
5204 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 8, AUGUST 2020

Asynchronous Neighbor Discovery on Duty-Cycled
Mobile Devices: Models and Schedules

Sixia Chen, Member, IEEE, Reynaldo Morillo , Student Member, IEEE, Yanyuan Qin , Student Member, IEEE,

Alexander Russell , Ruofan Jin , Member, IEEE, Bing Wang , Senior Member, IEEE,
and Sudarshan Vasudevan, Member, IEEE

Abstract— Neighbor discovery is a fundamental problem in
wireless networks. In this paper, we study asynchronous neighbor
discovery on duty-cycled mobile devices. Most existing studies
develop integer schedules where time proceeds in discrete slots
and a node is awake or asleep for an entire slot duration.
We show that integer schedules can lead to significant waste of
resources, and develop a generalized non-integer model, where
time is continuous and a node may become awake or asleep
at any point of time (subject to a few constraints) so that the
resultant schedules can be significantly more efficient than integer
schedules. In addition, we provide a reduction that transforms
any schedule in the integer model to a corresponding schedule in
the generalized non-integer model while reducing the discovery
latency by up to a factor of two. Applying this reduction,
an optimal schedule in the integer model becomes an optimal
schedule in the non-integer model. We further demonstrate the
practicality of non-integer schedules in a testbed, and compare
the worst-case discovery latency of several existing schemes under
both integer and non-integer models. Last, we establish a family
of lower bounds for the best achievable latency guarantee. These
lower bounds are applicable to both integer and non-integer
models, covering both symmetric and asymmetric settings, and
encompassing the existing lower bounds that are only for a subset
of settings as special cases.

Index Terms— Wireless networks, network management,
neighbor discovery.

I. INTRODUCTION

NEIGHBOR discovery is a fundamental problem in
wireless networks. Specifically, the proliferation of

mobile devices, e.g., smartphones, PDAs, and sensors, has
fueled many novel applications that utilize opportunistic

Manuscript received April 17, 2019; revised November 14, 2019 and
April 9, 2020; accepted April 13, 2020. Date of publication May 6, 2020;
date of current version August 12, 2020. This work was supported by
the National Science Foundation under Grant 1117427, Grant 1407205,
Grant 1717432, and Grant 1925706. This article was presented at Mobi-
Hoc 2015 [7]. The associate editor coordinating the review of this article
and approving it for publication was K. Zeng. (Corresponding author:
Bing Wang.)

Sixia Chen is with the Computer Science Department, Central Connecticut
State University, New Britain, CT 06050 USA.

Reynaldo Morillo, Yanyuan Qin, Alexander Russell, and Bing Wang are
with the Computer Science and Engineering Department, University of
Connecticut, Storrs, CT 06269 USA.

Ruofan Jin was with the Computer Science and Engineering Depart-
ment, University of Connecticut, Storrs, CT 06269 USA. He is now with
Google LLC.

Sudarshan Vasudevan is with LinkedIn, Inc., Mountain View,
CA 94043 USA.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2020.2990764

localized device-to-device communication, including mobile
social networking [25], [31], [32], [36], proximity-based servi-
ces [1], [45], media sharing [28], traffic uploading [13], asset
management [33], emergency rescue [15], tracking encoun-
tering patterns of migrating animals [24], device-to-device
communication in 5G cellular networks [12], [38], [39], and
many more. These applications require mobile devices to dis-
cover each other as they move into each other’s transmission
range. Limited battery resources often mandate that these
devices are duty-cycled. As a result, two nodes are only able to
discover each other when both are awake. In addition, in prac-
tice, nodes typically have no means of coordination (e.g., thr-
ough a shared server or dedicated control channel), their
clocks may not be synchronized, and they cannot even rely on
individual “identities” for the purposes of symmetry breaking.

We broadly refer to the above problem as asynchronous
neighbor discovery on duty-cycled mobile devices. In this
paper, we focus on deterministic neighbor discovery algo-
rithms, where the schedules of the nodes are determined
beforehand. In such algorithms, the worst-case discovery
latency is bounded. In addition, since the nodes’ schedules
are deterministic, one node can precisely determine the future
awake times of another node once they discover each other,
which facilitates their later communications. We consider both
symmetric setting, where the duty cycles of the nodes are the
same, and asymmetric setting where the nodes have different
duty cycles.

Most existing studies [11], [14], [17], [22], [41] develop
integer schedules where time proceeds in discrete slots of
length Δ, and a node is either awake/active for an entire slot
or asleep/inactive for an entire slot (we use awake and active
interchangeably, and use asleep and inactive interchangeably).
Two studies [2], [29] break away from integer schedules by
allowing “overflow” of active slots (i.e., an active slot is
slightly lengthened to intersect the previous or subsequent
slot), and demonstrate that the slight overflow can provide
significant improvement.

In this paper, we develop a generalized non-integer model
that is significantly more flexible than the integer model.
We further provide a reduction that transforms any schedule
in the integer model into a corresponding schedule in the
non-integer model, while achieving significant performance
gains. In addition, we present experimental and analytical
results on the generalized non-integer model. In more detail,
our main contributions are as follows:

1536-1276 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on January 03,2021 at 13:39:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0144-5090
https://orcid.org/0000-0001-5171-8141
https://orcid.org/0000-0003-1337-4282
https://orcid.org/0000-0002-7632-6512
https://orcid.org/0000-0002-8228-6238

CHEN et al.: ASYNCHRONOUS NEIGHBOR DISCOVERY ON DUTY-CYCLED MOBILE DEVICES 5205

• We develop a generalized non-integer model motivated
by the observation that the integer model needlessly
constrains the switching between active and inactive
states on integer boundaries and, additionally, does not
reflect an important constraint that arises in practice.
In our proposed non-integer model, time is continuous:
nodes may become active or inactive at any point in
time, subject to a few constraints. In addition to time
slot Δ that is commonly used in the integer model, we
introduce a required meeting time δ: to discover one
another, two nodes must be simultaneously awake for a
continuous interval of duration at least δ. We show that
when δ = Δ/2, the integer model does not introduce
waste of resources and is appropriate. However, when
δ � Δ (e.g., for certain smartphones where Δ is one
or two seconds, while δ is in milliseconds), the integer
model can lead to significant waste of resources, while
the non-integer model is much more efficient.

• We provide a general reduction that can transform
any schedule in the integer model to a correspond-
ing schedule in the generalized non-integer model.
Using our reduction, all integer schedules in the litera-
ture can be directly converted into their corresponding
non-integer schedules, while reducing the worst-case dis-
covery latency by up to a factor of two. In addition,
an optimal schedule in the integer model becomes an
optimal schedule in the non-integer model under the
reduction.

• We demonstrate the practicality of non-integer schedules
and explore their advantages over the corresponding inte-
ger schedules using experiments in a tested. In addition,
we explore several practical issues (e.g., how to select δ
and Δ in practice) using the testbed.

• We compare the worst-case discovery latency of the inte-
ger and non-integer variants of several existing schemes
in both symmetric and asymmetric settings. In addi-
tion, we relate non-integer schedules constructed using
our proposed reduction with existing non-integer sched-
ules [2], [29], and demonstrate that they are special cases
of our reduction.

• We derive a family of lower bounds on the best achievable
latency guarantees for both the integer and non-integer
models. These are the first lower bounds that are charac-
terized by both Δ and δ, and the first lower bounds that
are applicable to both symmetric and asymmetric settings.
The two existing lower bounds derived in [49] and [29]
are only for the symmetric setting; they are special cases
of our lower bounds by taking Δ = 1, δ = Δ/2 ([49])
and δ � Δ ([29]).

In this paper, we substantially extend the preliminary ver-
sion [7] in two main aspects: (i) we use experiments in a
testbed to demonstrate the practicality of non-integer schedules
and provide insights of running such schedules in practical
settings (Section IV), and (ii) we present detailed comparison
of worst-case discovery latency of the integer and non-integer
variants of several existing schemes (Section V). In addition,
we relate the non-integer model with the recent development
in slotless protocols (Section II).

The rest of the paper is organized as follows. Section II
briefly describes related work. Section III introduces the
non-integer model and proposes a general reduction to trans-
form any schedule in the integer model to a schedule in the
non-integer model. Section IV presents experimental results in
a testbed to demonstrate the practicality of non-integer sched-
ules. Section V compares the worst-case discovery latency
of several neighbor discovery schemes under integer and
non-integer models. Section VI presents a family of lower
bounds for the non-integer model, which encompasses the
lower bounds of integer models as special cases. Section VII-B
discusses optimal integer and non-integer schedules for both
symmetric and asymmetric settings. Last, Section VIII con-
cludes the paper.

II. RELATED WORK

Neighbor discovery has been studied extensively in the
literature (e.g., [3], [4], [18], [27], [42]). In the following,
we only briefly review the studies that are closest to ours,
specifically, those that develop deterministic schedules for
asynchronous neighbor discovery between two duty-cycled
mobile devices.

A. Integer Schedules

Most existing studies develop integer schedules. The studies
in [14], [41] propose neighbor discovery protocols based on
cyclic quorum systems. The study in [22] expands the idea
of cyclic quorum systems and proposes a scheme, CQS-pair,
that is based on Singer difference sets (as pointed out in [7],
the construction for CQS-pair, however, takes exponential
time, and hence is only practical for very large duty cycles).
Disco [11] and U-Connect [17] are two integer schedules, both
based on prime numbers. In Disco, node i with duty cycle di

chooses two primes, pi1 < pi2, such that 1/pi1 + 1/pi2 ≈ di,
and wakes up in the slots that are multiples of pi1 or pi2,
i = 1, 2. By virtue of the Chinese Remainder Theorem, the two
nodes can discover each other with the worst-case discovery
latency of p11p21, which is on the order of c/(d1 d2), c being a
constant. In U-Connect, a node uses a single prime, p. It wakes
up in the first (p + 1)/2 slots as well as the slots that are
multiples of p in every p2 slots. For duty cycle d, the prime,
p, is chosen so that (3p + 1)/(2p2) ≤ d. Suppose node i has
duty cycle di and chooses a prime pi, i = 1, 2. Then the two
nodes can discover each other with the worst-case latency of
1/(p1 p2) ≈ 2.25/(d1 d2). We propose a general reduction
that can convert any integer schedule (including all the above
schedules) to their corresponding non-integer schedules, while
reducing the worst-case discovery latency by up to a factor
of two.

B. Non-Integer Schedules

The first study that breaks away from integer sched-
ules is [2]. Specifically, Bakht et al. design a probing
based approach, Searchlight, by leveraging the constant offset
between periodic awake slots. The authors propose both inte-
ger and non-integer variants (by slightly lengthening an active

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on January 03,2021 at 13:39:50 UTC from IEEE Xplore. Restrictions apply.

5206 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 8, AUGUST 2020

slot) of Searchlight, and show that the non-integer variant
significantly outperforms the integer variant. In our study,
we propose a generalized non-integer model that encompasses
the assumptions in [2] and provide a reduction that transforms
any integer schedule to a corresponding non-integer schedule.
This reduction can transform the integer variant of Searchlight
to a non-integer version, and achieves the same performance
as the non-integer variant of Searchlight (see Section V).

Another study [29] adopts the same non-integer assumption
in [2]. For the symmetric setting, the authors propose an
optimal scheme, Diff-Codes, that is based on Singer differ-
ence sets (they also provide a greedy heuristic technique to
deal with the cases when prime numbers are sparse, which
leads to sub-optimal schedules for those cases). Our study is
significantly more generalized than the above study. Specifi-
cally, applying our reduction to an optimal integer schedule
based on Singer difference sets leads to a family of optimal
non-integer schedules for the symmetric setting; Diff-Codes
is a special instance in this family of optimal schedules (see
Sections V and VII-B).

C. Lower Bounds

Zheng et al. [49] derive a lower bound for integer sched-
ules in the symmetric setting; for asymmetric setting, their
approach reduces to an NP-complete minimum vertex cover
problem. Meng et al. [29] derive a new lower bound for the
symmetric setting under a non-integer assumption (by allowing
an active slot to overflow to an adjacent slot). The lower
bounds in the above two studies are only applicable to the
symmetric setting. The family of lower bounds that we estab-
lish is much more general, encompassing the lower bounds
in the above two studies as special cases (see Section VI).
Specifically, it is applicable to both integer and non-integer
models, and both symmetric and asymmetric settings. To the
best of our knowledge, our study is the first that derives lower
bounds that are applicable to both symmetric and asymmetric
settings. It is also the first that provides lower bounds that
are characterized by both Δ and δ (two key parameters in the
generalized model).

D. Slotless Protocols

Slotless or purely interval-based neighbor discovery proto-
cols [16], [21] differ from slotted protocols (i.e., integer sched-
ules) in that time is assumed to be continuous. A node scans
(or listens to) a channel periodically every Ts time units, with
each scanning interval of duration ds, and transmits/advertises
a beacon (with duration da) periodically every Ta time units.
In such settings, node A1 discovers another node A2 when it
receives a beacon from A2, and vice versa. The scan intervals
and advertisement intervals are decoupled, in contrast to the
settings in slotted protocols, where beacons are transmitted at
the beginning and end of a slot, while the remaining time of
the slot is the listening interval. In our proposed non-integer
model, time is continuous in that the awake interval does
not need to last for an entire slot duration, and beacons are
transmitted at the beginning and end of an awake interval
(see Section III). In both the slotted/integer model and our

proposed non-integer model, two nodes discover each other
close in time (within one slot for the integer model and within
one awake interval for the non-integer model), while in slotless
protocols, node A1 can discover node A2 much earlier than
when node A2 discovers node A1 (and vice versa), i.e., the
two-way discovery latency can be significantly larger than
one-way discovery latency. The studies in [16], [21] propose
strategies to reduce two-way discovery latency, e.g., once one
node A1 discovers another node A2 (by receiving a beacon
from A2), A1 adjusts its advertisement schedule so that A2 can
discover A1 quickly (i.e., to achieve faster two-way discovery).
Recent efforts [19], [20] analyze the conditions under which
slotless protocols can provide deterministic discovery latency.
Specifically, the study in [20] presents, for the first time,
a mathematical theory that computes the neighbor discovery
latencies for all possible parametrizations of the devices, and
shows that upper bounds on the latency can be guaranteed for
all parametrizations, except for a finite number of singularities.
In this paper, we establish a family of lower bounds on the
discovery latency of slotted/integer schedules and non-integer
schedules.

E. Other Studies

The studies in [46], [47] propose schemes that are based on
existing asynchronous neighbor discovery schemes to further
reduce energy consumption. The studies in [34], [43] allow
beacons to be sent in non-active slots, which differ from
the assumptions in this paper. The study in [37] proposes
a generic framework that incorporates existing deterministic
protocols, and allows flexibility in adjusting parameters. The
study in [5] optimizes the duty cycle granularity of quorum and
co-primality based protocols. Two studies [23], [48] propose
neighbor discovery schemes for mobile duty-cycled devices
that require clock synchronization, and hence are not applica-
ble to asynchronous settings. A recent study [44] designs
techniques for robust neighbor discovery in the presence of
strong interference. All the above studies (including our work)
focus on pairwise neighbor discovery between two duty-cycled
nodes. Several studies [6], [9] consider neighbor discovery
among a group of duty-cycled nodes, with the focus on
leveraging the group setting to achieve faster discovery of new
or hidden nodes in the network.

III. INTEGER AND NON-INTEGER MODELS

In this section, we briefly describe the integer model that
is adopted by most existing studies. We then present an
intersection property that holds for any valid schedule in
the integer model, and use it to motivate the definition of
the generalized non-integer model. After that, we establish a
general reduction that transforms any schedule in the integer
model to a corresponding schedule in the non-integer model.

A. Integer Model

In the integer model, time is discretized into slots of
width Δ. A node is awake or asleep in a slot. When it
is asleep, its radio is off and it cannot listen or transmit

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on January 03,2021 at 13:39:50 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: ASYNCHRONOUS NEIGHBOR DISCOVERY ON DUTY-CYCLED MOBILE DEVICES 5207

Fig. 1. Illustration of the integer model and the intersection property of
the integer model. The shaded slots represent the awake slots. For simplicity,
the two nodes in this figure have the same schedule except for the shift.

any packet. When it is awake, it can listen or transmit packets.
Consider two nodes, A1 and A2. Each node has a fixed duty
cycle, denoted as di < 1, i = 1, 2. The schedule of a node is
represented by the slots when the node is awake. Let Si denote
the schedule of node Ai. For simplicity, we index the slots
with the natural numbers 0, 1, 2, Then Si ⊂ {0, 1, 2, . . .}.
We do not assume that the clocks of the two nodes are
synchronized. As a result, the slot boundaries of the two
nodes may not be aligned, as illustrated in Fig. 1, where the
slot boundaries are aligned in Fig. 1(a), while not aligned
in Fig. 1(b).

As in existing studies [2], [11], [17], [49], we assume that
two nodes discover each other when they have an overlapping
awake slot. This can be achieved, e.g., by assuming that a
node sends a beacon message at the beginning and end of an
awake slot. Since their slots may not be aligned, the over-
lapping duration of these two slots may be Δ or less than
Δ, as shown in Figures 1(a) and (b), respectively, where the
red regions represent the overlapping durations. The discovery
latency is the time from when two nodes are in the transmis-
sion range of each other until their first discovery of each
other.

B. Integer Model: Intersection Property

We next show that any valid schedule in the integer model
has the following property:

Property 1: Consider two nodes using a schedule in the
integer model for neighbor discovery. Suppose that when they
come into each other’s transmission range, their clocks read
t1 and t2, respectively. Without loss of generality, suppose
t2 > t1. Let w = t2 − t1 denote the relative time shift of the
two nodes. Let S1 and S2 denote the schedules of these two
nodes, respectively. Suppose the schedules guarantee discovery
in time n. Then, for any w, we find one of two possible cases:

• The shift w is a multiple of Δ, and there exists an entire
time slot during which both nodes are awake.

• The shift w is non-integral with respect to Δ (i.e., it is
not a multiple of Δ), and there exist two time periods

(among the first n) during which both nodes are awake;
furthermore, the durations of these time periods, r and r′,
sum to Δ. Hence r ≥ Δ/2 or r′ ≥ Δ/2.

This property is illustrated in Fig. 1. The first case in the above
property represents the case when the slot boundaries of the
two nodes are aligned, and is straightforward. We therefore
only describe why the second property holds. To simplify the
exposition, we assume Δ = 1 (when Δ �= 1, one can scale
time by 1/Δ and apply the explanation below). Since w is
non-integral, consider w as a fractional number between two
integers z and z + 1. We shall show that the schedules of
the two nodes, S1 and S2, have (at least) two overlaps, one of
which has length (w−z) and the other of which has length z+
1−w = 1−(w−z). We know that if S2 started at z, then there
would be a complete time slot (say s1 in the schedule of S2)
so that S1 and S2 overlap. Since now S2 starts at w, they will
just overlap for a portion of s1, which has length 1−(w−z) =
z + 1 − w. Similarly, if S2 started at z + 1, there would be
a complete time slot (say s2 in the schedule of S2 which
is different from s1) in which S1 and S2 overlapped. Since,
in fact, S2 is shifted to the left by length z+1−w, the overlap
is actually a portion of length 1 − (z + 1 − w) = w − z. It is
clear that the sum of the two overlapping portions is one, and
one of them has length at least half, as desired.

The above property indicates that there exists an overlapping
duration of at least Δ/2 when the two nodes are both awake
under any circumstances. If the minimum amount of time
required by the two nodes to discover each other when they
are both awake is far below Δ/2, then the overlap of at least
Δ/2 can lead to significant waste of resources. The above
observation prompts us to define an additional parameter,
the required meeting time δ > 0, which is the minimum
amount of time required by two nodes to discover each other
when they are both awake.

In practice, the required meeting time, δ, depends on the
device platform (including hardware, operating system and
network stack). As we shall see in Section IV, our mea-
surements on one mobile platform indicates that δ is around
20 ms for that platform; for other platforms, the value of
δ varies in milliseconds [11], [17] or significantly less than
one millisecond [33]. For a given δ, it is clear that the slot
length, Δ, needs to be at least δ to allow successful discovery.
In fact, based on the intersection property described earlier,
Δ needs to be at least 2δ. In addition, the choice of Δ may
also be subject to certain system constraints. Specifically, let
switching interval represent the amount of time required for a
node to change its state from asleep to awake or vice versa.
In the integer model, since a node needs to be awake or asleep
for an entire slot length Δ (and then may transit to another
state), the value of Δ needs to be at least as large as the
switching interval so that a node can finish switching the state
at the end of a slot. The switch interval may be on the order
of milliseconds [11], [17] or submillisecond [33]. However,
for certain platforms, the switch interval can be significantly
larger (e.g., one or two seconds on some smartphones [2]),
leading to large Δ. For such platforms, since Δ can be
much larger than δ, as described earlier, the waste caused by
using an integer schedule is substantial. For instance, when

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on January 03,2021 at 13:39:50 UTC from IEEE Xplore. Restrictions apply.

5208 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 8, AUGUST 2020

Δ = 1 second, and δ = 10 ms, then two nodes may have
an overlapping awake duration larger than 500 ms, while only
10 ms is needed for neighbor discovery.

Motivated by the above observations, we propose a general-
ized model that considers both δ and Δ. This model provides
a unified setting that accommodates the characteristics of a
diverse range of wireless devices. It meaningfully considers
continuous time, which is less restrictive than the integer
model. In the rest of the paper, we assume that the choices
of δ and Δ satisfy that δ ≤ Δ/2, which is needed to ensure
discovery. When δ = Δ/2, the integer model is appropriate
since it does not lead to waste of resources. Specifically,
by Property 1, the two time periods when both nodes are
awake, r and r′, may satisfy r = r′ = Δ/2, which is exactly δ,
the needed amount of duration for discovery. When δ � Δ/2,
as mentioned earlier, the integer model can lead to significant
waste of resources.

C. Generalized Non-Integer Model

We now define the generalized non-integer model, which
does not require a node to be awake or asleep for an entire
slot duration. As we shall see, it encompasses the integer
schedule as a special case, while allowing much more flex-
ibility in defining schedules. Let Δ and δ be as defined above.
We assume a node alternates in asleep and awake intervals. Let
S denote the schedule for a node to be awake. Since a node
does not need to wake up at the beginning of a slot or go to
sleep at the end of a slot, we may consider arbitrary schedules
of the form S ⊂ R, where S consists of a set of disjoint
intervals. That is, S =

⋃
�[a�, b�), each b� − a� ≥ Δ so that

the schedule satisfies the Δ switching constraint, and b� − a�

does not need to be a multiple of Δ; hence we refer to such
schedules as non-integer schedules. Two nodes discover each
other successfully only when their awake intervals overlap
for a duration of at least δ. Specifically, consider a pair of
nodes with schedules S1, S2, and their clocks read t1 and t2
when they come into the transmission range of each other. Let
L(S1, S2; t1, t2) denote the corresponding discovery latency.
Then L(S1, S2; t1, t2) is the smallest time at which the two
schedules overlap at an interval of width at least δ. That is,

L(S1, S2; t1, t2) = min
{

t

∣∣∣∣ [t + t1 − δ, t+ t1) ⊂ S1 and
[t + t2 − δ, t + t2) ⊂ S2

}
.

We define the discovery time for such a pair of schedules to
be the worst case over all t1 and t2. That is,

L(S1, S2) = min
t1,t2≥0

L(S1, S2; t1, t2) .

The above model includes the integer model as a special
case, i.e., when b� − a� = Δ for all �. As mentioned earlier,
when δ = Δ/2, using the integer model is appropriate, while
when δ < Δ/2, the integer model can lead to waste of
resources, particularly when δ � Δ. In the rest of the paper,
we assume the integer model is used when δ = Δ/2 and
the non-integer model is used when δ < Δ/2 (recall we
only consider the cases that δ ≤ Δ/2, which is the condition
required for discovery).

Fig. 2. Illustration of the reduction that converts an integer schedule to a
corresponding non-integer schedule.

D. Converting Integer Schedules to Non-Integer Schedules

We now propose a general reduction that can be applied to
any integer schedule to obtain a corresponding non-integer
schedule with significantly improved performance when
δ � Δ/2. The reduction is motivated by the following obser-
vation. Consider an integer schedule with slot length Δ.
We can construct a new schedule by “trimming” the amount of
time that a node is awake in an active slot from Δ to Δ/2 + δ.
The new schedule still guarantees that two nodes can discover
each other. This is because, by Property 1, if the two nodes
discover each other by time n according to the original
schedule, then there exists a time interval of at least Δ/2,
during which both of them are awake. After “trimming,” since
the amount of time a node is awake in an active slot is Δ/2+δ,
the new schedule can still guarantee at least δ overlap during
which both nodes are awake, which is sufficient for neighbor
discovery. The duty cycle of the new schedule is (Δ/2+δ)/Δ
of that of the original schedule, which is approximately a half
when δ � Δ. The new schedule, however, may not be viable
since the amount of awake time, Δ/2+δ, in a slot may become
lower than the switching interval of a node, i.e., a node may
not be able to switch the state, from asleep to awake and vice
versa, within Δ/2 + δ. This violation can be easily fixed by
specifying that the original integer schedule uses slot length
of 2Δ instead of Δ; the “trimming” reduces the amount of
time that a node is awake in an active slot from 2Δ to Δ+ δ,
which is larger than the switching interval Δ.

Summarizing the above, we propose the following reduction
to convert an integer schedule to a non-integer schedule with
duty cycle d. We first construct an integer schedule with duty
cycle d′ = d(2Δ)/(Δ + δ) and slot length 2Δ. We then
apply a “trimming” procedure so that a node is only awake
for a duration of Δ + δ in each active slot so that the duty
cycle is reduced to d′(Δ + δ)/(2Δ) = d, as desired. Fig. 2
illustrates one “trimming” procedure, where the “trimming”
is by removing (Δ − δ)/2 on each end of an active slot.
In general, the “trimming” only needs to ensure that there
remains a continuous length of Δ/2 + δ awake time in
an active slot. Many ways of “trimming” can be used. For
instance, another way of “trimming” is removing (Δ − δ)
at the beginning or end of an active slot. In Section VII-A,
we present a reduction that maps an optimal integer schedule
to an optimal non-integer schedule.

For a given duty cycle, the non-integer schedule constructed
as above can lead to significantly lower discovery latency

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on January 03,2021 at 13:39:50 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: ASYNCHRONOUS NEIGHBOR DISCOVERY ON DUTY-CYCLED MOBILE DEVICES 5209

Fig. 3. Illustration of neighbor discovery between two nodes that run
non-integer schedules.

compared to the original integer schedule when δ � Δ/2.
The reason is as follows. Consider two nodes with duty cycles
d1 and d2. As mentioned in Section II (and to be described in
more detail in Section V), for many existing integer schedules,
the worst-case discovery latency is c/(d1 d2) · Δ, where c
is a constant. Optimal schedules also have this property (see
Sections VI and VII-B). When δ � Δ, where it is desirable
to use non-integer schedules, we have d′i = di(2Δ)/(Δ +
δ) ≈ di/2, i = 1, 2. Then the discovery latency of the
non-integer schedule constructed from the integer schedule is
c/(d′1d′2) · 2Δ = c/(4d1 d2) · 2Δ = c/(2d1 d2) · Δ, only
half of the discovery latency of the original integer schedule.
We shall illustrate the worst-case discovery latency of several
non-integer schedules constructed from existing (integer model
based) neighbor discovery schemes in Section V, and derive
a precise lower bound on the worst-case discovery latency of
non-integer schedules in Section VI.

Fig. 3 shows an example of neighbor discovery between
two nodes, A1 and A2, that run non-integer schedules. The
original integer schedules of these two nodes are constructed
using Disco [11]. Applying the reduction as described above,
we transform the integer schedules to the corresponding
non-integer schedules (the “trimming” is as shown in Fig. 2).
In this example, Δ = 100 ms, δ = 20 ms, and both nodes have
duty cycle of 10%. The shaded bars represent the intervals
when a node is awake. The long vertical line represents the
first time when these two nodes discover each other, which is
also shown in the zoomed-up subplot in Fig. 3 (marked by the
purple box) along with the adjacent time slots.

IV. EXPERIMENTAL RESULTS

We have implemented several neighbor discovery schemes
(both the integer schedule and the corresponding non-integer
schedule following the reduction in Section III-D) in a test-
bed. Our results below significantly extend the preliminary
version [7] by demonstrating the practicality of non-integer
schedules and the benefits of non-integer schedules over
integer schedules in real experimental settings. We further
provide insights on choosing the parameters (δ and Δ) using
the testbed.

Fig. 4. One-way delay from a sender to a receiver in the testbed.

A. Experiment Setup

Our testbed contains three Raspberry Pi 3 Model B devices
that are placed in the transmission range of each other. Two
nodes run neighbor discovery schedules to discover each
other; the third one serves as the aggregator, which sends
the control commands to the other two nodes, and collects the
experimental results. Each device has two network interface
cards: an integrated BCM43438 WiFi interface that features
single-band 2.4 GHz IEEE 802.11b/g/n, and a 100 Mbps
Ethernet interface. The Ethernet interfaces of the three devices
are used to control the experiments. Specifically, we connect
the Ethernet interfaces to a switch; the control commands
related to the experiments are sent from the aggregator to
the other two devices via the Ethernet interfaces through
the switch so that the latency is negligible. The wireless
interfaces of the two nodes that perform neighbor discovery
are configured in the ad-hoc mode for neighbor discovery.
They are set to communicate over channel 1 using the
IEEE 802.11 MAC protocol, CSMA/CA, for medium access.
The neighbor discovery is achieved through broadcast to
emulate the real-world scenario, where two nodes do not know
each other’s IP address before neighbor discovery is complete.

The operating system on each node is Raspbian 8. We pro-
gram all the nodes using Python, leveraging the RPC/RMI
(Remote Process Call/Remote Method Invocation) module
Pyro (Version 4.60) [10]. This approach allows us to define
the aggregator and nodes as objects, and makes them easily
portable to other systems.

B. Determining δ

Recall that δ represents the required meeting time, i.e., the
minimum amount of time required by two devices to discover
each other when they are both awake. In our testbed, node
A1 is discovered by A2 when a beacon transmitted by A1

is received by A2, and vice versa. Suppose that at time t,
both nodes are awake, and A1 sends a beacon to A2. It takes
one-way delay for the beacon to reach A2, and hence the
minimum overlap in their awake intervals, δ, corresponds to
one-way delay. Note that δ is larger than the transmission
latency of the wireless card since the media access follows
a random access protocol, which introduces additional delays
for a beacon to reach the receiver.

To obtain one-way delay, we perform the following experi-
ments in the testbed. We set two nodes to serve as sender and

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on January 03,2021 at 13:39:50 UTC from IEEE Xplore. Restrictions apply.

5210 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 8, AUGUST 2020

receiver, respectively. The sender transmits UDP packets peri-
odically over the ad-hoc wireless network to the receiver. Each
packet contains three fields, node ID, sending time and a
sequence number. In addition, we set up a third node as a
sniffer, dedicated to listening and logging all the packets it
hears. All the nodes are synchronized using Network Time
Protocol (NTP) so that we can obtain one-way latency from
sending to receiving a packet (we verified that the clock
differences of the nodes are within 2 ms). The sniffer records
the time when it receives a packet, and then obtains the
one-way delay of the packet as the difference of the sending
time (carried by the packet) and the receiving time.

In each experiment, the sender transmits 1200 UDP pack-
ets periodically at the interval of 100 ms. We repeated the
experiments 10 times at randomly chosen times of day and
observe similar one-way delay distribution across the runs.
Fig. 4 shows the histogram of the one-way delay over the
10 runs. We observe that most of the one-way delays are
between 7 to 13 ms, and only a small percentage (0.8%)
of the one-way delays is above 20 ms. Based on the above
measurement results, we set δ = 20 ms for all the experiments
involving non-integer schedules in the testbed.

We remark that one-way delay is platform depen-
dent. Existing studies that used other platforms such as
Mote sensors [6], [11], software defined radios [29], [30],
low-power RFID platforms [8], [26], and other embedded plat-
forms [17], [33] reported much lower one-way delay. Corre-
spondingly, for those platforms, δ can be set as a much smaller
value.

C. Neighbor Discovery Results

We now report the results of neighbor discovery using the
testbed. Specifically, we have implemented several represen-
tative schemes: Disco [11], U-Connect [17], Searchlight [2],
and Singer [49], in the testbed. For each scheme, we report
the results under both integer and non-integer schedules.
For a given setting, the two nodes, A1 and A2, follow
pre-determined schedules for neighbor discovery. Specifically,
a node alternates in asleep and awake modes: when it is
asleep, it does not transmit or listen to packets; when it is
awake, it broadcasts a beacon (a UDP packet with the node
ID) at the beginning and end of the awake interval, and
listens for the rest of the awake interval. As mentioned earlier,
δ is set to 20 ms, based on measurements results reported in
Section IV-B; Δ is set to 100 ms, significantly larger than δ to
demonstrate the benefits of non-integer schedules over integer
schedules (we have also explored the setting when Δ is 200 ms
and observed similar trends). To emulate real-world scenarios,
the slot boundaries of the two nodes are not necessarily
aligned (rather, the offset between the slot boundaries of the
two nodes is selected randomly). When A1 discovers A2,
it sends the discovery latency (i.e., the time when the discovery
happens minus the time when the neighbor discovery process
starts) to the aggregator. Similarly, when A2 discovers A1,
it sends the discovery latency to the aggregator. The aggregator
records the discovery latency as the maximum of the above
two values.

Fig. 5. Experimental results for neighbor discovery in the symmetric setting.

To validate the results from the testbed, we further imple-
ment the various schemes in a simulator that we developed in
MATLAB. Neighbor discovery in the simulator is modeled as
follows. For integer schedules, the discovery is achieved when
the two nodes wake up in the same slot, which is the standard
notion of discovery in the literature. For non-integer schedules,
the discovery is achieved when the two nodes’ awake durations
overlap for at least δ.

We first report the results in the symmetric setting when the
two nodes have the same duty cycle. Fig. 5 plots the cumu-
lative distribution function (CDF) of the discovery latency
for the various schemes. For each scheme, the figure shows
the results for four cases, two cases under the non-integer
model (one from simulation and the other from the testbed),
and the other two cases under the integer model (again one
from simulation and the other from the testbed). For each
case, the results are obtained from 500 runs (using schedules
with random starting offset). The duty cycle in a particular
setting is determined by choosing the parameter(s) so that
the resultant duty cycle is the closest to 10%. Since the
two nodes have the same duty cycle, we represent the duty
cycle as d; the value of d is marked for each case in the
figure. U-Connect and Singer both take a single prime number
as the parameter. Due to the sparsity of prime numbers,
the duty cycles under these two schemes are further away
from 10% than those under Disco (which takes two primes)
and Searchlight (which takes an integer parameter that does
not need to be a prime). We observe that, for each setting,
the discovery latency obtained from the testbed is close to that
from the simulation, particularly for non-integer schedules.
For integer schedules, the discovery latency from the testbed
tends to be lower than that from the simulation (the study
in [2] made the same observation), since the model of neighbor
discovery used in the simulation is stricter than what is needed
in practice—in practice, two nodes discover each other as long

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on January 03,2021 at 13:39:50 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: ASYNCHRONOUS NEIGHBOR DISCOVERY ON DUTY-CYCLED MOBILE DEVICES 5211

Fig. 6. An example that illustrates the difference of discovery latency in the
simulation and the testbed in the integer model.

Fig. 7. Experimental results for neighbor discovery in the asymmetric setting.

as they hear beacons from each other; their awake duration
do not need to overlap for one time slot as modeled in the
simulation. Fig. 6 illustrates the above difference in the integer
model using an example. In the example, the discovery latency
in the simulation is 10Δ when both nodes are awake in the
10th slot, while the latency in the testbed is 9Δ, when the
two nodes have partial overlap in their awake slots. For the
non-integer model, the overlap between two nodes when they
are both awake tends to be shorter (the design is to ensure only
δ overlap), and hence the results under the simulation and the
testbed are closer compared to those in the integer model. For
all the schemes, we observe that, indeed, non-integer schedules
lead to much lower discovery latency than integer schedules.1

Fig. 7 shows the results in the asymmetric setting. The
results of two schemes, Disco and U-Connect, are shown in
the figure. For each scheme, the parameters of the scheme are
chosen so that the duty cycle of one node is close to 10% and
the duty cycle of the other node is close to 5% (the actual duty
cycles for each setting are marked in the figure). We observe
similar results as those in the symmetric setting: for the
non-integer model, the results from the testbed are similar to
those from the simulation; for the integer model, the discovery
latency under the testbed tends to be lower than that from the
simulation, again because of the more conservative assumption
in the simulation setting. The simulation results show that the
discovery latency under the non-integer model is significantly
lower than that under the integer model; the results under the

1For U-Connect, the discovery latency under the non-integer model is not
strictly lower than that under the integer model (see Fig. 5(b)). This is because
the non-integer schedule uses a lower duty cycle than the integer schedule.

testbed are less clear due to the stochastic one-way latency
and other non-deterministic factors in the testbed.

V. WORST-CASE DISCOVERY LATENCY

Having demonstrated the practicality of non-integer sched-
ules and their benefits over integer schedules, we now focus
on worst-case discovery latency of non-integer and integer
schedules (we only consider deterministic schedules in this
paper, which provides a guarantee on the worst-case dis-
covery latency). Specifically, we consider several existing
schemes: Disco [11], U-Connect [17], Searchlight [2], and
schemes using Singer difference sets [22], [49], and show
their worst-case discovery latency in the non-integer model,
compared to the worst-case discovery latency of the integer
counterpart.

A. Symmetric Setting

We first consider the symmetric setting, i.e., when the two
nodes have the same duty cycle, d. Table I lists the worst-case
discovery latency of four schemes in both the integer and
non-integer models. In the following, we show that for all the
schemes, the worst-case discovery latency of the non-integer
schedule is approximately half of the corresponding latency
of the integer schedule when δ � Δ. Specifically,

• For Disco [11], in the integer model, a node chooses two
different primes, p1 and p2 so that 1/p1 + 1/p2 = d; in
the non-integer model, a node chooses two primes, p′1 and
p′2 so that (1/p′1 + 1/p′2) · (Δ + δ)/(2Δ) = d. Following
the recommendation in [11], we choose p1 and p2 to be
balanced (i.e., they are approximately equal), leading to
p1 ≈ p2 ≈ 2/d for the integer schedule, and p′1 ≈ p′2 ≈
1/d for the non-integer schedule when δ � Δ. Therefore,
from Table I, we see that the worst-case discovery latency
of the integer schedule is approximately 4/(d2) × Δ,
while the worst-case discovery latency of the non-integer
schedule is approximately 1/(d2)× 2Δ, which is half of
that of the integer schedule when δ � Δ.

• For U-Connect [17], a node chooses a single prime, p,
so that 3p+1

2p2 = d in the integer model, while choosing a

prime, p′, satisfying 3p′+1
2p′2 · Δ+δ

2Δ = d in the non-integer
model. When δ � Δ, we have p′ ≈ p/2 and hence,
from Table I, the worst-case discovery latency of the
non-integer schedule, p′2 × 2Δ, is approximately half of
the corresponding value, p2×Δ in the integer schedule.

• Searchlight [2] uses a single integer, t, satisfying 2
t = d

in the integer model, while using integer t′ satisfying 2
t′ ·

Δ+δ
2Δ = d in the non-integer model. When δ � Δ, since

we have t′ ≈ t/2, the worst-case discovery latency of
the non-integer schedule, (t′2/2)× 2Δ, is approximately
half of the corresponding value, (t2/2)×Δ, in the integer
schedule.

• Singer algorithm [22], [49] uses a single prime, p, satisfy-
ing p+1

p2+p+1 = d in the integer model, while using prime

p′ satisfying p′+1
p′2+p′+1 ·Δ+δ

2Δ = d in the non-integer model.
Again when δ � Δ, since p′ ≈ p/2, the worst-case
discovery latency of the non-integer schedule, (p′2 +p′+

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on January 03,2021 at 13:39:50 UTC from IEEE Xplore. Restrictions apply.

5212 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 8, AUGUST 2020

TABLE I

WORST-CASE DISCOVERY LATENCY IN THE SYMMETRIC SETTING

TABLE II

WORST-CASE DISCOVERY LATENCY IN THE ASYMMETRIC SETTING

1)×2Δ, is approximately half of the corresponding value,
(p2 + p + 1) × Δ, in the integer schedule.

We further remark that the above “trimming” based
non-integer Singer schedule has the same performance as that
of Diff-Codes [29]. This is because Diff-Codes expands each
slot in the schedule from Singer sets to two consecutive slots,
an active slot followed by an inactive slot, and an inactive slot
followed by another inactive slot. When overflowing an active
slot to its subsequent slot, it coincides with a special form of
“trimming” (i.e., by “trimming” an amount Δ − δ at the end
of a 2Δ slot).

We next present numerical results on the worst-case discov-
ery latency for the above four schemes under the original inte-
ger schedules and the “trimmed” non-integer schedules. The
duty cycle d is varied in a wide range, from 0.5% to 5%, and
δ/Δ is set to 0.1. Fig. 8(a) plots the results for three schemes,
Disco, U-Connect, and Singer. Since all these three schemes
take primes as parameters, the density of samples under lower
duty cycles is higher than that under higher duty cycles due
to higher density of primes. We observe that for all three
schemes, the worst-case discovery latency of the non-integer
schedule is indeed approximately half of that of the integer
schedule. Fig. 8(b) plots the worst-case discovery latency of
three variants of Searchlight, where the duty cycle values are
chosen evenly (this can be easily achieved since Searchlight
uses integers as parameters). Two variants, Searchlight-NS
(no striped probing) and Searchlight-S (with striped probing),
were proposed in [2]. Specifically, Searchlight-NS provides an
integer schedule, while Searchlight-S provides a non-integer
schedule since it allows each active slot to “overflow” by δ.
The third variant, referred to as “Searchlight trim,” is con-
structed by us, by converting Searchlight-NS to a non-integer
schedule following our proposed reduction in Section III-D.
We observe that the performance of “Searchlight trim” over-
laps with that of Searchlight-S, both reducing the worst-case

Fig. 8. Symmetric setting: worst-case discovery latency of integer schedules
and their corresponding non-integer schedules.

discovery latency of the integer schedule, Searchlight-NS,
by approximately a factor of two.

B. Asymmetric Setting

Table II shows the worst-case discovery latency for two
schemes, Disco and U-Connect, in the asymmetric setting,
where the two nodes have duty cycles, d1 and d2, and d1 �= d2.
For both schemes, the worst-case discovery latency under the
non-integer model is approximately half of that under the
integer model when δ � Δ. Specifically,

• For Disco, when δ � Δ, the two primes, p′i1 and p′i2,
chosen by node i, i = 1, 2, in the non-integer schedule
satisfy that p′i1 ≈ pi1/2 and p′i2 ≈ pi2/2, where pi1

and pi2 are the two primes in the integer schedule
(we assume that a node chooses either a balanced or
unbalanced pair of primes; the preference between
balanced versus unbalanced pair is the same in the
integer and non-integer schedules). Hence, from Table II,
the worst-case discovery latency of the non-integer
schedule, min(p′11p

′
21, p

′
11p

′
22, p

′
12p

′
21, p

′
12p

′
22) × 2Δ,

is approximately half of the corresponding value,

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on January 03,2021 at 13:39:50 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: ASYNCHRONOUS NEIGHBOR DISCOVERY ON DUTY-CYCLED MOBILE DEVICES 5213

Fig. 9. Asymmetric setting: worst-case discovery latency of integer schedules
and their corresponding non-integer schedules (d1 = 1% and d2 is varied
from 1% to 20%).

min(p11p21, p11p22, p12p21, p12p22) × Δ for the integer
schedule.

• For U-Connect, when δ � Δ, the prime, p′i, chosen
by node i, i = 1, 2, in the non-integer schedule is
approximately half of the prime, pi, in the integer sched-
ule, and hence the worst-case discovery latency of the
non-integer schedule p′1p

′
2 × 2Δ is approximately half

of the corresponding value, p1 p2 × Δ, for the integer
schedule.

Fig. 9 shows some numerical results when δ/Δ = 0.1, and
the duty cycle of one node is fixed to be 1%, while the duty
cycle of the other node varies from 1% to 20%. The results
for Disco assumes that a node uses two balanced primes.
We observe numerically that the worst-case discovery latency
of the non-integer schedule is indeed approximately half of
that of the integer schedule.

VI. LOWER BOUNDS

We next develop a general lower bound in the non-integer
model. This lower bound is characterized by both Δ (slot
length) and δ (required meeting time), satisfying δ ≤ Δ/2.
It applies to the general case where two nodes have duty
cycles, d1 and d2, which may be the same or different, corre-
sponding to symmetric or asymmetric setting. In the following,
we first present and prove the lower bound, and then remark
that it leads to a family of lower bounds. While derived in the
non-integer model, the lower bound encompasses the integer
model as a special case, since when δ = Δ/2, no “trimming”
needs to be done, and the model becomes an integer model.

Theorem 2: Consider two nodes that have schedules S1, S2

in the non-integer model with parameters Δ, δ, where δ ≤
Δ/2. Assume that S1, S2 have duty cycles d1, d2. Let
L(S1, S2) denote the neighbor discovery latency under sched-
ules S1, S2. Then to guarantee discovery within time n,
the duty cycles d1 and d2 need to satisfy that d1d2 ≥
Δ2/(2n(Δ − δ)). Conversely, for given d1, d2, the discovery
latency is at least Δ2/(2d1d2(Δ − δ)).

Proof: Consider two schedules S1 ⊂ R
+ and S2 ⊂ R

+

with duty cycles d1 and d2, respectively. We suppose that these
two schedules achieve discovery latency n, and proceed to
prove that we must then have

n ≥ Δ2

2d1d2(Δ − δ)
. (1)

Fig. 10. Overlap occurrences from a pair of awake intervals between the
two nodes.

Select two large times T1, T2 � n for which Tj + n �∈ Sj

(for each j = 1, 2). Since node j has duty cycle dj , we have∣∣S1 ∩ [0, T1 + n)
∣∣ ≤ d1(T1 + n) , and∣∣S2 ∩ [0, T2 + n)
∣∣ ≤ d2(T2 + n) ,

where the notation | · | is defined as follows: suppose
A =

⋃
i[αi, βi) is a disjoint union of half-open intervals,

then |A| =
∑

i(βi − αi). We may express each of these
“prefixes” of the schedules Sj ∩ [0, Tj +n) as a disjoint union
of some (maximal) intervals:

S1 ∩ [0, T1 + n) =
k1⋃

i=1

B
(1)
i , S2 ∩ [0, T2 + n) =

k2⋃
i=1

B
(2)
i ,

where each B
(j)
i is the ith awake interval appearing in Sj .

By definition, B
(j)
i has the form [α, β). Let �

(j)
i = |B(j)

i |,
i.e., �

(j)
i represents the length of the ith awake interval in Sj .

Then, summarizing the above, for each node j,

|Sj ∩ [0, Tj + n)| =
∑

i

�
(j)
i ≤ dj(Tj + n) .

In the following, we extend the notation |A|, defined above
for subsets A ⊂ R, to subsets of R × R. Specifically, if A =
[α(1), β(1)) × [α(2), β(2)), we define |A| = (β(1) − α(1)) ·
(β(2) − α(2)). If A is a disjoint union

⋃
i Ai, where each

Ai is such a product of intervals, we define |A| =
∑

i |Ai|.
In addition, for a subset S ⊂ R and an element r ∈ R, we let
S + r = {s + r | s ∈ S} (and likewise define S − r).

As S1 and S2 achieve discovery latency n, for any (t1, t2) ∈
[0, T1)× [0, T2) the intersection of (S1− t1)∩ [0, n) and (S2−
t2)∩ [0, n) must contain an interval of width at least δ. Recall
that B

(1)
i and B

(2)
i′ represent awake intervals for nodes 1 and 2,

respectively. Fixing the position of interval B
(1)
i , observe that

the interval B
(2)
i′ overlaps with B

(1)
i at an interval of width δ

for a collection of times of length �
(1)
i + �

(2)
i′ − 2δ. The above

is illustrated in Fig. 10: for a given B
(1)
i , to ensure B

(1)
i and

B
(2)
i′ overlap for at least δ, the leftmost and rightmost possible

positions of B
(2)
i′ are marked in the figure; the interval between

these two positions, which is of length �
(1)
i +�

(2)
i′ −2δ, includes

all possible positions of B
(2)
i′ to ensure that B

(1)
i and B

(2)
i′

overlap for at least δ. It follows that∣∣∣∣∣∣
⎧⎨
⎩(t1, t2)

∣∣∣∣∣∣
B

(1)
i −t1 meets B

(2)
i′ −t2

at an interval of width δ
in [0, n)

⎫⎬
⎭
∣∣∣∣∣∣ ≤ n(�(i)

i + �
(2)
i′ − 2δ) .

Let k1 denote the total number of awake intervals for node 1
in [0, T1]. Similarly, let k2 denote the total number of awake

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on January 03,2021 at 13:39:50 UTC from IEEE Xplore. Restrictions apply.

5214 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 8, AUGUST 2020

intervals for node 2 in [0, T2]. As every pair (t1, t2) ∈ [0, T1)×
[0, T2) must be covered by some pair of intervals as above,
we have

T1T2 ≤
∑
i,i′

n
(
�
(1)
i + �

(2)
i′ − 2δ

)

= n

(
k1

∑
i′

�
(2)
i′ + k2

∑
i

�
(1)
i − 2k1k2δ

)

≤ n(k1d2(T2 + n) + k2d1(T1 + n) − 2k1k2δ) .

We conclude that

n ≥ T1T2

k1d2(T2 + n) + k2d1(T1 + n) − 2k1k2δ
. (2)

Additionally, we recall that an awake interval has length at
least Δ, and hence

k1Δ ≤ d1(T1 + n) and k2Δ ≤ d2(T2 + n) . (3)

To complete the proof, we establish an upper bound on the
denominator of (2), defined as

φ(k1, k2) � k1d2(T2 + n) + k2d1(T1 + n) − 2k1k2δ

subject to the constraints (3). Note that, assuming k2

satisfies (3),

∂

∂k1
φ(k1, k2) = d2(T2 + n) − 2δk2

≥ d2(T2 + n) − 2δ
d2(T2 + n)

Δ

= d2(T2 + n)
(

1 − 2δ

Δ

)
≥ 0 ,

where the first inequality is due to the constraint of k2 in (3),
and the second inequality is due to our assumption that
2δ/Δ ≤ 1. It follows that for any choice of k2 consistent
with (3), the function φ is maximized by taking k1 as large
as possible—that is, so that the constraint (3) for k1 is
tight. An analogous computation of ∂φ/∂k2 establishes the
corresponding statement for k2: In particular, φ(k1, k2) is
maximized when the constraints (3) are tight. Thus

φ(k1, k2) ≤ 2d1 d2(T1 + n)(T2 + n)
Δ − δ

Δ2
.

Finally, in light of (2), we conclude that

n ≥ Δ2

2 d1 d2(Δ − δ)
· T1T2

(T1 + n)(T2 + n)
.

As we are free to select Tj as large as we wish, when Tj

approaches infinity, the second factor in the right hand of
the above inequality approaches 1, and hence inequality (1)
follows, as desired.

Remarks: The lower bound in Theorem 2 leads to a fam-
ily of lower bounds, encompassing existing lower bounds
in [29], [49] as special cases. It further provides insights into
the relationship between the lower bounds of integer and
non-integer models, and optimal schedules in both models.

• Non-Integer Model, Symmetric Setting: When d1 = d2,
the required duty cycle to achieve a discovery latency of
n becomes Δ/

√
2n(Δ − δ). When Δ = 1 and δ � Δ

(the assumptions in [29]), it recovers the lower bound of

1/
√

2n in [29], which is a lower bound of the non-integer
model in the symmetric setting. The derivation of [29]
assumes the symmetric setting specifically. Our lower
bound, on the other hand, applies to both symmetric
and asymmetric settings, and permits a general model
characterized by the two parameters Δ and δ that account
for practical constraints.

• Integer Model, Symmetric Setting: As mentioned earlier,
when δ = Δ/2, a non-integer schedule becomes an
integer schedule since no “trimming” is needed in that
case. When d1 = d2 = d and δ = Δ/2, the lower bound
on discovery latency is Δ/d2 (or the lower bound on the
needed duty cycle is 1/

√
n when Δ = 1), which recovers

the lower bound for integer schedules in the symmetric
setting [49].

• Integer and Non-Integer Models, Asymmetric Setting: Our
lower bound is also applicable to the asymmetric setting,
i.e., when d1 �= d2. As a special case, when d1 �= d2

and δ = Δ/2, the lower bound on discovery latency
is Δ/(d1d2), which is, to be best of our knowledge,
the first known lower bound for integer schedules in the
asymmetric setting.

• Integer and Non-Integer Models, Lower Bounds, Symmet-
ric and Asymmetric Settings: The lower bound on the
discovery latency is Δ/(2d1d2) when δ � Δ, while
it is Δ/(d1d2) when δ = Δ/2 (i.e., under the integer
model). This is because, when δ � Δ, using an integer
schedule essentially overestimates δ by assuming that
δ = Δ/2, which can lead to discovery latency no better
than Δ/(d1d2), twice as the lower bound of the discovery
latency of the non-integer model (i.e., Δ/(2d1d2)). The
above observations on lower bounds apply to both sym-
metric and asymmetric settings. They further confirm that
when δ � Δ, integer schedules can lead to significant
waste of resources, while non-integer schedules are much
more efficient.

• Integer and Non-Integer Models, Optimal Schedules,
Symmetric Setting: In the symmetric setting (i.e., d1 =
d2 = d), as indicated in Table I, the integer variant
of the Singer algorithm chooses p ≈ 1/d, leading to a
worst-case discovery latency of approximately ((1/d)2 +
1/d + 1)Δ, which achieves the lower bound Δ/d2 for
integer schedules when d � 1; the non-integer variant
chooses p ≈ 1/(2d), leading to a worst-case discovery
latency of approximately ((1/2d)2 + 1/(2d) + 1) × 2Δ,
which achieves the lower bound Δ/(2d2) for non-integer
schedules when d � 1. The above results indicate that the
Singer algorithm provides an optimal integer schedule in
the symmetric setting, and its corresponding non-integer
variant provides an optimal non-integer schedule in the
symmetric setting; a point that we will return to in
Section VII-A.

• Integer and Non-Integer Models, Optimal Schedules,
Asymmetric Setting: In the asymmetric setting, we are
not aware of an optimal schedule (with discovery
latency meeting the lower bound) in either the inte-
ger or non-integer model. See further discussion in
Section VII-B.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on January 03,2021 at 13:39:50 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: ASYNCHRONOUS NEIGHBOR DISCOVERY ON DUTY-CYCLED MOBILE DEVICES 5215

Fig. 11. Illustration of an optimal reduction that converts an integer schedule
to a corresponding non-integer schedule.

VII. OPTIMAL SCHEDULES

In this section, we first demonstrate that the reduction in
Section III-D converts an optimal integer schedule to an opti-
mal non-integer schedule. We then discuss optimal schedules
for symmetric and asymmetric settings, respectively. Our focus
is on periodic schedules, as in most existing studies.

A. Optimal Integer and Non-Integer Schedules

Consider an optimal integer schedule for two nodes with
duty cycles d1 and d2. When the slot length is 2Δ, based on
the lower bound in Section VI, for the two nodes to discover
each other in time n, we must have

d1d2 ≥ 2Δ
n

. (4)

Under the reduction in Section III-D, the duty cycle of a node
in the non-integer schedule, denoted as d′i, satisfies

d′i = di
Δ + δ

2Δ
, i = 1, 2 , (5)

d′1d
′
2 = d1d2

(
Δ + δ

2Δ

)2

. (6)

Substituting (4) into (6) yields

d′1d
′
2 ≥ 2Δ

n

(
Δ + δ

2Δ

)2

=
(Δ + δ)2

2nΔ
≈ Δ2

2n(Δ − δ)
,

where the last approximation holds since δ � Δ (we only
consider the non-integer model with δ � Δ, see remarks in
Section VI). The new non-integer schedule therefore meets
the lower bound for the non-integer model, and hence is an
optimal non-integer schedule.

In fact, we can use a more exact reduction (see Fig. 11),
which divides time into slots of length 2(Δ−δ) and “trims” a
total amount of Δ − 2δ in each active slot. This reduction
still ensures discovery since the length of the awake time
in an active slot is Δ, while the ensured overlap is at least
2(Δ−δ)/2 = Δ−δ. Repeating the above derivation, we have

d1 d2 ≥ 2(Δ − δ)
n

,

d′i = di
Δ

2(Δ − δ)
, i = 1, 2 ,

d′1d
′
2 ≥ 2(Δ − δ)

n

(
Δ

2(Δ − δ)

)2

=
Δ2

2n(Δ − δ)
.

Fig. 12. Worst-case discovery latency of two optimal schemes (based on
Singer and Sidon difference sets) for the symmetric setting.

That is, the constructed non-integer schedule matches the
lower bound in the non-integer model exactly, and hence is
optimal.

B. Optimal Schedules

Our discussion below only considers optimal integer sched-
ules, since using the reduction in Section III-D, they can be
readily converted to optimal non-integer schedules.

1) Symmetric Setting: Two schemes have been shown to
be optimal for the symmetric setting. The first scheme is
based on Singer difference sets [22], [29], [49]; our earlier
study [7] provides an efficient polynomial-time algorithm to
construct such schedules based on the existence proof in [35].
The second scheme is based on Sidon sets (see, e.g., [40]
for a detailed description of the theory); the construction of
the scheme is detailed in [7]. Fig. 12 plots the worst-case
discovery latency of these two schemes when the duty cycle
of the two nodes is varied from 0.5% to 5%. We see that
these two schemes have similar worst-case discovery latency
for small duty cycles; for larger duty cycles, the latency under
the Sidon set construction is larger than that under the Singer
set construction due to the differences of the lower order terms
in these two constructions [7]. Both the Singer set and Sidon
set constructions are based on prime numbers, and hence only
support a limited granularity of duty-cycles.

2) Asymmetric Setting: In the asymmetric case, for two
nodes with duty cycles d1 and d2, d1 �= d2, the lower bound
of discovery latency in the integer model is Δ/(d1 d2) (see
Theorem 2). A simple optimal schedule is as follows. Each
node picks the closest prime number, pi, so that pi ≤ 1/di

and p1 �= p2. Then a node wakes up in the slots that are
the multiples of pi. By the Chinese Remainder Theorem,
since p1 �= p2, for any time shift between these two nodes,
they can meet in time p1 p2 ≈ Δ/(d1 d2). This simple
optimal schedule, however, only works when p1 �= p2. Hence
it does not work for the symmetric setting or when two
nodes have similar duty cycles (which can lead to p1 = p2).
In practice, we need a scheme that works for both asymmetric
and symmetric settings since the nodes do not know whether
they have the same or different duty cycles beforehand.

Existing schemes that are based on prime numbers over-
come the limitation in the above simple scheme through
adding mechanisms. Specifically, in Disco [11], each node uses
two primes instead of one prime; in U-Connect [17], each

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on January 03,2021 at 13:39:50 UTC from IEEE Xplore. Restrictions apply.

5216 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 8, AUGUST 2020

node uses one prime, but is awake for a continuous period
of time in addition to the multiples of the prime. Neither of
them is optimal. The asymmetric schedules in [2], [29] are
not optimal either. Finding a schedule that is optimal in the
asymmetric setting while also applicable (or even optimal) for
the symmetric setting remains an open question that is left as
future work.

VIII. CONCLUSION

In this paper, we first presented an intersection property
of integer schedules and showed that integer schedules can
lead to significant waste of resources. We then developed a
generalized non-integer model, which relaxes the constraints
in the integer model by assuming time to be continuous
and nodes may become active or inactive at any point in
time, subject to a few constraints. In addition, we provided
a reduction that transforms any schedule in the integer model
to a corresponding schedule in the non-integer model, while
achieving significant performance gains. Using experiments
in a testbed, we demonstrated the practicality of non-integer
schedules and their advantages over the corresponding inte-
ger schedules. We further presented the worst-case discovery
latency of the integer and non-integer variants for several exist-
ing schemes. After that, we established a new family of lower
bounds for the best achievable latency guarantee that applies
to both the integer and non-integer models, covering both
symmetric and asymmetric settings. At the end, we discussed
optimal neighbor discovery schedules for both the symmetric
and asymmetric settings.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the funding agencies.

REFERENCES

[1] L. Aalto, N. Göthlin, J. Korhonen, and T. Ojala, “Bluetooth and WAP
push based location-aware mobile advertising system,” in Proc. 2nd Int.
Conf. Mobile Syst., Appl., Services (MobiSYS), 2004, pp. 49–58.

[2] M. Bakht, M. Trower, and R. H. Kravets, “Searchlight: Won’t you be
my neighbor?” in Proc. 18th Annu. Int. Conf. Mobile Comput. Netw.,
2012, pp. 185–196.

[3] S. A. Borbash, A. Ephremides, and M. J. McGlynn, “An asynchronous
neighbor discovery algorithm for wireless sensor networks,” Ad Hoc
Netw., vol. 5, no. 7, pp. 998–1016, Sep. 2007.

[4] D. Burghal, A. S. Tehrani, and A. F. Molisch, “On expected neighbor dis-
covery time with prior information: Modeling, bounds and optimization,”
IEEE Trans. Wireless Commun., vol. 17, no. 1, pp. 339–351, Jan. 2018.

[5] L. Chen, R. Fan, K. Bian, M. Gerla, T. Wang, and X. Li, “On
heterogeneous neighbor discovery in wireless sensor networks,” in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2015, pp. 693–701.

[6] L. Chen et al., “Group-based neighbor discovery in Low-Duty-Cycle
mobile sensor networks,” IEEE Trans. Mobile Comput., vol. 15, no. 8,
pp. 1996–2009, Aug. 2016.

[7] S. Chen, A. Russell, R. Jin, Y. Qin, B. Wang, and S. Vasudevan, “Asyn-
chronous neighbor discovery on duty-cycled mobile devices: Integer and
non-integer schedules,” in Proc. 16th ACM Int. Symp. Mobile Hoc Netw.
Comput., 2015, pp. 47–56.

[8] T. Chen, J. Ghaderi, D. Rubenstein, and G. Zussman, “Maximiz-
ing broadcast throughput under ultra-low-power constraints,” in Proc.
CoNext, 2016, pp. 1–15.

[9] R. Cohen and B. Kapchits, “Continuous neighbor discovery in asyn-
chronous sensor networks,” IEEE/ACM Trans. Netw., vol. 19, no. 1,
pp. 69–79, Feb. 2011.

[10] I. de Jong. Pyro: Python Remote Objects. Accessed: Apr. 2019. [Online].
Available: https://pythonhosted.org/Pyro

[11] P. Dutta and D. Culler, “Practical asynchronous neighbor discovery and
rendezvous for mobile sensing applications,” in Proc. 6th ACM Conf.
Embedded Netw. Sensor Syst. (SenSys), 2008, pp. 61–84.

[12] P. Gandotra and R. K. Jha, “Device-to-Device communication in cellular
networks: A survey,” J. Netw. Comput. Appl., vol. 71, pp. 99–117,
Aug. 2016.

[13] B. Han, P. Hui, V. S. A. Kumar, M. V. Marathe, J. Shao, and A. Srini-
vasan, “Mobile data offloading through opportunistic communications
and social participation,” IEEE Trans. Mobile Comput., vol. 11, no. 5,
pp. 821–834, May 2012.

[14] C. S. Hsu, J. R. Jiang, Y. C. Tseng, and T. H. Lai, “Quorum-based
asynchronous power-saving protocols for IEEE 802.11 ad hoc networks,”
Mobile Netw. Appl., vol. 10, nos. 1–2, pp. 169–181, 2005.

[15] J.-H. Huang, S. Amjad, and S. Mishra, “Cenwits: A sensor-based loosely
coupled search and rescue system using witnesses,” in Proc. 3rd Int.
Conf. Embedded Netw. Sensor Syst., 2005, pp. 180–191.

[16] C. Julien, C. Liu, A. L. Murphy, and G. P. Picco, “BLEnd: Practical
continuous neighbor discovery for Bluetooth low energy,” in Proc. 16th
ACM/IEEE Int. Conf. Inf. Process. Sensor Netw. (IPSN), Apr. 2017,
pp. 105–116.

[17] A. Kandhalu, K. Lakshmanan, and R. R. Rajkumar, “U-connect: A
low-latency energy-efficient asynchronous neighbor discovery protocol,”
in Proc. 9th ACM/IEEE Int. Conf. Inf. Process. Sensor Netw., 2010,
pp. 350–361.

[18] A. Keshavarzian, E. Uysal-Biyikoglu, F. Herrmann, and A. Manjeshwar,
“Energy-efficient link assessment in wireless sensor networks,” in Proc.
IEEE INFOCOM, Mar. 2004, pp. 1751–1761.

[19] P. H. Kindt, M. Saur, and S. Chakraborty, “Slotless protocols for fast and
energy-efficient neighbor discovery,” 2016, arXiv:1605.05614. [Online].
Available: https://arxiv.org/abs/1605.05614

[20] P. H. Kindt, M. Saur, M. Balszun, and S. Chakraborty, “Neighbor
discovery latency in BLE-like protocols,” IEEE Trans. Mobile Comput.,
vol. 17, no. 3, pp. 617–631, Mar. 2018.

[21] P. H. Kindt, D. Yunge, G. Reinerth, and S. Chakraborty, “Griassdi:
Mutually assisted slotless neighbor discovery,” in Proc. 16th ACM/IEEE
Int. Conf. Inf. Process. Sensor Netw., Apr. 2017, pp. 93–104.

[22] S. Lai, B. Zhang, B. Ravindran, and H. Cho, “CQS-pair: Cyclic quorum
system pair for wakeup scheduling in wireless sensor networks,” in
Principles of Distributed Systems. Berlin, Germany: Springer, 2008,
pp. 295–310.

[23] D. Li and P. Sinha, “RBTP: Low-power mobile discovery protocol
through recursive binary time partitioning,” IEEE Trans. Mobile Com-
put., vol. 13, no. 2, pp. 263–273, Feb. 2014.

[24] T. Liu, C. M. Sadler, P. Zhang, and M. Martonosi, “Implementing
software on resource-constrained mobile sensors: Experiences with
Impala and ZebraNet,” in Proc. 2nd Int. Conf. Mobile Syst., Appl.,
Services, 2004, pp. 256–269.

[25] Locast. Accessed: Apr. 2019. [Online]. Available: http://www.lokast.com
[26] R. Margolies, G. Grebla, T. Chen, D. Rubenstein, and G. Zussman,

“Panda: Neighbor discovery on a power harvesting budget,” in Proc.
35th Annu. IEEE Int. Conf. Comput. Commun., Apr. 2016, pp. 1–9.

[27] M. J. McGlynn and S. A. Borbash, “Birthday protocols for low energy
deployment and flexible neighbor discovery in ad hoc wireless net-
works,” in Proc. 2nd ACM Int. Symp. Mobile Ad Hoc Netw. Com-
put. (MobiHoc), 2001, pp. 137–145.

[28] L. McNamara, C. Mascolo, and L. Capra, “Media sharing based on
colocation prediction in urban transport,” in Proc. 14th ACM Int. Conf.
Mobile Comput. Netw. (MobiCom), 2008, pp. 58–69.

[29] T. Meng, F. Wu, and G. Chen, “On designing neighbor discovery
protocols: A code-based approach,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2014, pp. 1689–1697.

[30] T. Meng, F. Wu, and G. Chen, “Code-based neighbor discovery protocols
in mobile wireless networks,” IEEE/ACM Trans. Netw., vol. 24, no. 2,
pp. 806–819, Apr. 2016.

[31] M. Motani, V. Srinivasan, and P. S. Nuggehalli, “Peoplenet: Engineering
a wireless virtual social network,” in Proc. 11th Annu. Int. Conf. Mobile
Comput. Netw., 2005, pp. 243–257.

[32] A. K. Pietiläinen, E. Oliver, J. Lebrun, G. Varghese, and C. Diot,
“MobiClique: Middleware for mobile social networking,” in Proc. 2nd
ACM Workshop Online Social Netw., Aug. 2009, pp. 49–54.

[33] A. Purohit, N. Priyantha, and J. Liu, “WiFlock: Collaborative group
discovery and maintenance in mobile sensor networks,” in Proc. IPSN,
2011, pp. 37–48.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on January 03,2021 at 13:39:50 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: ASYNCHRONOUS NEIGHBOR DISCOVERY ON DUTY-CYCLED MOBILE DEVICES 5217

[34] Y. Qiu, S. Li, X. Xu, and Z. Li, “Talk more listen less: Energy-efficient
neighbor discovery in wireless sensor networks,” in Proc. 35th Annu.
IEEE Int. Conf. Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[35] D. R. Stinson, Combinatorial Designs: Constructions and Analysis.
New York, NY, USA: Springer-Verlag, 2003.

[36] Nintendo 3ds’s Streetpass. Accessed: Apr. 2019. [Online]. Available:
http://www.nintendo.com/3ds/features

[37] W. Sun, Z. Yang, K. Wang, and Y. Liu, “Hello: A generic flexible
protocol for neighbor discovery,” in Proc. IEEE Conf. Comput. Com-
mun. (INFOCOM), Apr. 2014, pp. 540–548.

[38] J. Tang, M. Dabaghchian, K. Zeng, and H. Wen, “Impact of mobility
on physical layer security over wireless fading channels,” IEEE Trans.
Wireless Commun., vol. 17, no. 12, pp. 7849–7864, Dec. 2018.

[39] J. Tang, H. Wen, K. Zeng, R.-F. Liao, F. Pan, and L. Hu, “Light-weight
physical layer enhanced security schemes for 5G wireless networks,”
IEEE Netw., vol. 33, no. 5, pp. 126–133, Sep. 2019.

[40] T. Tao and V. Vu, “Additive combinatorics,” in Number 105 in Cam-
bridge Studies in Advanced Mathematics. Cambridge, U.K.: Cambridge
Univ. Press, 2006.

[41] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh, “Power-saving protocols
for IEEE 802.11-based multi-hop ad hoc networks,” in Proc. IEEE
INFOCOM, Jun. 2002.

[42] S. Vasudevan, M. Adler, D. Goeckel, and D. Towsley, “Efficient algo-
rithms for neighbor discovery in wireless networks,” IEEE/ACM Trans.
Netw., vol. 21, no. 1, pp. 69–83, Feb. 2013.

[43] K. Wang, X. Mao, and Y. Liu, “BlindDate: A neighbor discovery pro-
tocol,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 949–959,
Apr. 2015.

[44] F. Wu, T. Meng, A. Li, G. Chen, and N. H. Vaidya, “Have you
recorded my voice: Toward robust neighbor discovery in mobile wireless
networks,” IEEE/ACM Trans. Netw., vol. 26, no. 3, pp. 1432–1445,
Jun. 2018.

[45] Z. Yang, B. Zhang, J. Dai, A. C. Champion, D. Xuan, and D. Li,
“E-smalltalker: A distributed mobile system for social networking in
physical proximity,” in Proc. IEEE 30th Int. Conf. Distrib. Comput. Syst.,
Jun. 2010, pp. 468–477.

[46] D. Zhang et al., “Acc: Generic on-demand accelerations for neigh-
bor discovery in mobile applications,” in Proc. ACM SenSys, 2012,
pp. 169–182.

[47] D. Zhang, T. He, F. Ye, R. K. Ganti, and H. Lei, “EQS: Neighbor
discovery and rendezvous maintenance with extended quorum system
for mobile sensing applications,” in Proc. IEEE 32nd Int. Conf. Distrib.
Comput. Syst., Jun. 2012, pp. 72–81.

[48] L. Zhang and D. Guo, “Neighbor discovery in wireless networks using
compressed sensing with Reed–Müller codes,” in Proc. Int. Symp. Mod-
eling Optim. Mobile, Ad Hoc, Wireless Netw., May 2011, pp. 154–160.

[49] R. Zheng, J. C. Hou, and L. Sha, “Asynchronous wakeup for ad
hoc networks,” in Proc. 4th ACM Int. Symp. Mobile Ad Hoc Netw.
Comput. (MobiHoc), 2003, pp. 35–45.

Sixia Chen (Member, IEEE) received the master’s
and Ph.D. degrees from the Computer Science and
Engineering Department, University of Connecticut.
She is currently an Assistant Professor with the
Department of Computer Science, Central Connecti-
cut State University. Her research interests include
design and analysis of algorithms, combinatorial
optimization, and pseudorandomness.

Reynaldo Morillo (Student Member, IEEE)
received the B.S. degree in computer science and
engineering from the University of Connecticut,
where he is currently pursuing the Ph.D. degree with
the Computer Science and Engineering Department.
His interests are in networks and systems, network
security, and ubiquitous computing.

Yanyuan Qin (Student Member, IEEE) received
the B.S. degree in automation from the Nanjing
University of Aeronautics and Astronautics, China,
in 2011, and the M.S. degree in control science and
engineering from Shanghai Jiao Tong University,
China, in 2014. He is currently pursuing the Ph.D.
degree with the Computer Science and Engineering
Department, University of Connecticut. His research
interests are in software defined networking and
wireless networks.

Alexander Russell was born in Philadelphia, PA, USA, in 1969. He received
the B.A. degree in mathematics and computer science from Cornell University
in 1991, the S.M. degree in computer science from the Massachusetts Institute
of Technology in 1993, and the Ph.D. degree in mathematics from the
Massachusetts Institute of Technology in 1996. He is currently a Professor of
computer science and engineering with the University of Connecticut.

Ruofan Jin (Member, IEEE) received the B.S. and
M.S. degrees in computer science and engineering
from Beihang University in 2007 and 2010, respec-
tively, and the Ph.D. degree from the University
of Connecticut in 2015. His research interests are
in the areas of wireless networks and performance
optimization.

Bing Wang (Senior Member, IEEE) received the
B.S. degree in computer science from the Nan-
jing University of Science and Technology, China,
in 1994, the M.S. degree in computer engineering
from the Institute of Computing Technology, Chi-
nese Academy of Sciences, in 1997, and the M.S.
degrees in computer science and applied mathemat-
ics and the Ph.D. degree in computer science from
the University of Massachusetts, Amherst, in 2000,
2004, and 2005, respectively. She is currently a Pro-
fessor with the Computer Science and Engineering

Department, University of Connecticut. Her research interests are computer
networking and distributed systems. She received an NSF CAREER Award
in February 2008.

Sudarshan Vasudevan (Member, IEEE) received
the B.E. degree in computer science and engi-
neering from the National Institute of Technology,
Trichy, India, in 2000, and the M.S. and Ph.D.
degrees in computer science from the University of
Massachusetts, Amherst, in 2003 and 2006, respec-
tively. He was a Researcher with Bell Labs, Murray
Hill, NJ, USA. He is currently a Staff Software Engi-
neer with LinkedIn (part of Microsoft, Inc.) His cur-
rent research interests include building large-scale
distributed systems, randomized algorithms, and
performance evaluation.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on January 03,2021 at 13:39:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

