be a tunable parameter. One way is to set
Ti = T . This, however, does not account for the heterogeneity
of the websites since some websites may be accessed more
often than others. Therefore Ti can be different for different
websites, which can also be set automatically based on user
browsing behavior. In our evaluation (Section V), we simply
set Ti = T, ∀i and vary T from 5 to 60 minutes. A detailed
study on setting T and Ti and their impact on performance is
beyond the scope of the paper and is left as future work.

For confidentiality, a user needs to encrypt cookies before
outsourcing them to the cloud (the same key is also used
to decrypt the retrieved cookies later on). Specifically, we
use AES-256 in Cipher Block Chaining (CBC) mode and
a random Initialization Vector (IV) to encrypt cookies. The
IV and the ciphertext are stored in the cookie database (see
Section IV-C). When a user authenticates himself, the key
gets decrypted (e.g., the key is encrypted using the user’s
password, and it is decrypted after the user enters the password
for authentication). After time T , the key is encrypted again
automatically. As mentioned earlier, while encrypting the
cookies provides confidentiality, it does not prevent statistical
analysis attacks at the servers. Therefore, we use PIR, which
allows users to securely retrieve cookies from the servers while
the servers never learn which cookies are requested.

Confidentiality can also be achieved by encrypting and

storing the entire cookie database locally at a client with a key;
the database is decrypted when needed by asking user to enter
a password, and then encrypted after time T . Our scheme is
better than the above solution in two important aspects. First,
our system only keeps a small number of decrypted cookies
(instead of the entire cookie database) temporarily in memory.
Secondly, as mentioned earlier, since the cookie database is
stored in the cloud, it allows convenient cookie sharing and
hence smooth browsing over multiple platforms.

C. Main Operations

We next describe the main operations in our system, in-
cluding creating cookie database, retrieving, updating and re-
moving cookies. The cookie database stores a set of encrypted
cookies. Since cookies can be of different lengths, we pad each
cookie so that they are of the same length, and then encrypt the
cookies. Each encrypted cookie is stored as a row (also called
a block) in the cookie database. Let r denote the number of
rows in the database, let s denote the number of words in a
block, and let w denote the number of bits in a word. Then
each block (or encrypted cookie) contains s×w bits. Suppose
the size of the database is measured in words. A square shape
database requires r to be equal to s, which may require adding
extra blocks. Each added block contains a sequence of random
bits so that it is not differentiable from the encrypted cookies.
The encrypted cookie database, once constructed, will be sent
to each of the PIR servers, so that each server has a copy.

An index database stores indexes (or locations) of the
cookies in the outsourced database. For a given website,
e.g., google.com, our system searches the index database to
find the index of each cookie that is associated with this
website. Suppose a cookie is in row β according to the
index database. Our system then uses the index (i.e., β) and
additional parameters (see Section II-B) to construct queries
for each PIR server, send the queries to the PIR servers, and
uses the responses from the servers to recover the encrypted
row of the database. The encrypted cookie is then decrypted.
Since a cookie may be padded with extra bits, the index
database also stores for each cookie, the number of bits in
the cookie. After a cookie (with padded bits) is decrypted,
this information is used to striped out the extra bits.

If the user visits a website for the first time and the website
tries to create cookies (or if a website tries to update existing
cookies), then both the index database and the cookie database
need to be updated. To update an existing cookie in the cookie
database, the cookie’s index in the index database has to be
found. Suppose its index is β. Then the new encrypted cookie
is transmitted to each of the PIR servers, and overwrites the
βth row in the cookie database at each server. When a cookie
needs to be added to the cookie database, our system first
finds an index that has not been used yet, assigns the index
to be the index of the cookie, saves the index into the index
database, and outsources the encrypted cookie to overwrite the
corresponding row in the cookie database in each PIR server.

To remove an existing cookie from the cookie database, this
cookie’s information is removed from the index database. As a



result, the index for the cookie immediately becomes available
for use again. The corresponding row for the cookie will be
replaced with random bits.

D. System Implementation

Our system implementation leverages a publicly available
PIR implementation called Percy++ [12], which is written in
C++ and implements the PIR protocols in [12], [10], [18],
[9]. In the original Percy++, the client requests and retrieves
cookies from the multiple servers in sequence. We modified
the source code of Percy++ so that the client sends requests to
and receives responses from multiple servers in parallel, which
can significantly reduce latency, particularly for networks with
long latency (e.g., cellular networks).

The browser add-on is implemented in Firefox1, on top
of the PIR client in Percy++. We choose Firefox because
Firefox is free, open-source and has powerful API and a
large community support. Firefox stores cookies in an SQLite
format database called cookies.sqlite in the user’s active profile
directory. To construct a cookie database for Percy++, we
extract all cookies from the cookies.sqlite database using
nsICookieManager [5]. The cookies are padded and encrypted
using the AES-256 algorithm with the user’s encryption key.
The encrypted cookies are then stored in a Percy++ database.

The client and servers run in the same finite field, specif-
ically we use GF (28), which has been shown to be much
more efficient than Percy++’s default mode (arithmetic in Z
mod p) [12]. For example, in GF (28) mode, it takes 0.7
seconds while the default mode takes more than 2.5 seconds
to retrieve 15 cookies from a 574, 564 byte database when
using a trace collected from a LTE network (see more details
on the trace in Section V. The retrieved cookies (when they
are decrypted and their paddings are removed) are passed to
the browser add-on, which imports them to Firefox using nsI-
CookieManager. Firefox uses the cookies and, if the retrieved
cookies are unexpired and contain valid information for the
website, then the user logs in to his/her online account.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our system.
The evaluation focuses on cookie retrieval because it is used
much more often than the other two functions (i.e., creating
cookie database and updating cookies). In addition, the per-
formance of cookies retrieval is critical to user experience. In
the following, we first describe the experimental setup, and
then detail the evaluation results.

A. Experimental Setup

We use a cookie database of size r × s words, each word
being 8 bits. Specifically, r = s = 758. That is, it can
store up to 758 cookies, each of at most 758 words. The
size of the database is 4, 596, 512 bits, approximately the
same as the default cookie database size of 4, 194, 304 bits

1We used Firefox version 30.0 in both our implementation and experiments.
It is also possible to implement the same add-on in other modern web
browsers.
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Fig. 3. Experimental setup (a) and timing diagram (b) when retrieving
cookies.

in Firefox. At the client, the Firebox add-on fetches cookies
from the servers. We investigate two scenarios: one with two
PIR servers, both are honest (i.e., they respond to queries with
the correct answers) and do not collude with each other, the
other with three PIR servers, and one server does not respond
to queries. In the interests of space, we only present the results
for the case with two PIR servers; the results for the case with
three servers are similar.

We conduct experiments on three virtual machines (VMs).
One VM is for the client and the other two VMs are for the PIR
servers. Each VM has 2 GB RAM and a dual-core 2.4 GHz
Intel Core i5 CPU running Ubuntu 12.04 (32bit). The VMs
are configured to be of comparable capabilities of a modern
smartphone. Note that increasing the RAM does not speed up
the computations on PIR servers as the servers already have
enough RAM to run Ubuntu and to load the entire database
into RAM to make query processing faster. In practice, a server
may be more powerful than the configuration that we use,
and hence can achieve even better performance than what we
report.

Fig. 3(a) shows the setup of our experiments. The two
PIR servers are connected to a local network, which is
further connected to the client. To evaluate the performance
of our system in a repeatable environment, we exploit a
trace-driven simulation environment, CellSim [29], that uses
traces collected from operational networks to simulate the
network between the client and the servers. CellSim serves as a
transparent Ethernet bridge that schedules packet transmission
according to the pre-collected traces. Specifically, it runs on a
PC, takes in packets on two Ethernet interfaces, delays them
for a configurable amount of time (the propagation delay), and
adds them to the tail of a queue. It releases packets from the
head of the queue to the other network interface according to
the network trace that is being played back.

We consider both cellular and WiFi networks, the two
primary types of access networks that a smartphone connects
to. Specifically, we collect a 13.2 minutes long trace from a
commercial 4G LTE network and a 15.7 minutes long trace
from a research university’s campus WiFi network. On aver-
age, the LTE network’s trace file has 13.2 Mbps downlink and
2.4 Mbps uplink bandwidth (bitrate), and the WiFi network’s
trace file has 13.9 Mbps downlink and 11.6 Mbps uplink



TABLE I
THE AVERAGE DOWNLINK AND UPLINK BANDWIDTH OF THE COLLECTED

NETWORK TRACES.

Network Downlink Uplink
WiFi 13.9 Mbps 11.6 Mbps
LTE 13.2 Mbps 2.4 Mbps
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Fig. 4. Uplink and downlink bandwidth versus time for LTE and WiFi traces.

bandwidth. Table I shows the average link bandwidth (or
bitrate) in both downlink and uplink directions of the collected
traces. Fig. 4 plots the bandwidth versus time (only the first
350 seconds of the traces are being plotted). For the downlink
direction, the bandwidth of the LTE trace exhibits much more
rapid changes over time than that of the WiFi trace. For the
uplink direction, the average bandwidth of the WiFi network
trace is significantly larger than that of the LTE network trace.

We compare the performance of our system with the trivial
scheme that downloads the entire cookie database from one
server upon a request. For this trivial scheme, the network
connecting the client and the server is also controlled by
CellSim. Specifically, we compare these two schemes under
the same network setting by feeding the same network trace
to CellSim. In all the settings, the propagation delay between
the client and each server is set to 40 ms.

B. Computation and Communication Overhead

The latency for a client to retrieve cookies from one server
include the following components: (1) the time to generate a
query; (2) the time to send the query to the server; (3) the
time for the server to compute responses; (4) the time for the
server to send the response back to the client; and (5) the time
for the client to decode the response to recover cookies. Fig.
3(b) shows the timing diagram. Note that the requests to the
two servers and the responses from the servers are in parallel.

We first report computation latency in our system. Ex-
perimental results show that encrypting and decrypting 50
cookies using AES-256 takes 5.83 and 5.35 ms respectively.
The PIR computation overhead increases roughly linearly with
the number of cookies that are requested. For a small number
of cookies, the computation latency is only a few milliseconds.
Even when the number of cookies is 50, the computation
latency is only 35.7 ms. Overall, the computation latency is
very low.

We next present the total latency under the LTE and WiFi
network settings. Since the computation latency is negligible,
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Fig. 5. Total latency and the amount of generated traffic (the aggregate traffic
between the client and the two servers) when retrieving different number of
cookies.

most of the latency is due to communication delay. For
each setting, we make 100 simulation runs sequentially in
CellSim, which use different portion of the network trace, to
obtain the average results and the 95% confidence intervals.
Fig. 5(a) plots the results when the number of requested
cookies varies from 1 to 50. The results when using PIR and
when downloading the entire cookie database are both shown
in the figure. We observe that for both LTE and WiFi networks,
retrieving even 50 cookies using PIR is much faster than
downloading the entire cookie database. Specifically, when
using PIR, all the latencies are below 1.6 seconds.

Fig. 5(b) plots the number of bytes that are transferred
in the network for both the downlink and uplink directions
(the result is independent of the network that is being used).
When using PIR, the amount of data along the two directions
is approximately the same [12], and increases linearly with
the number of cookies. When downloading the entire cookie
database from one server, the amount of data in the downlink
direction is around 600 KB (approximately the size of the
cookie database with additional headers); the amount of data
in the uplink direction is much lower (they are mainly TCP
ACKs). The amount of traffic under the PIR scheme with
two servers is significantly lower than that when downloading
the entire cookie database from one server for the downlink
direction (even when requesting 50 cookies).

C. Energy Consumption

The total energy consumption at the client is the sum
of energy used by the CPU for computation and by the
radio interface for data transfer. Since both types of energy
consumption increases with the number of cookies that are
requested, we next only consider requesting 50 cookies. Our
experiments show that the PIR computation overhead for 50
cookies is 35.7 ms at about 1.0% CPU utilization. Decryption
of the 50 cookies takes 5.35 ms at 2.9% CPU utilization. CPU
power consumption is mainly influenced by CPU utilization
and frequency [32]. The results in [27] show that the CPU
energy consumption coefficient at different CPU utilizations is
below 4.34 mW/%. Hence, to retrieve and decrypt 50 cookies
the client phone’s CPU will require 0.22 mJ energy. When not
using PIR, decrypting the entire cookie database takes 16.4 ms



TABLE II
NUMBER OF COOKIES FOR TOP 10 ALEXA.COM WEBSITES

(AS OF MAY 31, 2016).

Rank Web Page Number of Cookies
Not Logged-In Logged-In

1 Google.com 3 17
2 Youtube.com 3 21
3 Facebook.com 4 15
4 Baidu.com 7 13
5 Yahoo.com 5 13
6 Wikipedia.org 5 47
7 Amazon.com 7 12
8 Twitter.com 6 12
9 QQ.COM 11 36
10 Live.com 3 6

at 2.5% CPU utilization. Therefore, the energy consumption
is 0.18 mJ, slightly lower than that using PIR.

For 50 cookies the client uploads 79.9 KB and downloads
83.0 KB data when PIR is used (see Fig. 5 (a)). When
downloading the entire cookie database, the client sends 13.8
KB and receives 599.5 KB data. Measurements in [13] show
that LTE requires 1680.2 mW power and WiFi requires 124.4
mW power when in full power mode, much more than CPU
power consumption. Using the average downlink and uplink
bandwidth for WiFi or LTE network (see Section V-A), we
calculate the average amount of time the corresponding radio
interface has to be in full power mode to transfer data.
In particular, when PIR is used, WiFi radio has be in full
power mode for 47.8 ms to download data and for 55.1
ms to upload data (50.3 ms and 266.2 ms to download and
upload data under LTE respectively). When downloading the
entire database, WiFi radio has to be in full power mode for
345.0 ms to download data and 9.5 ms to upload data (363.3
ms and 46.1 ms to download and upload the data in LTE
respectively). Clearly, when downloading the entire cookie
database, network interfaces have to be in full power mode
longer than when PIR is used (approximately 3.5 times longer
for WiFi and 1.3 times longer for LTE), leading to significantly
more energy consumption.

D. Multiple Web Sessions

For a large scale evaluation where a user issues multiple
web requests during a time period, we consider a WiFi access
point (AP) association trace, which contains the AP association
information for about 53, 807 unique users during 9am to 6pm
in a day. We randomly select the information for 20 users.
For each user, we have a sequence of time points when a user
connects to an AP and the duration of the connection. The time
series is then used to represent when a user is connected and
for how long he is connected to the Internet (in the following,
we assume the connection can be either through LTE or WiFi).

We further need to simulate when and what websites a
user visits while the user is connected to the AP. For this
purpose, we assume that the websites are taken from the top
N websites from Alexa, and the requests for a website follows
a Zipf distribution [11]. Specifically, for the ith most popular
website in Alexa, the probability that the website is accessed
is proportional to 1/iα, where α ≥ 0 is a constant. For the
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(b) Average generated traffic.
Fig. 6. Average delay and generated traffic (aggregate traffic between the
client and the two servers) per visited website when using LTE network,
N = 100, α = 0.7.

top 10 Alexa websites, we record the number of cookies that
each website requires (in two cases, when the user is logged
in and not logged in), see Table II. All websites listed in the
table do not have third-party cookies and most of their cookies
do not expire for at least 1 week. Hence these cookies can be
outsourced to the cloud using PIR. If a user visits one of
the top 10 Alexa websites, then the number of cookies that
is requested is set to the number of cookies required by the
website (using the value in the logged-in case). For all other
websites, for simplicity, we assume the required number of
cookies is 20, which is the average of the number of cookies
of the top 10 Alexa websites. Last, we assume that the average
interval between two consecutive website requests is 1/λ,
where λ is the rate of requesting websites.

We next present the evaluation results. The threshold, T , is
varied from 5 to 60 minutes. The performance metrics are the
average latency and average amount of generated traffic for
servicing a web request. For a web request whose cookies are
already stored locally, the latency and the amount of traffic
are both zero. We set N = 100 or 500, α = 0.7 or 1.0, and
λ = 0.1 or 0.2 request per minute (i.e., on average, a user
sends a request every 5 or 10 minutes). In the following, we
only present the results for one setting in the LTE network;
the results in other settings have similar trend.

Fig. 6(a) plots the average latency (along with 95% confi-
dence intervals) per website visit when using the LTE network.
The average is obtained by simulating the web access patterns
of 20 users during a day (9am to 6pm) in a real-world
scenario (the simulation is repeated 100 times by generating
web requests following the process described earlier). The
threshold T is varied from 5 to 60 minutes, N = 100 and
α = 0.7. The results for λ = 0.1 and 0.2 request per minute
are both plotted in the figure. When using the PIR scheme, the
average latency is 1.0 to 1.2 seconds (the confidence intervals
are tight), which is well within users’ tolerance [19]. When
downloading the entire cookie database, the latency decreases
quickly when the threshold increases. For increased security,
however, it is better to keep the threshold reasonably short
(e.g., a few minutes or less). Fig. 6(b) plots the average amount
of generated traffic per visited website. The average amount of
traffic per visited website is about 30 to 40 KB when using the



PIR scheme, which is lower than that when downloading the
entire cookie database from one server, except for very large
threshold values. As mentioned before, using large threshold
values is however not desirable due to decreased security.

VI. RELATED WORK

Many studies have proposed techniques to prevent or mit-
igate attacks to web cookies [8], [14], [23], [20], [26], [25].
Modern native web browser vendors developed Secure and
HttpOnly flags. The HttpOnly flag makes a cookie only
accessible upon transmission of HTTP(S) requests, thus blocks
accesses by non-HTTP APIs and is effective in preventing
code injection attacks (such as cross-site scripting). The Secure
flag ensures that a cookie is transmitted only over secure
communication channels. A recent study [6] assesses the
robustness of these two flags against both web and network
attacks. The authors further develop CookiExt that provides
client-side protection against the theft of session cookies,
based on appropriate flagging of such cookies and automatic
redirection over HTTPS requests carrying such cookies. Ex-
isting studies also develop secure cookies that provide secure
services such as authentication, confidentiality, integrity and
anti-replay (e.g., [21], [16]).

Our work differs from the above studies in that we outsource
cookies to external secure servers using PIR. Not storing
cookies locally is particularly useful in defending end-system
attacks. In addition, it is convenient for a user to share cookies
across multiple platforms. On the other hand, our work can
be combined with existing approaches. For example, once a
cookie is downloaded and decrypted, Secure and HttpOnly
flags can be used when transmitting the cookie to the web
server.

Our work also differs from various synchronization tools
[4], [1], [2] that let users store and synchronize different
type of files (e.g., documents, pictures) across devices. It also
differs from bookmark synchronizing tools that are built in
modern web browsers.

VII. CONCLUSION

In this paper we have proposed a system that securely
outsources web browser cookies using PIR. We presented the
system design and an implementation as a Firefox add-on. Our
experiment results show that the system achieves satisfactory
performance for most real-life web browsing scenarios. In
particular, our system transfers significantly less data between
the client and servers compared to downloading the entire
cookie database. In addition, the average latency is within 1.0
to 1.2 seconds even when retrieving tens of cookies from the
cloud over LTE or WiFi network, well acceptable for most
users browsing the Internet.
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