
C2: Consumption Context Cognizant ABR Streaming for
Improved QoE and Resource Usage Tradeoffs

Cheonjin Park1, Chinmaey Shende1, Subhabrata Sen2, Bing Wang1
1University of Connecticut 2AT&T Labs - Research

ABSTRACT

Smartphones have emerged as ubiquitous platforms for people to

consume content in a wide range of consumption contexts (C2), e.g.,

over cellular or WiFi, playing back audio and video directly on

phone or through peripheral devices such as external screens or

speakers, etc. In this paper, we argue that a user’s specific C2 is an

important factor to consider in Adaptive Bitrate (ABR) streaming.

We examine the current practice of using C2 in four popular ABR

players, and identify various limitations in existing treatments that

have a detrimental impact on network resource usage and user

experience. We then develop practical best-practice guidelines for

C2-cognizant ABR streaming. Instantiating these guidelines, we

develop a proof-of-concept implementation in the widely used

state-of-the-art ExoPlayer platform and demonstrate that it leads

to significantly better tradeoffs in terms of user experience and

resource usage.

CCS CONCEPTS

• Information systems →Multimedia streaming.

KEYWORDS
ABR streaming; Consumption context; Resource efficiency.

ACM Reference Format:

Cheonjin Park, Chinmaey Shende, Subhabrata Sen, and Bing Wang. 2022.

C2: Consumption Context Cognizant ABR Streaming for Improved QoE

and Resource Usage Tradeoffs. In 13th ACM Multimedia Systems Conference

(MMSys ’22), June 14–17, 2022, Athlone, Ireland. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3524273.3528185

1 INTRODUCTION

Smartphones have emerged as ubiquitous platforms for us to con-

sume content in a wide range of contexts: we listen to audio/music

on our phones, using either the built-in speaker, or headphones

that even support spatial audio [62]; we watch video using either

the small built-in phone screen, a flip screen [44], or a mini pro-

jector [34, 42, 68] that projects the content to a larger space. In

addition, our phones can be conveniently connected to play con-

tent on external peripherals, e.g., a large-screen and high resolution

TV/monitor and 5.1 or 7.2 channel surround sound system [4, 32, 50].

One example of this latter use case is “Tailgate parties” for games

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MMSys ’22, June 14–17, 2022, Athlone, Ireland

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9283-9/22/06.
https://doi.org/10.1145/3524273.3528185

or concerts [8]. The ubiquitous network connectivity to phones,

through cellular or WiFi, further allows us to access the Internet

anytime anywhere. We broadly refer to the environment in which a

user consumes content as the consumption context (C2). As we shall

see, to deliver good QoE, different types of C2 can have very differ-

ent resource requirements and user needs. Therefore, C2-cognizant

behaviors are important for various applications to appropriately

optimize user experience and resource usage.

In this paper, we explore using C2 in ABR streaming, the current

de facto technology for video streaming. In ABR streaming, the

origin server provides multiple tracks or variants that all represent

the same content, but are encoded at different bitrates and quality

levels. Each track is divided into multiple segments, each containing

a few seconds worth of content. During playback, for each segment

position, the client uses an ABR rate adaptation logic to dynamically

select a variant from the multiple available variants to adapt to

dynamic network conditions. At the server, video and audio can be

muxed together, or demuxed (i.e., stored and streamed as separate

tracks) [54]. In this paper, we focus on the demuxed paradigm

because it has many advantages [54] and is widely adopted in

popular streaming services. However, the C2-cognizant framework

developed here also applies to the muxed case.

We argue that using C2 holistically is important for the entire

end-to-end path of ABR streaming that involves the server, CDN,

client and the network, especially due to the large amount of re-

sources and bandwidth consumed by video streaming. For last-mile

networks, such considerations are clearly relevant for resource

constrained cellular networks. Even for relatively resource-richer

broadband settings, such considerations are relevant since typi-

cal uses often involve multiple devices running multiple applica-

tions concurrently and sharing network resources over the same

broadband connection. It is important to ensure that the resource-

intensive video streaming applications do not use more bandwidth

than necessary for the current C2.

Existing literature on ABR streaming has focused primarily on

a single aspect of C2, i.e., available network bandwidth, and pro-

duced a range of rate adaptation schemes to accommodate dynamic

bandwidth conditions (see §7). While this is certainly very impor-

tant, many other important aspects of C2 have received little prior

attention. We describe two such aspects next. First, existing works

focused primarily on video; audio has received much less attention.

Even in the well-studied area of rate adaptation, there is very little

work on rate adaptation for the case of streaming demuxed video

and audio tracks, which requires addressing subtle interactions

between audio and video track selections [54]. Second, there has

been very little attention on matching the ABR track selection to

the contextual needs of the display/audio device where the content

is consumed. Specifically, the video can be displayed on a small

phone built-in screen or a large external display, while audio can be

109



MMSys’22, June 14-17, 2022, Athlone, Ireland C. Park et al.

played by the built-in stereo speaker on the phone or an external

immersive multi-channel sound system (e.g., surround sound). Even

in a single session, the display/audio device can change over time.

As we shall see, the choice of the peripheral used for consuming

the video or audio has important implications for both QoE and

resource usage, and hence needs to be considered in the end-to-end

streaming decisions.

In this paper, we explore using C2 to guide existing ABR rate

adaptation schemes towards better QoE and resource tradeoffs. In

particular, our emphasis is on appropriately tailoring the video and

audio track selections to better match the contextual needs of the

specific audio and display devices used for the playback. This is

important for the following two main reasons. (i) Not tailoring

the track selection to the current C2 can waste significant net-

work bandwidth, without improving QoE. For instance, 5.1-channel

surround sound and 2-channel stereo audio tracks deliver very dif-

ferent experiences when being played over a 5.1-channel capable

sound system. However, with a built-in stereo speaker, while a

player can still stream in and decode a 5.1 channel track, it will

need to downmix [21] the 5.1 channel track to a 2-channel track

to match the capability of the stereo speaker. The resulting per-

ceptual audio quality would be comparable to or even worse than

that of a 2-channel track, while the higher bandwidth usage of the

5.1 channel track can leave less bandwidth available for streaming

the video part of the content, leading to lower video quality (see

§2.1). (ii) User expectations may also be conditioned depending

on the consumption device capabilities and context. For instance,

when playing audio with a surround sound system, the user will

clearly prefer the richer 5.1-channel experience over the 2-channel

experience. However, when consuming the same content over a

phone with a stereo speaker, the 2-channel experience may be per-

fectly acceptable. Summarizing the above, different resources may

be needed to deliver good-quality experience in different C2.

To understand whether an audio/video track is suitable for partic-

ular C2, we need to be able to measure the corresponding delivered

QoE. This is relatively straightforward to realize for video, given

the availability of recent state-of-the-art metrics such as Video

Multimethod Assessment Fusion (VMAF) [45], which allow for

evaluating perceptual video quality under different screen sizes

and viewing modes (e.g., phone, TV and 4K screens). For audio,

however, somewhat to our surprise, the same task is much more

challenging. While various objective audio quality models exist (see

§7), they suffer from key limitations (e.g., can only measure audio

quality for mono and stereo cases). In addition, while there is some

recent work [25, 52] that uses video quality metrics to guide video

track selection, we are not aware of any work that uses perceptual

audio quality metrics for driving audio track selection.

In this paper, we address the above limitations and make the

following main contributions:

•We identify C2 as an important factor for achieving good tradeoffs

between QoE and resource usage in ABR streaming. Using existing

quality models for video and the methodology that we developed

for audio quality evaluation, we quantify and highlight the benefits

of being C2-cognizant in ABR streaming (§2).

•We examine the current practice of using C2 in four popular ABR

players spanning multiple platforms: ExoPlayer [30], dash.js [26],

Shaka Player [31], and AVPlayer [19], and identify various limita-

tions (§3). Our evaluation shows that, although the different players

use elements of C2 to certain extents, they only provide limited

treatment, lacking a holistic view of C2. We show that these limita-

tions can lead to substantial resource usage and/or degradation in

QoE.

•We develop practical best-practice guidelines for achieving C2-

cognizant ABR streaming (§4). These guidelines leverage informa-

tion provided through standard APIs by the OS and the streaming

server, and can be easily incorporated in ABR players. They enable

appropriate tradeoffs between QoE and resources to be achieved

automatically, without involving users in the complex decision

process. We propose that these best-practice guidelines be used

as first-class principles in ABR streaming pipeline, while allowing

each player to tailor its own instantiations to its specific use cases.

• To evaluate the design guidelines, we develop a proof-of-concept

implementation in ExoPlayer (§5). Through a wide range of exper-

iments under realworld scenarios (§6), we show that it achieves

significantly better tradeoffs between QoE and resource usage than

the standard ExoPlayer. For example, under low network bandwidth

settings, it improves video quality by reducing low-quality video

segments (e.g., by 17%), while leading to similar audio quality and

slightly lower data usage compared to the non-C2 case. When the

available network bandwidth is high, it leads to significantly lower

resource usage on the end-to-end path (e.g., using only 13% of the

bandwidth used by the standard ExoPlayer), while still realizing

good QoE for the specific C2. We further demonstrate that our pro-

totype can recognize and react to dynamic C2 changes, and adjust

audio/video track selection accordingly.

• We highlight the ABR protocol as another important component

of C2 that needs to be considered carefully (§2 and §3.5). Specifically,

DASH [37] and HLS [20], the two predominant ABR protocols, have

subtle differences in their specifications, which have significant im-

plications that need to be explicitly accounted for by any streaming

platform that serves both protocols.

Note that while our prototype implementation and evaluations

focus on the use cases of displaying the video on the phone screen

vs an external display, and playing the audio over the phone’s built-

in stereo speaker vs an external surround sound system1, our C2

best practices can be applied directly to other C2 cases such as

displaying video using a projector and playing the audio using

headphones.

2 THE NEED FOR C2-COGNIZANCE

In this section, we highlight the importance of being C2-cognizant

in ABR streaming, specifically, the importance of taking audio/video

device capabilities and the ABR protocol used between the server

and client into account during track selection.

2.1 Audio Device and Audio Quality
A common practice in ABR streaming is that the server provides

multiple audio tracks with varying number of channels and en-

coding bitrate. Two examples are shown in the top half of Table 1

1When a phone is attached to a peripheral device (display/speaker), we focus on the
case where the phone streams the content from the server to the peripheral device,
popularly referred to as mirroring. In this case, the phone plays a central role in selecting
the audio/video tracks from the server.

110



C2: Consumption Context Cognizant ABR Streaming for Improved QoE and Resource Usage Tradeoffs MMSys’22, June 14-17, 2022, Athlone, Ireland

Table 1: Video and audio tracks of ED and ToS.

Track Attributes Avg., peak, DASH declared bitrate (Kbps)

ED ToS

A1 2, 48 kHz 66, 67, 65 66, 67, 67

A2 2, 48 kHz 131, 171, 128 130, 133, 133

A3 6, 48 kHz 197, 198, 198 197, 198, 198

A4 6, 48 kHz 392, 413, 383 392, 394, 388

V1 144p 102, 138, 117 89, 106, 91

V2 240p 225, 292, 259 198, 226, 202

V3 360p 390, 642, 560 342, 473, 429

V4 480p 844, 1365, 1186 763, 1003, 900

V5 720p 1622, 2716, 2325 1422, 2000, 1778

V6 1080p 2857, 4670, 3838 2314, 3249, 2931

(a) ViSQOL, ED (b) PEAQ, ED

(c) ViSQOL, ToS (d) PEAQ, ToS

Figure 1: Quality of four audio tracks of ED and ToS.

for two demuxed media, ED (Elephant Dream) and ToS (Tears of

Steel) [65]. For each media, the server provides four audio tracks,

A1-A4, all with sampling rate of 48 KHz, encoded using AAC-LC [1].

Among them, A1 and A2 have two audio channels; A3 and A4 have

6 channels, i.e., corresponding to 5.1 channel surround sound [7].

Do the two higher bitrate audio tracks, A3 and A4, lead to better

quality than the two lower bitrate tracks, A1 and A2? As we show

below, the answer is not straightforward—it depends on the number

of channels that can be played out by the speaker. Specifically, we

show two scenarios below: (i) playback over a stereo (i.e., 2-channel)

speaker, and (ii) playback over a surround sound system.

Scenario 1 (playback over a stereo speaker). In this scenario,

since the speaker only has two channels, while A3 and A4 have 6

channels, either track has to be downmixed into 2 channels before it

can be played back [21]. We follow the ATSC (Advanced Television

Systems Committee) standard [21] for the downmixing, and refer to

the downmixed tracks as A3’ and A4’. Therefore, the four options of

audio tracks that can actually be played back by the stereo speaker

are A1, A2, A3’ and A4’. To compare the quality of these four

options, we explore three objective models for perceptual audio

assessment: ITU-T Rec. P.1203.2 [41], ViSQOL [23, 33, 59], and

Perceptual Evaluation of Audio Quality (PEAQ) [38]. While P.1203.2

is a recent standardized model (released in 2017, as part of ITU-T

P.1203 series), its audio quality module algorithm is the same as an

older standard, ITU-T P.1201.2 [39]. It adopts a no-reference model,

i.e., it does not use a reference audio stream when assessing the

quality of a test stream. In contrast, both ViSQOL and PEAQ adopt

full-reference models. ViSQOL v3 [23] was released in 2020 and

improves upon its earlier versions [33, 59] in both design and usage.

PEAQ is an ITU-T standard that predates P.1203.2 and ViSQOL. In

the following, we only present the quality scores from ViSQOL and

PEAQ since their results are sensitive to the audio content, while

P.1203.2 does not consider content at all.

To use ViSQOL and PEAQ, we need a high-quality stereo audio

track as the reference, referred to as A0. We obtain A0 from the

content source website [65] as follows. The website provides six

raw audio tracks, corresponding to front left and right, center, rear

left and right, and low-frequency effect channels. To create A0,

we first join the six raw audio tracks into a single file and then

downmix it to A0 following the downmix standard [21]. We divide

each such encoded audio track into multiple segments, each 5.33

seconds long to be compatible with video segmentation, and obtain

a time series of scores for each tested audio using A0 as reference.

Fig. 1a plots the ViSQOL-based Mean Opinion Score (MOS) for

ED, which is on a 1 (bad) to 5 (excellent) scale. For the ViSQOL

software we use, the maximum score observed is around 4.75 [12].

Fig. 1b plots the PEAQ Objective Difference Grade (ODG) scores for

ED obtained using the software from [10], which is on a scale from

-4 (very annoying impairment) to 0 (imperceptible impairment).

Fig. 1c-d show the corresponding results for ToS. We see that with

ViSQOL, A4’ and A2 have similar scores, both higher than those

of A3’ and A1. Using PEAQ, A4’ has the highest score, followed by

A2, A3’, and A1. For a given audio track, the PEAQ MOS mappings

tend to be lower than the ViSQOL scores, consistent with the ob-

servations in [59]. For instance, for ED, ViSQOL rates A2 and A3’

in the range of good quality (i.e., around 4), while PEAQ rates A2

mostly as -1 (i.e., “impairment not annoying”), and rates most of

the segments in A3’ as -2 (i.e., “impairment slightly annoying”).

The above observations suggest that choosing 6-channel audio

tracks (A3 and A4) for a stereo speaker is problematic: downloading

A4 requires 3× the network bandwidth as A2, while the downmixed

version A4’ has comparable or only slightly better quality than A2;

A3 requires 1.5× the bandwidth as A2, while A3’ has lower quality

than A2. The higher bandwidth requirement of A3 and A4 can

significantly limit the bandwidth left over for streaming video. This

can lead to lower video tracks being streamed and hence lower video

QoE, especially when the overall available network bandwidth is

low. Conversely, restricting the choice of audio tracks to those that

match the speaker capability (i.e., A1-A2) can lead to better video

quality, while not degrading audio quality.

We illustrate the above points using an example in Fig. 2. It is

obtained by running ExoPlayer with DASH for ED on a Pixel 4a

phone using a cellular network bandwidth trace (average bandwidth

1.5Mbps). Both the video and audio are directly played on the phone.

Fig. 2, from left to right, plots the video and audio track selection,

video quality measured using VMAF, and audio quality measured

using ViSQOL and PEAQ. The results are for two cases: one only

111



MMSys’22, June 14-17, 2022, Athlone, Ireland C. Park et al.

0 50 100
Segment index

0

2

4

6

Vi
de

o 
Tr

ac
ks

A1-A4
A1-A2

0 50 100
Segment index

0

2

4

6

Au
di

o 
Tr

ac
ks

A1-A4
A1-A2

0 50 100
Segment index

0

20

40

60

80

100

Vi
de

o 
qu

al
ity

A1-A4
A1-A2

0 50 100
Segment index

1

2

3

4

5

Au
di

o 
qu

al
ity

 (V
iS

Q
O

L)

A1-A4
A1-A2

0 50 100
Segment index

-4

-3

-2

-1

0

Au
di

o 
qu

al
ity

 (P
EA

Q
)

A1-A4
A1-A2

Figure 2: An example illustrating the benefits of tailoring audio track selection to audio device capability (from ExoPlayer).

allows 2-channel audio tracks (i.e., suitable for stereo speakers,

marked as A1-A2) and the other has no restriction (i.e., all 4 audio

tracks are allowed, marked as A1-A4). We see that the A1-A2 case

leads to significantly better video quality than the A1-A4 case: 91%

of the video segments have VMAF values above 60 and no segment

has VMAF below 402, while in the A1-A4 case, only 80% of the

segments have VMAF above 60 and 7% of the segments have VMAF

below 40. The improved video quality in the A1-A2 case does not

come at the cost of lower audio quality; instead, it leads to similar

or even better audio quality than the A1-A4 case. Specifically, Fig. 2

shows that the A1-A4 case selects A3 for most of the early segments,

which has to be downmixed to the 2-channel A3’ for playback on

the stereo speaker, but A3’ has lower scores than A2 that is selected

by the A1-A2 case.

Scenario 2 (playback over a surround sound system). Intu-

itively, since A3 and A4 can take advantage of surround sound, they

can lead to better quality than the two stereo tracks, A1 and A2.

However, we are not aware of any objective audio quality assess-

ment tools that work for audio tracks with more than 2 channels.

Hence we cannot provide any numeric comparisons here. Develop-

ing good quality evaluation tools for multi-channel audio such as

surround sound is a promising research area.

2.2 Display Device and Video Quality
It is important to match the video track selection to the require-

ment of the display context being used for consuming the video.

However, there is a lot of focus currently on maximizing user expe-

rience, which in industry translates to delivering very high quality

content in many services, even for small-screens such as phones.

As an example, a new version of the YouTube player allows users

to stream 4K videos on Android devices (even on small-screen

phones) [14–16]. In a test, we were able to stream a 4K track over

a LTE network to a Samsung phone whose screen resolution is

only 1440p. The resulting data usage is very substantial (several

tens of Mbps), while the associated benefit accruals in terms of

better QoE is unclear for small screen context, due to human per-

ception limitations. For example, studies have shown very little

gain for delivering quality beyond 720p on small screens [52]. In

addition, streaming and playing the high-bandwidth 4K resolution

can lead to high phone energy consumption [67] and undesirable

stalls. As we shall see in §3, ExoPlayer and Shaka player exhibit

similar problematic behaviors as above.

Certain commercial streaming services provide options that ac-

count for partial C2 for video. As examples, the YouTube phone

app provides an option called “Play HD on Wi-Fi only,” which lim-

its the video resolution when streaming over cellular networks;

2VMAF value is in [0,100], the higher the better; below 40 is considered as poor quality,
above 60 is considered as fair or better.

the Amazon Prime Video app provides multiple options (“Good”,

“Better”, “Best”) to tradeoff the video quality and data usage. In ad-

dition, some commercial services use device-specific ABR manifest

files [20, 37], which can limit the highest resolution track allowed

on small screens. These practices, while moving in the right direc-

tion, do not consider the entire C2. They are mainly motivated to

conserve data, and do not consider other important C2 factors such

as display and speaker capabilities. Our best-practice guidelines in

§4 significantly extend the above practices in holistic ways.

2.3 ABR Protocol
DASH and HLS, the two predominant protocols, differ in important

ways in terms of the actual information communicated between

the server and client. As an example, for demuxed video and audio,

DASH only specifies individual audio/video tracks and their bitrates,

and does not specify desired audio and video track combinations.

In contrast, with HLS, a top-level master playlist specifies both the

allowed audio and video track combinations as well as the average

and peak bitrate of each combination, but does not specify the

bitrate of an individual audio or video track. The player logic needs

to carefully account for these differences. As we shall see (§3.5), the

current treatment of this aspect in a popular player is not adequate.

3 CURRENT PLAYER PRACTICE

In this section, we investigate the current practice around C2 in four

popular players and identify their limitations. Our main goal is to

understand (i) how and to what extent C2-related information such

as audio/video device capabilities and network type are obtained or

configured in each player, and (ii) whether/how such information

is used to filter out unsuitable audio/video tracks.

3.1 Players and Methodology
We study the latest version of the four players: ExoPlayer (v2.16.1),

Shaka Player (v2.5.20), dash.js player (v3.1.1), and AVPlayer (run-

ning on iOS 15.0.1). ExoPlayer is an application-level media player

for the Android platform, and has been used by more than 140,000

apps in Google Play Store [29]. Shaka Player is a JavaScript library

and has been used by more than 1,600 websites [58]. dash.js is a
JavaScript based player and the reference player maintained by the

DASH Industry Forum [2]. AVPlayer is based on AVFoundation [18],

a full-feature framework currently recommended by Apple for au-

diovisual media on Apple platforms. ExoPlayer, Shaka Player, and

dash.js are open-source players. For them, we first use source code

analysis to understand their behaviors and then use controlled lab

experiments to verify our understanding. For AVPlayer, since it is

proprietary, we rely primarily on controlled blackbox experiments.

While our study focuses on these four players, our findings

have wide applicability to the services that use these players. In

addition, the best-practice guidelines we present in §4 are applicable

to any ABR streaming service, and are not limited to these players.

112



C2: Consumption Context Cognizant ABR Streaming for Improved QoE and Resource Usage Tradeoffs MMSys’22, June 14-17, 2022, Athlone, Ireland

ExoPlayer and Shaka Player support both DASH and HLS, while

dash.js only supports DASH, and AVPlayer only supports HLS.

For clarity, we first describe the behavior of ExoPlayer, dash.js,
and Shaka Player with DASH (§3.2 to §3.4), followed by ExoPlayer,

Shaka Player and AVPlayer with HLS (§3.5 to §3.6). We use the

built-in ABR logic of each player without any change. For the open-

source players, we further describe the ABR logic briefly to provide

insights on the observed results.

3.2 ExoPlayer with DASH Protocol
Audio device and audio track filtering. ExoPlayer specifies that

the maximum number of channels that can be played by an audio

device as a fixed value 8, independent of the actual device capa-

bility. Due to the above device-capability agnostic behavior, even

for a stereo speaker, all audio tracks that have up to 8 channels

will be determined as playable. After that, ExoPlayer has a filtering

mechanism based on the primary audio track. Specifically, Exo-

Player determines the primary audio track to be the one with the

highest number of channels, the highest sampling rate, and the

highest bitrate. After the primary audio track is determined, only

the audio tracks that have the same number of channels and the

same sampling rate as the primary audio track are retained for the

subsequent ABR logic. As an example, for the media in Table 1, A4

is chosen as the primary audio track. Then only A3-A4 are retained;

A1 and A2 are excluded since they both have only 2 channels. The

above practice does not consider the speaker capability at all, which

can have significant adverse impact on QoE (see later).

Display device and video track filtering. ExoPlayer associates a

variable, maxVideoSizeInViewPort, with each video track, whose

value is a function of the resolution and width-to-height ratio of the

display, as well as those of the video track. For example, consider a

Pixel 4a phone with display resolution 2340×1080, and three video

tracks of 360p (640×360), 1080p (1920×1080), and 2160p (3840×2160).

The width-to-height ratio of the display is 29:6, while the width-to-

height ratio of all the three tracks is 16:9, lower than that of the dis-

play. Then for each of three tracks, its maxVideoSizeInViewPort
will be set to 1920×1080 for it to fit the display resolution (see de-

tails in ExoPlayer code [5]). After that, the video track filtering

works as follows. The player checks whether both the height and

width of a video track are larger than the corresponding values in

maxVideoSizeInViewPort times a fraction (default as 0.98), that

is, whether this video has to be downsampled [9] to fit the display

resolution. If none of the video tracks satisfies the above condition,

then no video track will be filtered. Otherwise, for the video tracks

that satisfy the above condition, their respective numbers of pixels

are noted, and let 𝑛 be the minimum of these values. After that, any

video track with the number of pixels exceeding 𝑛 will be filtered

out. In the example above for the Pixel 4a phone and 3 video tracks,

both the 1080p and 2160p tracks satisfy the condition, and hence

their number of pixels will be noted, leading to 𝑛 = 1920 × 1080.

Hence the 2160p (4K) track, which has more than 𝑛 pixels, will be

filtered out.While the above practice considers display capabilities to

some extents, it is not sufficient as we shall show later on.

ExoPlayer registers a listener to receive events regarding dis-

play addition, removal, and changes. However, currently, while it is

aware of any change in the display being used, it updates some dis-

play related parameters (which is desirable) only when the change

V1+A3 V2+A3 V3+A3 V3+A4 V4+A4 V6+A4

V1+A1 V2+A1 V3+A1 V3+A2 V5+A2 V6+A2

V1+A3 V2+A3 V3+A3 V4+A3 V5+A3 V6+A3

V4+A2

V1+A1 V2+A1 V3+A1 V4+A1 V5+A1 V6+A1

V5+A4

Figure 3: Check point algorithm in ExoPlayer: (a) is for DASH

and shows two cases, with 4 and 2 audio tracks in themanifest

file, respectively; (b) shows the two cases for HLS.

is from an external display to the built-in phone screen. It does not

take any such action in other display change situations (e.g., display

changes from the built-in phone screen to an external display). The

latter behavior is undesirable from a C2-cognizance perspective, as

discussed later.

Network type. At the start of playback, ExoPlayer obtains the

current network type and uses it to set the initial available network

bandwidth estimate. When the network type is changed later, Exo-

Player detects the change (by registering a listener), updates the

network type and resets the bandwidth information. Depending on

the network type (e.g., WiFi, LTE), ExoPlayer sets the initial band-

width estimate based on the country using a fixed lookup table [5],

and not based on the actual measurement of the network conditions.

ABR logic. ExoPlayer has a specific logic for selecting the com-

binations of audio and video tracks. This logic calculates an ap-

proximate quality for each of audio/video track, based on the per-

track declared bitrate in the manifest file, and then determines a

subset of combinations, called check points, that combines higher

bitrate/quality audio tracks with higher bitrate/quality video tracks.

During rate adaptation, the player estimates the available network

bandwidth, conservatively assumes that the available network band-

width is 70% of the measured value . Let𝑏𝑖 be the bitrate correspond-
ing to the 𝑖-th checkpoint (i.e., the sum of the bitrates of the video

and audio tracks). If the estimated network bandwidth is between

𝑏𝑖−1 and 𝑏𝑖 , then the combination to the left of the 𝑖-th checkpoint

can be selected (ExoPlayer also considers other factors, e.g., buffer

level, in track selection).

Fig. 3a shows two examples for ED in Table 1: (i) when the

manifest file has 4 audio tracks, A1-A4, and (ii) when it has 2 audio

tracks, A1-A2. In (i), each check point, marked as circle on the line,

includes one audio track out of A3-A4 (recall that only A3-A4 are

retained after the audio filtering mechanism) and one video track

out of V1-V6. In (ii), each check point includes one audio track out

of A1-A2 and one video track out of V1-V6. These two cases have

significantly different check points. As a result, their performance

can differ significantly even under the same network conditions

and the same ABR logic; see one example in Fig. 2.

Impact of not using C2 adequately. ExoPlayer’s current treat-

ment of C2 has various limitations in terms of optimizing QoE and

resource usage, including:

• The audio track filteringmechanism does not consider the speaker

capabilities at all and can exclude audio tracks with lower num-

bers of channels/bitrates. The example in Fig. 2 shows that such a

113



MMSys’22, June 14-17, 2022, Athlone, Ireland C. Park et al.

0 50 100
Segment index

0

2

4

6

Vi
de

o 
Tr

ac
ks

A1-A4
A1-A2

0 50 100
Segment index

0

2

4

6

Au
di

o 
Tr

ac
ks

A1-A4
A1-A2

0 50 100
Segment index

0

20

40

60

80

100

Vi
de

o 
Q

ua
lit

y

A1-A4
A1-A2

0 50 100
Segment index

1

2

3

4

5

Au
di

o 
qu

al
ity

 (V
iS

Q
O

L)

A1-A4
A1-A2

0 50 100
Segment index

-4

-3

-2

-1

0

1

Au
di

o 
qu

al
ity

 (P
EA

Q
)

A1-A4
A1-A2

Figure 4: An example showing the detrimental impact of not considering speaker capabilities in dash.js. In addition to worse

video quality, it also leads to significantly more rebuffering (5.5 seconds vs no rebuffering, not shown in the figure).

practice is problematic: it can lead to lower video quality, with no

improvement in audio quality.

•While the video track filtering mechanism considers display capa-

bilities, it can still allow video tracks with overly high resolutions to

be selected. One example is as follows. Consider a Samsung Galaxy

S21 Ultra 5G with resolution 3200×1440, and 7 video tracks with

resolutions 144p, 240p, 360p, 480p, 720p, 1080p, and 2160p. We find

that ExoPlayer sets maxVideoSizeInViewPort for each video track
as 2560×1440. Consequently, only the number of pixels of the last

track is noted and𝑛 is set to 3840×2160, and hence none of the video

tracks will be filtered out, and the highest 2160p (4K) track may

be selected under certain network conditions. However, streaming

and playing 4K track on small-screen phones is problematic in both

QoE and resource usage, as we have pointed out in §2.2.

• The video track filtering only considers the built-in screen’s capa-

bilities and does not handle the case where the screen resolution is

increased to a larger value. For example, when connecting a Pixel

4a phone to an external 4K display, the 4K track should be allowed

to be selected. However, as described earlier, it will not be selected

since it has already been filtered out.

• The handling of dynamic display change is inadequate in that it

cannot deal with the scenarios of changing the display during a

streaming session, e.g., connecting a Pixel 4a phone to a 4K display

in the middle of the playback.

• The network type is only used to estimate the network condition,

and not considered in audio/video track filtering. In cellular net-

works, it might be reasonable to further limit the video/audio track

selection to save data and energy consumption [67].

3.3 dash.js Player with DASH Protocol
Audio and video track filtering. dash.js does not consider the

audio device capabilities for filtering out audio tracks. It does not

take account of the audio device capabilities in the ABR track se-

lection either. For video, dash.js sets the display window using

HTML, and provides a mechanism to limit the top video track

based on the window size. This mechanism is, however, disabled

by default. As a result no audio or video track will be filtered. The

above simplifying treatment might be because dash.js is meant

to be a prototype, instead of a full-fledged product. On the other

hand, since dash.js is a reference player, identifying what can be

improved is important for informing both research and practice.

Network type.We observe that dash.js neither identifies nor uses
network type information. It provides four modes for the initial

track selection (e.g., select the highest bitrate track, or the first

track); but none are based on the network connection type.

ABR logic. The default ABR logic in dash.js is DYNAMIC [60].

dash.js uses the above ABR logic for audio and video separately,

using the bandwidth estimation for audio (video) that is based on

past audio (video) downloading only. This practice is very different

from that in ExoPlayer, which considers audio and video together.

Impact of not using C2 adequately. Since dash.js does not

filter out any audio/video tracks based on C2, it has various draw-

backs, including potentially using audio/video tracks that exceed

the speaker/display capabilities, leading to low QoE and high data

usage. We next show an example by running dash.js for ED under

a cellular network trace (average bandwidth 1.5 Mbps) on a Pixel 4a

phone. In the following, the A1-A4 case is for the current dash.js
player, which allows all four audio tracks A1-A4 to be selected,

while the A1-A2 case emulates the scenarios where only A1-A2 are

allowed based on speaker capabilities. We observe that the A1-A4

case has 5.5 seconds of stalls, while the A1-A2 case has no stall at

all. Fig. 4 further shows the video and audio track selection and

their respective qualities. We see that these two cases have similar

audio quality, while the A1-A4 case has significantly lower video

quality: 69% of the video segments have VMAF above 60 and 14%

of the segments have VMAF below 40, while the corresponding

values for A1-A2 case are 79% and 8%, respectively.

3.4 Shaka Player with DASH Protocol
Audio and video track filtering. Given multiple audio tracks,

Shaka has an explicit logic to prefer those with 2 channels. Specifi-

cally, the audio tracks are placed into groups based on the number

of channels. If there are tracks with 2 channels, these tracks are

retained and the rest of the tracks are removed from subsequent

ABR track selection. If none of the audio tracks has 2 channels, then

the group of audio tracks with the lowest number of channels is

retained and the rest of the audio tracks are removed. For the two

media in Table 1, only A1 and A2 are retained, independent of the

audio device that is being used. For video, Shaka has a mechanism

that filters video tracks based on the minimum/maximum allowed

video width, height, number of pixels, frame rate, or bitrate. In the

default setting, however, the minimum value is 0 and the maximum

value is infinity for all these attributes, and hence no video track

will be filtered.

Network type. Shaka provides an option to determine whether net-

work information is used to get initial network bandwidth estimate.

This option is set to true by default, and Shaka uses the downlink

attribute returned by Chrome API navigator.connection to set
the initial network bandwidth estimate. Shaka also uses Chrome

API to receive changes in network types in a streaming session.

ABR logic. Shaka uses a simple rate-based adaptation scheme

that selects the video and audio combination whose bandwidth

requirement is closest to the current estimated network bandwidth.

For DASH, since no combinations of audio and video tracks are

specified in themanifest file, Shaka creates all possible combinations

114



C2: Consumption Context Cognizant ABR Streaming for Improved QoE and Resource Usage Tradeoffs MMSys’22, June 14-17, 2022, Athlone, Ireland

of the video and audio tracks listed in themanifest file, and considers

all these combinations in the ABR track selection.

Impact of not using C2 adequately. Shaka’s conservative prefer-

ence for low-channel audio tracks, independent of the audio device

capabilities, is problematic: even if the audio is played over a sur-

round sound system, multi-channel audio tracks with 6 or more

channels will not be selected, which can lead to lower user expe-

rience than possible with such speaker systems. In contrast, for

video, since no video tracks are filtered out, Shaka can lead to in-

appropriate video track selection. Specifically, we tested a setting

where the playback uses the built-in screen of a Pixel 4a phone, the

connection is over a cellular network, and the manifest file contains

a high-resolution high birate 4K track. We see that the 4K track

can be selected, which, as we pointed out in §2.2, is problematic in

terms of both QoE and resource usage.

3.5 ExoPlayer and Shaka with HLS Protocol
ExoPlayer with HLS.We highlight several differences between

how HLS and DASH are handled by ExoPlayer.

• Audio and video media attributes. Since the bitrate of an

individual audio/video track is not specified in the top-level HLS

manifest file (see §2.3), ExoPlayer sets the bitrate of each audio

track as -1 (i.e., undefined). It sets the bitrate of a video track to be

the value specified in the first combination that contains this track.

• Audio track filtering. ExoPlayer uses the same logic to filter

audio tracks for HLS as it uses for DASH (see §3.2). However, since

all the audio tracks have the same bitrate for HLS (i.e., -1), only the

first two rules (i.e., related to the number of channels and sampling

rate) will be effective in determining the primary audio track. For

example, for the two media in Table 1, when the HLS manifest file

has 4 audio tracks, in the order of A1, A2, A3, and A4, ExoPlayer will

determine A3 (instead of A4 in DASH) as the primary audio track.

This is because A3 has the highest number of channels, sampling

rate and bitrate, same as A4, and is listed earlier in the manifest file

(in reality, A3 has a lower encoding bitrate than A4, but ExoPlayer

regards the bitrate of both as the same -1).

• ABR logic. Again, ExoPlayer uses the same logic for DASH

and HLS. This means that ExoPlayer still predetermines a set of

audio and video combinations (see §3.2), and ignores the set of

combinations that is actually specified in the HLS manifest file.

In addition, since audio tracks have unspecified bitrate in HLS,

ExoPlayer will retain a single audio track, i.e., the primary audio

track, leading to a fixed single audio track selection. For ED (see

Table 1), since A3 is determined to be the primary audio track and

is the only audio track retained for ABR logic, the predetermined

set of combinations for HLS only contains A3 alone. This is shown

in the top part of Fig. 3b, which differs significantly from that for

DASH (the top part of Fig. 3a), although they are for exactly the

same set of video and audio tracks, and only differ in the ABR

protocol that is being used.

For comparison, the lower part of Fig. 3b shows the predeter-

mined set of combinations when only A1-A2 are listed in the mani-

fest file, in the order of A1, A2. In this case, ExoPlayer determines

A1 to be the primary audio track and only uses A1 in the predeter-

mined set of combinations. Again, the set of combinations differs

significantly from that for DASH (the lower part of Fig. 3a), despite

0 50 100
Segment index

0

2

4

6

au
di

o 
tra

ck
s

DASH, 720p cap, A1-A2
HLS, 720p cap, A1-A2

(a) Audio track selection.

0 50 100
Segment index

0

20

40

60

80

100

vi
de

o 
qu

al
ity

(b) Video quality.

Figure 5: Results of ExoPlayer with HLS and DASH under

one cellular network trace (with proper C2-based filtering).

being for the same set of video and audio tracks. It also differs from

the A1-A4 HLS case described earlier (the top part of Fig. 3b): these

two cases have exactly the same set of check points, however, for a

given check point, A1 versus A3 is combined with a video track.

• Impact on QoE. As described above, in addition to not handling

C2 adequately, ExoPlayer with HLS also has the issue that it will

choose a fixed audio track. Therefore, even if there were proper C2-

based filtering in place, the performance of ExoPlayer with HLS can

still be undesirable. In fact, the QoE can be significantly lower than

that with DASH, even under exactly the same network bandwidth

profile and for the same set of audio/video tracks. Fig. 5 shows

an example obtained when the playback is on a Pixel 4a phone

under a cellular network trace (average bandwidth 1.0 Mbps). We

assume proper C2-based filtering. Specifically, the video track is

capped to 720p considering the small phone screen, and the audio

tracks are A1-A2 considering the built-in stereo speaker. The audio

tracks are listed in the manifest in the order A2, A1, and hence A2 is

determined to be the primary audio track. Fig. 5a shows that a fixed

audio track (i.e., A2) is selected for HLS, in contrast to the adaptive

choice for DASH. As a result, the HLS case has significantly worse

video quality than the DASH case as shown in Fig. 5b: it has 28%

low-quality segments (VMAF below 40), versus 1% in the DASH

case.

The above observations highlight the importance of understand-

ing the subtle differences between DASH and HLS, and their im-

plications for ABR streaming. A streaming service that supports

both DASH and HLS protocols may need customized treatment

for these two protocols. A service that builds on top of ExoPlayer

may choose to support a single protocol for lower cost, and may

very well choose to support HLS instead of DASH, since HLS is

supported by both Android and iOS platforms, while DASH is only

supported by Android. In such cases, it is even more important to

address the limitations in how ExoPlayer handles HLS protocol.

Shaka Player with HLS. Unlike ExoPlayer, Shaka considers the

set of audio and video track combinations specified in the HLS

manifest file. As with DASH, it prefers audio tracks with 2 channels,

independent of the audio device capabilities. Again, such choices

can lead to audio quality that is below the current device capabilities,

and undesirable user experience.

3.6 AVPlayer on iPhone with HLS Protocol
Since AVPlayer is a proprietary player, we use controlled blackbox

experiments to explore its behaviors. All the experiments below are

carried out in a high-bandwidth WiFi network, using the default

setting in AVPlayer. We use an iPhone 11 pro (iOS 15.0.1) that has

a built-in stereo speaker and resolution 2436×1125. The peripheral

115



MMSys’22, June 14-17, 2022, Athlone, Ireland C. Park et al.

devices include two different smart TVs, and a 5.1 channel surround

sound system.

Audio track filtering.We investigate which audio track AVPlayer

prefers when given three audio tracks that have 1, 2 and 6 chan-

nels, respectively. All the three tracks are encoded in Dolby Digital

Plus [3], recommend surround sound codec by Dolby [6]. In the

standalone mode, i.e., the phone is not connected to any external

device, AVPlayer selects the 6-channel audio track, which needs to

be downmixed for the stereo speaker on the phone and is problem-

atic (for reasons described in §2.1). When connecting the phone to

a smart TV via HDMI, we experiment with two recent but different

Samsung TVs. Both TVs have 2 speakers, and hence for each TV,

we further explore two scenarios: connecting or not connecting a

5.1 channel surround sound system to the TV. We find that for one

TV, the 6-channel audio track is selected in both modes, while for

the other TV, the 2-channel audio track is selected in both modes.

Both these behaviors are undesirable. The preferred C2-cognizant

behavior would be to select a 2-channel audio when the audio play-

back is over the TV’s built-in speakers, and select a 6-channel track

when the playback is over the attached surround sound system.

Video track filtering.We explore AVPlayer’s video track selection

using a manifest file with 7 tracks, the two highest tracks being

1080p and 4K. In both the standalone andHDMI cases, themaximum

selected track is 1080p, even though 4K track is a more appropriate

choice for the latter based on C2. We find that AVPlayer has a

configurable parameter preferredMaxResolution whose default
setting appears to be limiting this highest track selection to 1080p,

agnostic of the specific C2. Our testing shows that if this parameter

is configured appropriately, the player can indeed select a higher

resolution (e.g., 4K) track. Therefore, a C2 cognizant ABR streaming

of video involving AVplayer would need to determine the C2 over

time and dynamically adapt this parameter setting appropriately.

3.7 Summary of Main Findings
We see that all the four players have limitations in using C2, var-

iously caused by behaviors such as having device-capability ag-

nostic rules, not making appropriate device-capability cognizant

selections, handling ABR protocol differences inadequately, etc. For

example, ExoPlayer always specifies that a maximum number of 8

channels can be played; Shaka always prefers stereo audio tracks;

AVPlayer in some cases prefers 2-channel content even when the

peripheral is able to play multi-channel surround sound content;

dash.js allows all audio and video tracks to be played irrespec-

tive of C2. As we showed earlier, such limitations can significantly

impact the resulting QoE and resource usage.

4 BEST-PRACTICE GUIDELINES

The limitations of the existing practice in using C2 cannot be simply

resolved by changing some default parameters alone. Rather, it

requires the right flow of C2 information, and C2-cognizant policies

and actions based on that information. In this section, we present

our best-practice guidelines in incorporating C2 in ABR streaming.

We start with a high-level design, and then describe the details.

4.1 High-level Design
Tailoring the audio/video track selection to C2 requires meshing

various information from the server and client, including specifying

(at the server) properly the media attributes, parsing the media

attributes properly at the client, and obtaining the current C2 of the

client. Such C2 information needs to be obtained during the entire

streaming session since the display/speaker setting and the type of

network connection may change over time. We next outline several

design choices and then present our design.

Server-based or client-based. In a server-based design, the client

sends its C2 information to the server, which in turn selects a subset

of the audio/video tracks, creates a C2-specific manifest file with

this subset of tracks, and sends it to the client so as to restrict

the track selection to those suitable to the C2. This approach is a

significant step forward over the use of device-specificmanifest files

in some services, which, although does customize the manifest files

separately for small-screen and large-screen devices (e.g., allowing

high bitrate tracks only for large-screen devices), still does not

address the scenario where a small-screen device might in reality

be used with a different C2, e.g., when it displays the video on an

external large-screen peripheral.

Importantly, C2 can change during the playback session, and

therefore needs to be tracked and accounted for automatically in

a dynamic manner during playback. A challenge for the above

server-based approach is that, if the C2 at the client changes in

the middle of a streaming session, the changed information needs

to be sent to the server so that the server can send an updated

manifest file to the client. The above involves communication of C2

information to the server, appropriate updates to the ABR manifest

file and communication of the same to the client in the middle of

the session. This communication can be realized in a variety of

ways in the context of today’s ABR workflows, e.g., using an HTTP-

based query-response interface between the client and server. A

longer term solution would involve building such communication

capability into the ABR protocol itself.

Compared to the server-based design, a client-based approach

is easier to deploy: the client is cognizant of its current C2, and

can filter out audio/video tracks accordingly. As a result, a subset

of audio/video tracks is fed to the ABR logic, restricting it from

selecting tracks that are not suitable for the current C2.

Inside or outside the player. Another design issue is whether C2-

based filtering is best accounted for inside the player or outside the

player (e.g., as additional customization policies and/or settings that

are then appropriately selected by the users). We argue for the for-

mer design because: (i) making users account for C2 appropriately

is not practical since it requires them to have detailed knowledge

about the different dimensions of the C2 to be able to select the

appropriate options in a meaningful way. When incorporating C2

inside the player, it becomes easier for a streaming service to create

customized C2-cognizant experiences for end users based on its

specific business needs. (ii) C2 needs to be accounted for automati-

cally in a dynamicmanner during the playback, and hence is ideally

incorporated at the player level, based on dynamic C2 collected in

real time by the player, requiring no manual input from the users.

Proposed design. Summarizing the above, we develop a client-

based design that resides inside the player software, as shown in

Fig. 6. Two new components are added in the player, highlighted in

green: one is C2 collector, which collects C2 information from the

lower layers (the underlying OS and other sources) and the server,

116



C2: Consumption Context Cognizant ABR Streaming for Improved QoE and Resource Usage Tradeoffs MMSys’22, June 14-17, 2022, Athlone, Ireland

Server

V3

V2
V1

Video tracks

A3

A2
A1

Audio tracks

Player

speaker

ABR Logic

Client

Manifest

Video/audio
segment requests

Video/audio segments

DASH/HLS protocol

C2-based
filtering

OS

C2
collector

display peripheralnetwork

Customization policies

Audio/video device 
capabilities,
network connection

Figure 6: High-level design of client-based C2-cognizant ABR

streaming.

and the other is C2-based filtering, which filters out audio/video

tracks based on the current C2. Both components run continuously

during the playback. The C2 collector feeds the C2 information to

the C2-based filtering module, which interacts with the ABR logic.

Existing customization polices such as “Play HD onWi-Fi only” can

be provided as done today as UI-based user configurable options

outside the core ABR player system. The C2-based filtering module

considers this policy information together with the C2 information

received from the C2 collector for making track filtering decisions.

Our design essentially extends the OS by adding a layer of auto-

matic and realtime C2 information collection and filtering inside

the player. This added layer is outside the ABR logic and can be

easily incorporated in existing players, without any changes to the

ABR logic. By filtering out audio/video tracks inappropriate for

the current C2, and feeding only the C2-appropriate tracks to the

player ABR logic, this added layer makes it easier for the ABR logic

to then select the appropriate tracks to achieve a better tradeoff be-

tween QoE and resource usage. This approach also makes it easier

and more practical to realize the benefits of C2-appropriate choices

for ordinary users, who do not have deep technical understanding

of the various resource and performance tradeoffs. In summary,

using our approach, the player uses the choices appropriate for the

current C2, not requiring users to know the exact C2 all the time,

while still allowing users to provide their input to customize the

C2-based filtering.

In our approach, the client is cognizant of its current C2, and

therefore can take all the required actions (e.g., C2-based filtering

and track selection). Certainly, the server, which has more knowl-

edge of the content, can assist the client in its C2 decisions through

some additional hints. For example, for a high motion sports con-

tent, it might indicate a subset of tracks suitable for a certain C2,

e.g., a small screen versus a large TV. These hints can be included

in the manifest file or shared out-of-band. But even with the in-

formation in today’s manifest file, it is possible for the client to be

C2-cognizant, as we shall show in §5.

4.2 Leveraging C2 Information
Under the above design, we provide the following best-practice

suggestions for the player to obtain and use C2 information:

• When a player starts, it is desirable to obtain the C2 details such

as (i) the specific setup of the audio/video device, e.g., playing

directly using the built-in speaker or native display of the phone or

external peripherals, (ii) the capabilities of the audio/video device

Table 2: APIs for obtaining C2 information.

Android Chrome

Audio device AudioManager navigator.mediaDevices

Display device DisplayManager devicePixelRatio

WindowManager HTMLElement

Network type ConnectivityManager navigator.connection

used for playback, e.g., stereo speaker, or 5.1 channel surround

sound system, screen size and resolution of the display, and (iii) the

network connection, i.e., cellular or WiFi. Such information can be

obtained through the APIs provided by the underlying system and

other auxiliary information if needed; see more discussion later.

• During playback, it is necessary to dynamically determine the

current C2, and update the C2-based filtering accordingly. This can

be achieved by registering an intent to receive information about

C2 changes from the underlying system as they occur.

• The C2-based filtering module should use C2 holistically. The

decision on what to be filtered should not be limited only by the

available network bandwidth and what can be decoded and played,

but also should take account of the capabilities of the output devices

and the type of network connection. Both audio and video track

selection needs to be moderated by taking C2 into account based

on what really brings value to the users in the specific C2. For

example, for a 1440p display, there is no need to bring in a 4K video

track even if a phone can play it, since the player will need to

downsample the resolution to the lower 1440p screen resolution

before displaying the video. In addition, due to the nature and

limitations of human visual perception, it may not even need to

bring in a 1440p track for a small phone screen (see §2.2). Similarly,

given a 2-channel speaker, there is no utility in streaming in a high-

bitrate 6-channel audio track, since it needs to be downmixed to a

2-channel version in any case (see §2.1). A non-holistic piecemeal

approach that considers only a single C2 dimension, or considers

them separately can lead to undesirable behaviors such as high

resource usage, QoE impairments, etc.

• The client player should explicitly consider and tailor its context-

aware adaptation decisions based on the specific ABR protocol

being used and the information it provides. Which ABR protocol

is used between the server and client is an important component

of C2, since it leads to different ways of representing information

and somewhat different types of information in the manifest file,

which can have significant impact on the context-aware adaptation

and resultant QoE. In particular, the DASH and HLS specifications

have subtle but significant implications that need to be explicitly

accounted for by any client player that serves both protocols. This

is true even in the presence of CMAF packaging [11], which allows

a single packaging to be used for DASH and HLS, obviating the

need for multiple packaged copies of the same underlying content.

In that case, the differences between DASH and HLS specifications

still matter and requires careful treatment.

C2 from the underlying platform.We investigate the availability

of C2 information to the player through standard APIs on two state-

of-the-art platforms: Android as an example popular mobile phone

OS, and Chrome as an example popular browser-based platform.

Table 2 lists the APIs for accessing C2 for audio/video devices and

network type on these two platforms. We test the Android APIs

on two phones, Samsung Galaxy S21 Ultra 5G and Pixel 4a (both

117



MMSys’22, June 14-17, 2022, Athlone, Ireland C. Park et al.

running Android 12), and test the Chrome APIs on a Windows

laptop (Chrome 91.0.4472.124) and the Samsung phone (Chrome

91.0.4472.120). We find that the required C2 information is available

for all the above cases, modulo some device-specific exceptions

for the Pixel 4a phone (see §5). Since C2 information is readily

available to the players, our best-practice guidelines can be easily

incorporated into existing players.

Using C2 holistically. Our best-practice guidelines above stress

the importance of using C2 holistically, taking account of the vari-

ous relevant factors and their relationships. A non-holistic piece-

meal treatment of C2 can in fact lead to undesirable outcomes. As an

illustration, an earlier version of ExoPlayer (v2.11.7) has a different

design from the current version (v2.16.1). Specifically, the earlier

version disables audio rate adaptation by default; the latest version

takes a step in the right direction by enabling audio rate adaptation

by default. However, the exact audio adaption scheme suffers from

some design issues with respect to C2. The earlier version allows all

audio tracks to be considered in ABR track selection (when audio

rate adaptation is enabled), while the current version only allows

the tracks that have properties matching those of the primary au-

dio track, which is problematic (see §3.2). Using our best-practice

guidelines, the above problems in both versions can be avoided, as

we show next.

5 PROOF-OF-CONCEPT IMPLEMENTATION

As a proof-of-concept, we modify ExoPlayer following our frame-

work and best-practice guidelines in §4. The modifications include:

•Audio. For audio, we first remove the logic that filters audio tracks

based on the primary audio track (§3.2). We then add a function

in class DefaultTrackSelector in ExoPlayer to set the maximum

number of channels that can be played as follows. When the player

starts up, we use Android API AudioManager to get information

about the capabilities of the audio device over which the audio will

be played. If the built-in speakers are used, we use AudioManager
to obtain the number of channels supported by the device (i.e., 2

channels) and then set the maximum number of channels to that

value. After that, we use setMaxAudioChannelCount function in

ExoPlayer to only retain the audio tracks whose number of channels

do not exceed that maximum value. If an external audio device is

attached to the phone (again detected using AudioManager), we
similarly obtain the number of channels supported by the external

device (e.g., 8 channels for a surround sound system) and set the

maximum number of channels accordingly.

• Video. For video, we use Android’s DisplayManager API to de-

temrine the capabilities of the display device on which the video

will be shown. (i) If the built-in phone screen is used for display,

we restrict the video tracks to be no more than resolution 𝑘 (e.g.,

480p or 720p) by using setMaxVideoSize function in Exoplayer.

This setting is based on the small phone screen and the diminish-

ing gain of video perception quality [52]. Hence larger resolutions

only bring marginal benefits to users, while, because of their sig-

nificantly higher bitrates, they lead to substantially more energy

and bandwidth consumption for the phone, the network and the

server [67]. (ii) If an external large display is connected to the

phone, we determine the maximum resolution as the resolution of

the external display (obtained from DisplayManager); the video
tracks with resolution up to this maximum value are allowed to be

selected. This design is made because when a user makes the effort

of connecting the phone to an external display, the external display

will most likely be the primary display device. Therefore, we use

its resolution to dictate the selection of the maximum resolution.

• Other choices. The above choices are the defaults that we decide

based on device capabilities. Other choices are possible and our im-

plementation can be easily extended to other defaults. In addition,

the default choices can be overwritten by users, e.g., through the

customization policies in Fig. 6. As an example, a user may specify

that, if the connection is over a cellular network, then the phone

should not choose 4K tracks even if it is connected to an external

4K large display. This can be easily translated into C2-based fil-

tering, by detecting the network connection type using Android’s

ConnectivityManager API and limiting the maximum video track

using setMaxVideoSize.

• Dynamic settings. We use Android’s BroadcastReceiver API

to obtain notification on speaker/display changes and network type

changes. Specifically, we use ACTION_AUDIO_BECOMING_NOISY in-
tent to catch changes in audio output. After that, we obtain the max-

imum number of audio channels supported by the current audio de-

vice and use it to filter audio tracks as described earlier. For display,

we use the ACTION_HDMI_AUDIO_PLUG intent to catch when HDMI

is plugged or unplugged, and then set the maximum allowed video

resolution accordingly as described earlier. To identify changes

in network type, we use ExoPlayer’s NetworkTypeObserver class,

which has a onNetworkTypeChanged listener that is called when

network type is changed.

We tested the above modifications on two recent phones: Sam-

sung Galaxy S21 Ultra 5G and Pixel 4a (both running Android 12).

The testing includes standalone mode and connecting phones to

peripheral devices (see §6). The Samsung phone was able to identify

the current C2 correctly in all the settings and our modifications

achieved the desired behaviors. Pixel 4a has several limitations in

C2 information flow. First, AudioManager did not return the cur-

rent number of channels for the built-in speaker. To address this

issue, we added a mechanism in our implementation that involves

using auxiliary device information: we use Android’s getDevices
function to obtain the device model (e.g., “Pixel 4a”), and then use

a lookup table to determine the number of audio channels for the

built-in speaker for that device model (e.g., 2 for “Pixel 4a”). Such

mappings can be created based on widely available device specifi-

cations. Second, unlike the Samsung phone, external audio/video

devices that are connected to Pixel 4a cannot be directly detected

through AudioManager and DisplayManager, which might be be-

cause Pixel phones do not support video/HDMI output [13, 27, 63].

6 PROOF-OF-CONCEPT RESULTS

In this section, we use our proof-of-concept implementation in a

wide range of realworld scenarios, including playback on the phone

over cellular or home WiFi networks, playback when connected to

peripheral devices over home WiFi networks. In addition, we test

in dynamic settings, e.g., when starting in a standalone mode and

then connecting an external speaker/display to the phone, and vice

versa. In the following, we report the quantitative results in static

settings; in dynamic settings, our prototype correctly identifies the

changes and filters audio/video tracks accordingly. All the results

are obtained using Exoplyer with DASH running on a Samsung

118



C2: Consumption Context Cognizant ABR Streaming for Improved QoE and Resource Usage Tradeoffs MMSys’22, June 14-17, 2022, Athlone, Ireland

Galaxy S21 phone. ExoPlayer with HLS needs further improvement

in the ABR logic (see §3.5), which is beyond the scope of this paper.

6.1 Experiment Setting
Devices. All the experiments are conducted between the Samsung

phone and a server that we set up. The phone has a stereo speaker

and a 6.7-inch built-in screen with the maximum resolution of

3200×1440. We consider three types of peripheral devices that can

be attached to the phone: a 1080p large-screen (24-inch) display,

a 4K large-screen (32-inch) display, and a surround sound system

(VIZIO 5.1 channel).

Videos and audios.We consider the two 6-track videos, ED and

ToS, both with 4 audio tracks, in Table 1. In the interest of space,

we only report the results for ED; the results for ToS show similar

trends. In addition, we consider another 7-track video, BBB (Big

Buck Bunny), which has 6 video tracks of the same resolutions as

those for ED, and an additional 2160p (4K) track.

Network settings. We use trace-driven experiments for apples-to-

apples comparison of our prototype with the standard ExoPlayer.

Specifically, the network bandwidth between the server and the

client is controlled using tc [47] at the server to emulate realworld

network scenarios. We consider both cellular and WiFi network

settings. For cellular, we use 10 traces collected from two commer-

cial LTE networks. The bandwidths of these traces are scaled to

four settings, with the average bandwidth as 1, 1.5, 2.5, or 5 Mbps,

respectively. For WiFi, we use 4 traces collected from a home net-

work under loaded conditions, with the average bandwidth varying

from 15.7 to 19.0 Mbps.

Performance metrics. We use (i) quality of played back video

segments: measured using a state-of-the-art perceptual quality met-

ric, VMAF [45]; we refer to the segments with VMAF below 40

as low-quality and those with VMAF above 80 as good-quality, (ii)

quality of playbed back audio segments:measured using ViSQOL and

PEAQ, (iii) rebuffering duration: the total duration of rebuffering in

a streaming session, (iv) data usage: the total amount of data down-

loaded, and (v) percentage of wasted data: the amount of wasted

data due to chunk replacement divided by the total data usage.

6.2 Playback on Phone over Cellular Networks
We use ED in this setting. Since the phone has a stereo speaker, our

prototype limits the audio tracks to the two 2-channel tracks, A1-

A2, while the standard ExoPlayer allows only A3-A4 (see §3.2). For

video, our prototype caps the video tracks due to the small phone

screen. Specifically, we show the results when capped to 480p or

720p; the standard ExoPlayer allows all the 6 tracks (including

1080p) to be selected. We show the results of 3 scenarios: from

the standard ExoPlayer, from our prototype with 480p or 720p cap.

For all the scenarios, the percentage of chunk replacement tends

to be lower when the network bandwidth is higher, since higher

quality video tracks were already selected initially and hence less

replacement is needed. For all the network settings, none of the

runs has rebuffering.

The top row of Fig. 7 plots the results when the average network

bandwidth is 1.0 Mbps. (i) Our prototype leads to significantly bet-

ter video quality than the standard ExoPlayer: across the 10 traces,

our prototype with 480p and 720p caps both reduce the percentage

of low-quality video segments by up to 17%, with the average re-

duction being 6%. This is because in our prototype, based on the

audio device capabilities, only the two lower bitrate audio tracks,

A1 and A2, are allowed to be selected, leaving more bandwidth

for video selection, while in the standard ExoPlayer, the selected

audio tracks are exclusively the higher bitrate A3 or A4 tracks. For

our prototype, we see the video quality when capping to 480p and

720p is similar. This is because when the network bandwidth is

low, the choice of video tracks is mainly limited by the network

bandwidth, not the cap. (ii) When using ViSQOL, the audio quality

of our prototype is slightly better than the standard ExoPlayer,

since A2 has higher quality than A3’, the downmixed 2-channel

version A3 that is selected by the standard ExoPlayer. When using

PEAQ, we see more lower quality audio segments from the standard

ExoPlayer, again due to the selection of A3. (iii) The data usage of

our prototype is slightly lower: 86% and 83% of what is used by the

standard ExoPlayer for 720p and 480p caps, respectively, since the

low network bandwidth is the main constraint.

The bottom row of Fig. 7 shows the results when the average

network bandwidth is 5 Mbps. We see all the three cases have

good audio quality and close to zero low-quality segments. The

data usages of our prototype with 720p and 480p caps are 58% and

33% of what is used by the standard ExoPlayer, respectively. Our

prototype with 720p cap has almost the same amount of good-

quality segments as the standard ExoPlayer; capping to 480p leads

to less good-quality segments, but more data savings. Considering

both quality and data usage, capping to 720p appears to achieve

the best tradeoffs. The performance when the average network

bandwidth is 1.5 or 2.5 Mbps shows similar trends as above (figures

omitted): our prototype leads to less low-quality video segments

and lower data usage than the standard ExoPlayer.

6.3 Playback on Phone over Home WiFi
For this setting, we first use ED and then BBB. With ED, our proto-

type does the same C2-based filtering as that over cellular networks

(see §6.2). For the four WiFi network traces, since the network

bandwidth is high, the standard ExoPlayer always selects A4 and

the 1080p track, while our prototype always selects A2 and 480p or

720p (depending on the configured cap). The results are similar to

the bottom row of Fig. 7: on average, our prototype with 720p and

480p caps uses 54% and 30% of the data as that used by the standard

ExoPlayer, the audio quality is similar, and the video quality under

720p cap is similar to that of the standard ExoPlayer, while the 480p

cap leads to less number of good-quality segments.

For BBB, the average bitrates of the 480p, 720p, 1080p and 4K are

0.4, 1.2, 2.1 and 10.8 Mbps, with the corresponding declared bitrate

in the manifest file being 0.7, 2.0, 3.3, and 16.8 Mbps, respectively.

We first test the case when only the first 6 tracks (up to 1080p) are

included in the manifest file. Fig. 8 shows the bandwidth usage

and quality of the played back video segments across the 4 WiFi

traces. Our prototype with 720p and 480p caps uses 1.2 and 0.4 Mbps

bandwidth on average, 58% and 18% of what is used by the standard

ExoPlayer, respectively. The video quality with the 720p cap is

very close to that of the standard ExoPlayer, while the quality with

480p cap is lower. When we include the 4K track in the manifest

file, our prototype makes the same choices as before, while the

standard ExoPlayer allows the 4K track to be selected. In this case,

the bandwidth usage gap between our prototype and the standard

ExoPlayer becomes even larger: our prototype with 720p and 480p

119



MMSys’22, June 14-17, 2022, Athlone, Ireland C. Park et al.

0 20 40 60 80 100
Video quality

0

0.2

0.4

0.6

0.8

1

C
D

F

standard ExoPlayer
prototype, 720p cap
prototype, 480p cap

1 2 3 4 5
Audio quality (ViSQOL)

0

0.2

0.4

0.6

0.8

1

C
D

F
-4 -3 -2 -1 0 1

Audio quality (PEAQ)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 50 100 150 200
Total data usage (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 5 10 15 20
Wasted data (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 20 40 60 80 100
Video quality

0

0.2

0.4

0.6

0.8

1

C
D

F

standard ExoPlayer
prototype, 720p cap
prototype, 480p cap

1 2 3 4 5
Audio quality (ViSQOL)

0

0.2

0.4

0.6

0.8

1

C
D

F

-4 -3 -2 -1 0 1
Audio quality (PEAQ)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 50 100 150 200
Total data usage (MB)

0

0.2

0.4

0.6

0.8

1

C
D

F

0 5 10 15 20
Wasted data (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

Figure 7: Comparison of our prototype and the standard ExoPlayer for 6-track ED (playback on phone over cellular network

settings). The two rows are the results when the average network bandwidth is 1.0 and 5.0 Mbps, respectively.

0 2 4 6 8 10
Bamdwidth usage (Mbps)

0

0.2

0.4

0.6

0.8

1

C
D

F

standard ExoPlayer
prototype, 720p cap
prototype, 480p cap

0 20 40 60 80 100
Quality of video segments

0

0.2

0.4

0.6

0.8

1

C
D

F

standard ExoPlayer
prototype, 720p cap
prototype, 480p cap

Figure 8: Bandwidth usage (left) and video quality (right) for

6-track BBB (playback on phone over home WiFi network).

caps only uses 13% and 4% of what is used by the standard ExoPlayer

(9.1 Mbps on average), respectively. For the standard ExoPlayer, the

downloaded 4K segments have to be downsampled to fit the phone

screen resolution. Therefore, the resulting perceptual video quality

of the displayed content is still comparable to what is achieved by

our prototype with a 720p cap, which already has very good quality.

6.4 Connected to Large Screen in Home WiFi
We again use the 7-track BBB video. The phone is attached to a

1080p or 4K external display in a homeWiFi network setting. When

connected to the 1080p display, our prototype only allows up to

1080p track, while the standard ExoPlayer allows up to the 4K track.

The average bandwidth usage of our prototype is 2.1 Mbps, only

23% of what is used by the standard ExoPlayer (i.e., 9.1 Mbps). The

4K segments downloaded by the standard ExoPlayer need to be

downsampled to fit the 1080p display resolution, and hence the

perceptual video quality will be similar to what is delivered by our

prototype that uses much lower bandwidth. When connected to the

4K display, both our prototype and the standard ExoPlayer allow the

4K track to be selected (for different reasons: due to the resolution

of the 4K display and the phone display resolution, respectively),

and have identical results.

6.5 Connected to Surround Sound in HomeWiFi
We use ED with 4 audio tracks for this setting. Our prototype rec-

ognizes the surround sound system that supports up to 8 channels,

and hence allows 6-channel audio tracks to be selected. Hence, all

the four audio tracks, A1-A4, can be selected. The standard Exo-

Player allows only A3-A4 to be selected due to over-specification,

not based on C2 (see §3.2). Because of the high network bandwidth,

both players choose the highest audio track (A4), and the respective

highest resolution video track (480p or 720p for our prototype and

1080p for the standard ExoPlayer). As a result, they have similar

audio quality; for video, the results are similar to those described in

§6.3 for ED. Our prototype still uses less bandwidth: 62% and 38%

of what is used by the standard ExoPlayer under the 720p and 480p

caps, respectively.

7 RELATEDWORK

Objective perceptual audio assessment. We are not aware of

any study that uses perceptual audio quality to drive audio track se-

lection as in our study. In addition to the three models in §2.1, there

are other models, e.g., POLQA [40], PEMQ-Q [36], DNSMOS [56].

DNSMOS is recently proposed, but is used for content that has been

noise suppressed, and does not use clean audio as reference.

ABR rate adaptation. The schemes are surveyed in [22, 43, 57].

The state-of-the-art schemes are buffer-based [35, 60, 61], control-

theory based [24, 28, 51, 53, 64, 66], or using other techniques [17,

46, 48, 49]. We use the current ABR schemes in existing players, and

focus on incorporating C2 to supplement existing ABR schemes.

Limiting track selection. Most ABR schemes aim to maximize

quality; only several studies [25, 52, 55] consider additional factors

to limit track selection. Our work differs from them in that we con-

sider C2 as an additional factor and demonstrate that C2-cognizance

provides substantially improved tradeoffs in QoE and data usage.

8 CONCLUSIONS

In this paper, we identified C2 as an important factor to consider

in ABR streaming, and explored its potential for realizing better

tradeoffs between QoE and resource usage. We identified various

limitations in how existing ABR players leverage C2 and developed

practical best-practice guidelines. that can be easily incorporated

in existing player frameworks. Furthermore, we developed a proof-

of-concept prototype in the widely used ExoPlayer platform to

instantiate and validate the guidelines. Our evaluations demonstrate

that the approach has substantial benefits over the state-of-the-art.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable feedback. We

also thank Manuel Briand and Yanyuan Qin for their helpful discus-

sions and feedback, and Ginger Chien for her insightful comments

on an earlier version of the paper.

120



C2: Consumption Context Cognizant ABR Streaming for Improved QoE and Resource Usage Tradeoffs MMSys’22, June 14-17, 2022, Athlone, Ireland

REFERENCES
[1] [n.d.]. Advanced Audio Coding. https://en.wikipedia.org/wiki/Advanced_Audio_

Coding.
[2] [n.d.]. DASH Industry Forum. https://dashif.org/.
[3] [n.d.]. Dolby Digital Plus. https://en.wikipedia.org/wiki/Dolby_Digital_Plus.
[4] [n.d.]. Everything You Need to Know About Screen Mirroring iPhone and

iPad. https://www.airsquirrels.com/reflector/resources/everything-you-need-to-
know-about-screen-mirroring-iphone-ios-ipad-ipados.

[5] [n.d.]. ExoPlayer. https://github.com/google/ExoPlayer/tree/r2.16.1.
[6] [n.d.]. HTTP Live Streaming in Dolby. https://developer.dolby.com/platforms/

apple/hls-in-dolby/.
[7] [n.d.]. Surround sound. https://en.wikipedia.org/wiki/Surround_sound.
[8] [n.d.]. Tailgate party. https://en.wikipedia.org/wiki/Tailgate_party.
[9] [n.d.]. Video scaler. https://en.wikipedia.org/wiki/Video_scaler.
[10] 2015. GstPEAQ - A GStreamer plugin for Perceptual Evaluation of Audio Quality

(PEAQ) v0.6.1. https://github.com/HSU-ANT/gstpeaq.
[11] 2018. Information technology–Multimedia application format (MPEG-A)–Part19:

Common media application format (CMAF) for segmented media. Standard
ISO/IEC 23000-19:2018, International Organization for Standardization and In-
ternational Electrotechnical Commission. https://www.iso.org/standard/71975.
html.

[12] 2020. ViSQOL v3.1.0. https://github.com/google/visqol.
[13] 2021. Pixel 4a HDMI Output? https://www.reddit.com/r/GooglePixel/comments/

i3n3t4/pixel_4a_hdmi_output/.
[14] 2021. You can now play videos up to 4K60 on mobile regardless of screen

resolution. https://www.reddit.com/r/youtube/comments/ln3dy8/you_can_now_
play_videos_up_to_4k60_on_mobile/.

[15] 2021. YouTube for Android now giving 4K playback option even if don’t have
a 4K screen. https://www.gsmarena.com/youtube_for_android_showing_4k_
playback_option_for_some_users-news-47842.php.

[16] 2021. YouTube on Android now lets you watch 4K videos on FHD
screens. https://www.slashgear.com/youtube-on-android-now-lets-you-watch-
4k-videos-on-fhd-screens-21660339.

[17] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen,
Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. 2018. Oboe:
Auto-tuning Video ABR Algorithms to Network Conditions. In SIGCOMM.

[18] Apple. [n.d.]. AVFoundation. https://developer.apple.com/av-foundation/.
[19] Apple. [n.d.]. AVPlayer. https://developer.apple.com/documentation/

avfoundation/avplayer.
[20] Apple. 2017. Apple’s HTTP Live Streaming. https://goo.gl/eyDmBc.
[21] ATSC (Advanced Television Systems Committee). 2012. ATSC Standard: Digital

Audio Compression (AC-3, E-AC-3).
[22] Abdelhak Bentaleb, Bayan Taani, Ali C. Begen, Christian Timmerer, and Roger

Zimmermann. 2019. A Survey on Bitrate Adaptation Schemes for Streaming
Media Over HTTP. IEEE Communications Surveys & Tutorials 21, 1 (2019).

[23] Michael Chinen, Felicia S. C. Lim, Jan Skoglund, Nikita Gureev, Feargus
O’Gorman, and Andrew Hines. 2020. ViSQOL v3: An Open Source Produc-
tion Ready Objective Speech and Audio Metric. In Proc. of International Workshop
on Quality of Multimedia Experience (QoMEX).

[24] L. De Cicco, S. Mascolo, and V. Palmisano. 2011. Feedback Control for Adaptive
Live Video Streaming. In ACM MMSys.

[25] William Cooper, Sue Farrell, and Kumar Subramanian. 2017. QBR Metadata to
Improve Streaming Efficiency and Quality. In SMPTE.

[26] DASH Industry Forum. [n.d.]. dash.js. https://goo.gl/XJcciV.
[27] Corbin Davenport. 2019. Pixel 4 has USB video output disabled in soft-

ware. https://www.androidpolice.com/2019/11/03/pixel-4-has-usb-video-output-
disabled-in-software/.

[28] Luca De Cicco, Vito Caldaralo, Vittorio Palmisano, and Saverio Mascolo. 2013.
ELASTIC: a client-side controller for dynamic adaptive streaming over HTTP
(DASH). In Proc. of Packet Video Workshop (PV). IEEE.

[29] Google. 2014. ExoPlayer: Adaptive video streaming on Android - YouTube.
https://www.youtube.com/watch?v=6VjF638VObA.

[30] Google. 2016. ExoPlayer. https://github.com/google/ExoPlayer.
[31] Google. 2019. Shaka Player. https://github.com/google/shaka-player.
[32] Joe Hindy. 2021. 5 best screen mirroring apps for Android and other ways

too. https://www.androidauthority.com/best-screen-mirroring-apps-android-
ways-807191/.

[33] A. Hines, J. Skoglund, A. C. Kokaram, and N. Harte. 2015. ViSQOL: an objective
speech quality model. EURASIP Journal on Audio, Speech, and Music Processing
(2015).

[34] Tony Hoffman. 2021. The Best Portable Projectors for 2022. https://www.pcmag.
com/picks/the-best-portable-projectors/.

[35] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2014. A buffer-based approach to rate adaptation: Evidence from a large
video streaming service. In Proc. of ACM SIGCOMM.

[36] R. Huber and B. Kollmeier. 2006. PEMO-Q: A new method for objective audio
quality assessment using a model of auditory perception. IEEE Audio, Speech,

Language Process 14, 6 (November 2006), 1902—-1911.
[37] International Organization for Standardization. 2012. ISO/IEC DIS 23009-1.2

Dynamic adaptive streaming over HTTP (DASH).
[38] ITU. 2001. ITU-R Recommendation BS.1387-1: Method for objective measure-

ments of perceived audio quality (PEAQ).
[39] ITU. 2012. Recommendation ITU-T P.1201.2: Parametric non-intrusive assessment

of audiovisual media streaming quality – Higher resolution application area.
[40] ITU. 2014. ITU-T Rec. P.863: Perceptual objective listening quality assessment.
[41] ITU. 2017. Recommendation ITU-T P.1203.2: Parametric bitstream-based quality

assessment of progressive download and adaptive audiovisual streaming services
over reliable transport – Audio quality estimation module.

[42] K. Kellogg and T. Garcia. 2021. 13 Best Mini Projects for Indoor and Outdoor Use.
https://www.teenvogue.com/story/best-mini-projectors/.

[43] Jonathan Kua, Grenville Armitage, and Philip Branch. 2017. A survey of rate
adaptation techniques for dynamic adaptive streaming over HTTP. IEEE Com-
munications Surveys & Tutorials 19, 3 (2017).

[44] Lynn La. 2022. Top foldable phones for 2022: Motorola Razr 2020, Galaxy
Flip, Galaxy Fold 2 and more. https://www.cnet.com/tech/mobile/best-foldable-
phones/. access in January 2022.

[45] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy, and Megha
Manohara. 2016. Toward A Practical Perceptual Video Quality Metric. https:
//goo.gl/ptjrWv..

[46] Zhi Li, Ali Begen, Joshua Gahm, Yufeng Shan, Bruce Osler, and David Oran. 2014.
Streaming video over HTTP with consistent quality. In ACM MMSys.

[47] Linux. 2014. tc. https://linux.die.net/man/8/tc.
[48] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive

Video Streaming with Pensieve. In Proc. of ACM SIGCOMM.
[49] Ricky KP Mok, Xiapu Luo, Edmond WW Chan, and Rocky KC Chang. 2012.

QDASH: a QoE-aware DASH system. In ACM MMSys.
[50] Mridula Nimawat. 2021. 15 Best Free Screen Mirroring Apps For Android &

iPhone [2022]. https://wethegeek.com/screen-mirroring-apps/.
[51] Yanyuan Qin, Shuai Hao, Krishna R Pattipati, Feng Qian, Subhabrata Sen, Bing

Wang, and Chaoqun Yue. 2018. ABR streaming of VBR-encoded videos: charac-
terization, challenges, and solutions. In CoNext. ACM.

[52] Yanyuan Qin, Shuai Hao, Krishna R Pattipati, Feng Qian, Subhabrata Sen, Bing
Wang, and Chaoqun Yue. 2019. Quality-aware strategies for optimizing ABR
video streaming QoE and reducing data usage. In MMSys. ACM.

[53] Yanyuan Qin, Ruofan Jin, Shuai Hao, Krishna R Pattipati, Feng Qian, Subhabrata
Sen, Chaoqun Yue, and Bing Wang. 2020. A Control Theoretic Approach to ABR
Video Streaming: A Fresh Look at PID-based Rate Adaptation. IEEE Transactions
on Mobile Computing 19, 11 (2020).

[54] Yanyuan Qin, Subhabrata Sen, and Bing Wang. 2019. ABR Streaming with
Separate Audio and Video Tracks: Measurements and Best Practices. In CoNext.
ACM.

[55] Yanyuan Qin, Chinmaey Shende, Cheonjin Park, Subhabrata Sen, and Bing Wang.
2021. DataPlanner: Data-budget Driven Approach to Resource-efficient ABR
Streaming. In ACM MMSys.

[56] Chandan KA Reddy, Vishak Gopal, and Ross Cutler. 2020. DNSMOS: A Non-
Intrusive Perceptual Objective Speech Quality metric to evaluate Noise Suppres-
sors. arXiv e-prints (2020), arXiv–2010.

[57] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia. 2015. A
Survey on Quality of Experience of HTTP Adaptive Streaming. IEEE Communi-
cations Surveys & Tutorials 17, 1 (2015).

[58] SimilarTech Ltd. 2019. Facebook Video vs Shaka Player. https://www.similartech.
com/compare/facebook-video-vs-shaka-player

[59] Colm Sloan, Naomi Harte, Damien Kelly, Anil C. Kokaram, and Andrew Hines.
2017. Objective Assessment of Perceptual Audio Quality Using ViSQOLAudio.
IEEE Transactions on Broadcasting 63, 4 (2017).

[60] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2018. From Theory to
Practice: Improving Bitrate Adaptation in the DASH Reference Player. InMMSys.

[61] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2016. BOLA: Near-
Optimal Bitrate Adaptation for Online Videos. In INFOCOM. IEEE.

[62] Olivia Tambini. 2021. Spatial Audio: our guide to immersive speakers, headphones,
and streaming services. https://www.techradar.com/news/spatial-audio-your-
complete-guide-to-immersive-speakers-headphones-and-streaming-services.

[63] Ewdison Then. 2019. Pixel 4 USB-C video output exists but is disabled in
source code. https://www.slashgear.com/pixel-4-usb-c-video-output-exists-but-
is-disabled-in-source-code-03598259/.

[64] Guibin Tian and Yong Liu. 2012. Towards agile and smooth video adaptation in
dynamic HTTP streaming. In ACM CoNEXT.

[65] Xiph. 2016. Xiph Video Test Media. https://media.xiph.org/video/derf/.
[66] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-

Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In
SIGCOMM. ACM.

[67] C. Yue, S. Sen, B. Wang, Y. Qin, and F. Qian. 2020. Energy Considerations for
ABR Video Streaming to Smartphones: Measurements, Models and Insights. In
ACM MMSys.

121



MMSys’22, June 14-17, 2022, Athlone, Ireland C. Park et al.

[68] Diekola Yusuf. 2019. 5 Best Projector Phones For Presenters. https://www.
novabach.com/5-best-projector-phones-for-presenters/.

122


