Large-scale Automatic Depression Screening Using Smartphone Data

Dr. Bing Wang Computer Science & Engineering Department

UCONN | UNIVERSITY OF

Introduction

- Depression is a serious illness
 - Significant effects on both physical and mental health
 - Higher medical costs, mortality
- Current diagnosis methods
 - Rely on physician-administered or patient self-administered surveys
 - Subjective, burdensome, and recall bias
 - Lack of trained professionals (14.5 psychiatrists per 100,000 in United States)

Urgent need for an accurate, objective and easilyaccessible depression screening tool for mass usage

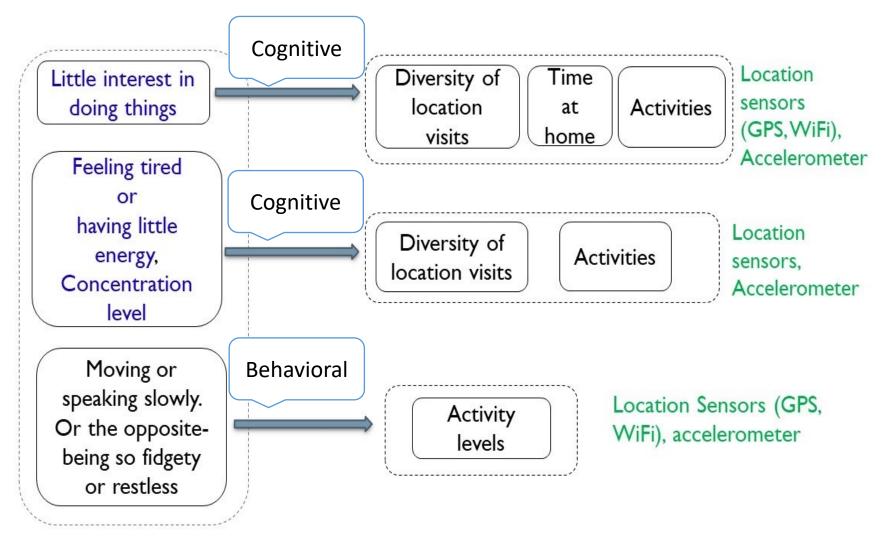
New Opportunities

- Automatic depression screening using smartphone sensing data
 - Ubiquitous adoption of smartphones
 - Rich set of sensors reflect a user's behavior

Advantages

- Objective, data automatically collected
- Ideal for continuous monitoring

Why it might work?



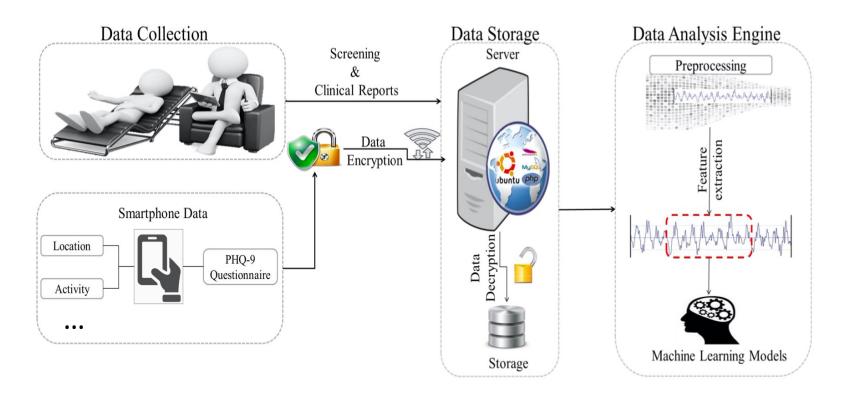
Depressive symptoms

Proxy measurements and smartphone data source

Challenges

- Human behaviors extremely stochastic
- Correlations between behavior and depression are complex
- Opportunistic data capture
- Identifying meaningful features

Our Experience: LifeRhythm Project



LifeRhythm: a system for automatic and pervasive depression screening using smartphone data

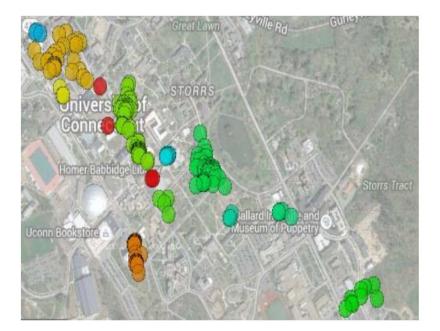
Outline

Binary prediction: depressed or not

- Case study: using location data
- Other types of prediction
 - self-report depression scores
 - depression severity
 - depressive symptoms
- Using other types of sensing data
 - Activity data
 - Meta-data of Internet traffic
 - Social interaction (statistics of SMS, phone)
- Conclusion and future work

Depression Prediction Using Location Data

- Location data
 - behavioral characteristics



Two settings: passive data collection, requiring no user interaction

- Running app to collect location data on individual phones
- Does not require running app on phones

Depression Prediction Using Location Data Collected on Phones

Data Collection

- Location data: passively collected
 - LifeRhythm app for Android and iOS
 - GPS: longitude, latitude
 - Andriod: periodic every 10 min; iOS: event-based
 - WiFi association events

Questionnaire responses

- Self-reported depressive symptoms
- Collected by LifeRhythm app
- Weekly or biweekly, using notification on phones

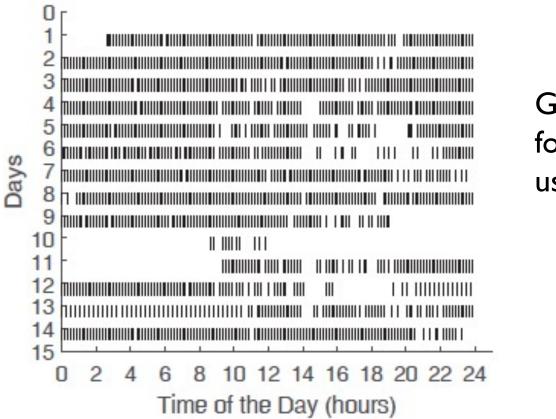
Clinical assessment

- Initial screening: depressed or non-depressed
- Follow-up meetings with depressed participants (once or twice per month)

Participant Recruitment

- Two-phase study at University of Connecticut
 - Participants: full-time students, aged 18-25
- ✤ Phase I: 10/2015 5/2016
 - 79 participants (19 depressed; 60 non-depressed)
 - Participation duration: up to 8 months
 - Self-report questionnaire: PHQ-9 (Patient Health Questionnaire) 9-item, biweekly
- ✤ Phase 2: 2/2017 12/2027
 - I03 participants (39 depressed; 64 non-depressed)
 - Self-report questionnaire: QIDS (Quick Inventory of Depressive Symptomatology), 16-item, weekly
- Participants use own phones: Android (variety of manufactures) or iPhone

Large Amount of Missing Data



GPS location data for an Android user over 14 days

Reasons: low battery level, poor GPS signal, or user turns off GPS

How to deal with missing data?

Common approach: remove time periods with substantial missing data

 All the data (even high-quality data) in the time period are removed

Existing data imputation approaches do not work well

 Matrix Factorization, Multiple Imputation by Chained Equations, and Nuclear Norm Minimization

Our approach: data fusion

Fusing GPS and WiFi Association Data

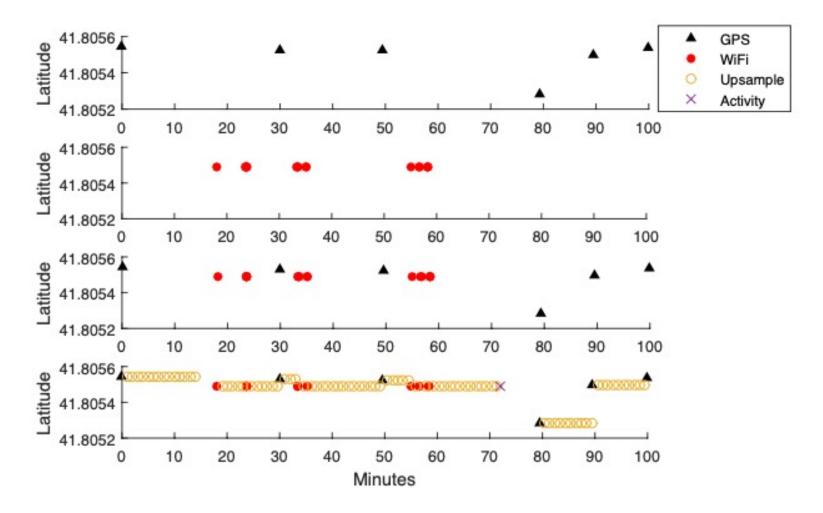
- Both collected on phones
- Both provide location information
 - GPS: longitude, latitude with accuracy
 - WiFi association: use location of Access Points (APs) to approximate phone locations
- GPS: fine-grained
 - but high energy consumption and does work well indoors
- WiFi association: coarse-grained
 - but low energy consumption and works well indoors

Question: Can we use GPS and WiFi data to get more complete data? Can it improve depression prediction?

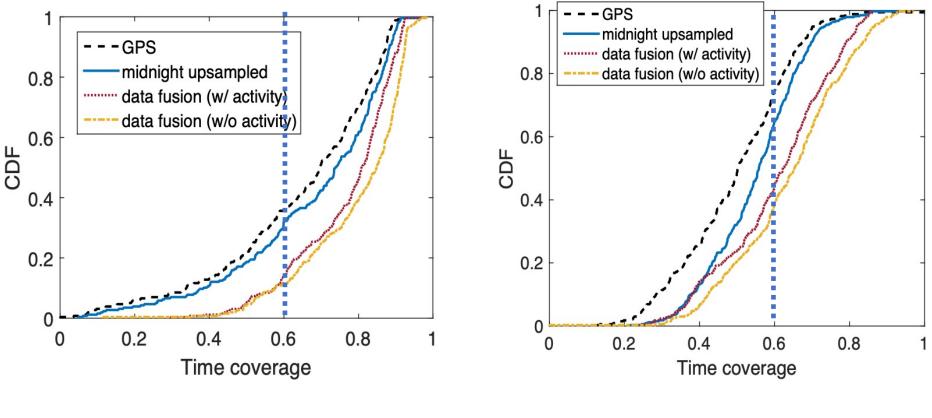
Data Fusion: High-level Approach

- Automatically determine (longitude, latitude) of WiFi APs
 - If phone associates with an AP at time *t*, find GPS records close to *t* to approximate the AP location
 - Use GPS records collected from multiple users and points of time to improve approximation
- Merge GPS and WiFi data
- Obtain location estimates in continuous time

Data Fusion: Illustration



Data Fusion Results



Android data

iOS data

Significantly better time coverage after data fusion

Data Analysis and Model Training

Phase I study

- Analysis based on PHQ-9 intervals
 - Day when filling in a PHQ-9 + previous 14 days
- Extract features from location data in PHQ-9 interval
- Correlate features with PHQ-9 score
- Use the features to train classification models to predict depression status
 - depressed or non-depressed: based on clinician assessment
- Phase 2 study
 - Analysis based on QIDS intervals
 - Day when filling in a QIDS + previous 7 days

Feature Extraction

- Based on raw location data
 - Location variance: variability in participant's location
 - Time spent in moving (i.e., speed > 1 km/hr)
 - Total distance
 - Average moving speed
- Based on location clusters (using DBSCAN)
 - # of unique locations/clusters
 - Entropy
 - Variability of time that a participant spends at different locations
 - Normalized Entropy (Entropy normalized by # of clusters)
 - Time spend at home
 - Home cluster: participant most frequently found between [0, 6]am

Correlation Results

• Pearson's correlation (significance level $\alpha = 0.05$)

		No data fusion		Data fusion	
Feature Loc _{var}	Features	R-value	P-value	R-value	P-value
	Locvar	-0.15	0.07	-0.24	0.001
	Distance	-0.13	0.11	-0.04	0.61
Phase I	AMS	-0.09	0.28	-0.04	0.62
Android	Move	0.06	0.43	-0.11	0.11
dataset	Entropy	-0.16	0.05	-0.28	10-4
	NEntropy	-0.21	0.01	-0.26	10-4
	Home	0.18	0.03	0.23	0.003
	Nloc	-0.09	0.28	-0.16	0.03

Correlation after data fusion is significantly better

Classification Results

 Use Support Vector Machine with Radial Basis Function kernel
Phase-I dataset

	F1 score	Precision	Recall	Specificity
Android (no data fusion)	0.50	0.64	0.41	0.71
Android (w/ data fusion)	0.66	0.83	0.56	0.88
iOS (no data fusion)	0.50	0.59	0.42	0.77
iOS (w/ data fusion)	0.76	0.77	0.76	0.77

- leave-one-user-out cross validation
- much better classification results after data fusion

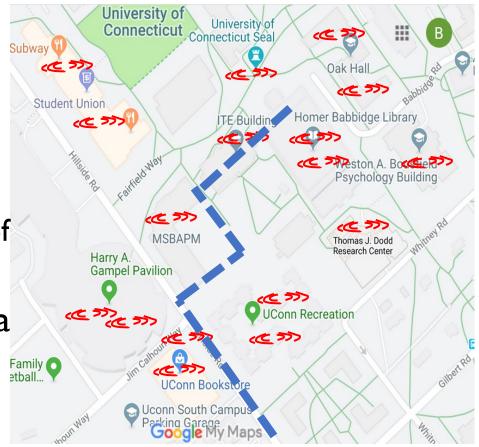
Depression Prediction: Other Approaches?

 So far, using location data directly captured on phones

Question: Can we get by without direct data capture (running apps) on phones?

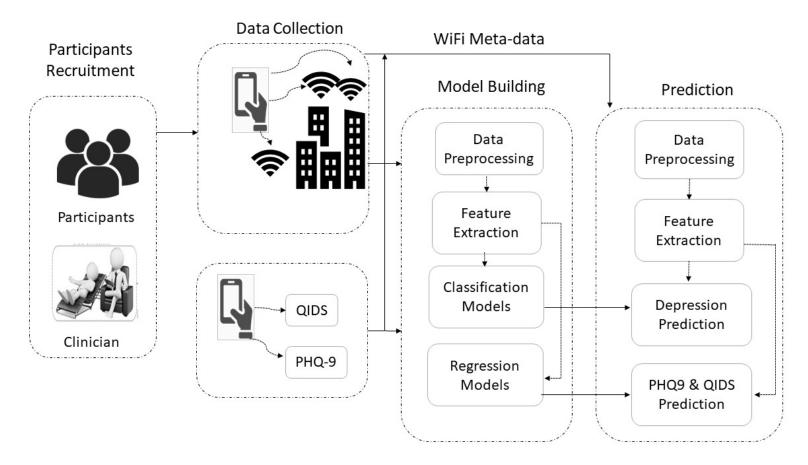
Using Meta-data from WiFi Infrastructure

- WiFi widely deployed in institutions
- Phones associate with nearby access points (APs)
- Locations of phones/users
 - Approximated by locations of APs associated with
- Obtain WiFi association data directly from infrastructure Factoria
 - Standard protocols



Large-scale Depression Prediction Using Meta-data from Institution WiFi Infrastructure

High-level Approach



- Large-scale automatic depression screening in an institution
- No need to run any app on individual phones

Privacy and Responsible Usage of Data

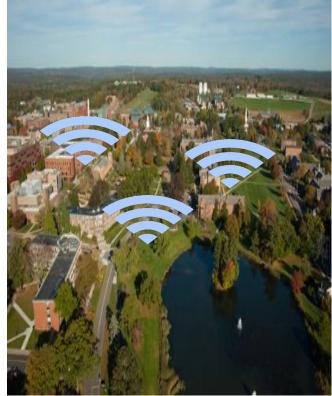
- Clearly very important!
- Need careful mechanisms for user consent and privacy
- Usage scenarios
 - Depression screening at population level
 - e.g., estimate the rate of depression in an institution
 - No need of user identity
 - Depression screening at individual user level
 - Users elect to use the service
 - Need certain user identity info
 - User privacy can be preserved via cryptographic techniques

Our Focus

- Is it feasible to learn accurate prediction models for depression screening from WiFi meta-data?
- Challenges:
 - WiFi location data is of lower resolution
 - Location collection is opportunistic
 - can only be captured when a phone is connected to institution WiFi network
- There is hope
 - Users prefer to connect to institution WiFi network
 - Use data collected over a period of time

Two Settings

- 24-hour monitoring
 - Applicable to students living on campus
 - 24-hour data provides more insights into a user's behavior
- Daytime (8am-6pm) monitoring
 - Applicable to commuting scenario
 - Does daytime data alone already provide sufficient insights?



Data Analysis at Three Levels

AP level analysis (serves as baseline)

- Treat each AP as a unique location
- Building level analysis
 - Treat each building as a unique location
 - Obtain the building where an AP is located beforehand
- Scheme States Scheme Scheme
 - Building categories: entertainment, sports, library, ...

Feature Extraction

- Number of unique locations
- Entropy and normalized entropy
- Time spent at home (for 24-hour monitoring only)
 - Home: most frequently found location between [0,6]am
- Circadian movement
 - Extent of a user's locations following circadian rhythm
- Number of significant locations visited
 - Number of locations visited among top-10 locations spent time
- Routine Index
 - Difference of locations visited across days
- Additional building category features
 - Duration, # of days visiting different categories of buildings

Correlation Results

		All		Depr	essed	Non-depressed	
	Features	r-value	p-value	r-value	p-value	r-value	p-value
	Entropy	-0.36	0.00	-0.40	0.01	-0.24	0.009
Phase I	Entropy _N	-0.33	0.00	-0.44	5×10^{-3}	-0.06	0.51
24-hour	Home	0.22	6×10^{-3}	0.40	0.01	-0.20	0.03
monitoring	Nloc	-0.26	9×10^{-4}	-0.22	0.10	-0.36	10^{-4}
monitoring	CMove	0.01	0.86	-0.20	0.22	0.12	0.19
	Nsig	-0.13	0.12	-0.16	0.36	0.008	0.93
	RIndex	0.32	10^{-4}	0.34	0.03	0.05	0.60
	Entropy	-0.37	10^{-4}	-0.33	0.02	-0.39	3×10^{-4}
Phase I	$Entropy_N$	-0.36	10^{-4}	-0.41	0.02	-0.22	0.04
Daytime	Nloc	-0.24	0.04	-0.09	0.60	-0.41	10^{-4}
monitoring	CMove	-0.19	0.04	-0.23	0.24	-0.11	0.32
monitoring	Nsig	-0.12	0.21	-0.10	0.60	-0.02	0.84
	RIndex	0.46	0.00	0.37	0.05	0.51	0.00

- Stronger correlation for depressed participants
- Significant correlation even for daytime monitoring

Classification Results

Phase-I data, 24-hour monitoring

	F ₁ score	Precision	Recall	Specificity
AP level	0.66	0.63	0.70	0.58
Building level	0.84	0.90	0.77	0.90
Enhanced building level	0.83	0.78	0.89	0.75

Phase-I data, daytime monitoring

	F ₁ score	Precision	Recall	Specificity
AP level	0.74	0.74	0.75	0.72
Building level	0.75	0.67	0.80	0.62
Enhanced building level	0.74	0.71	0.78	0.69

- Even day-time monitoring provides accurate prediction
- Comparable results a those when using location data directed collected on phones

Other Types of Prediction

* So far, using location data for binary prediction

- Predicting self-report depression score
 - PHQ-9 scores (numerical value: 0-27, Phase I)
 - QIDS scores (numerical value: 0-27, Phase 2)
- Predicting depression severity
 - Severity level: stable, mild, moderate, severe; level 0-3
- Predicting depressive symptoms
 - Whether a depressive symptom is present or not

Automatic Prediction of Depressive Symptoms

Depressive Symptoms

- 8 major categories
 - Behavioral: appetite, energy, psychomotor, sleep disturbance
 - Cognitive: concentration, interest, self-criticism, feeling sad
- *Prediction approach
 - Train binary classification model for each symptom
 - Ground truth: Symptoms' scores from questionnaire
 - 0: no symptom, 1-3: occasional to persistent symptoms

Prediction of Depression Symptoms (Phone Data)

		F ₁ score	Precision	Recall	Specificity
	Appetite	0.79	0.75	0.84	0.67
	Concentration	0.70	0.65	0.75	0.50
Phase I	Energy	0.74	0.64	0.87	0.57
iOS dataset	Feeling-	0.83	0.90	0.76	0.88
Depressed:	depressed				
	Interest	0.81	0.78	0.84	0.82
	Self-criticism	0.81	0.80	0.82	0.78
	Sleep	0.68	0.68	0.69	0.70

- Both behavioral and cognitive depressive symptoms can be predicted accurately
- Overall better results for depressed population

Prediction of Depression Symptoms (WiFi Meta-data)

		F ₁ score	Precision	Recall	Specificity
	Appetite	0.76	0.68	0.85	0.50
	Concentration	0.63	0.57	0.71	0.53
Phase I 24-hour monitoring Depressed:	Energy	0.80	0.73	0.89	0.67
	Feeling- depressed	0.85	0.83	0.78	0.84
	Interest	0.86	0.79	0.85	0.56
	Self-criticism	0.86	0.84	0.89	0.83
	Sleep	0.70	0.65	0.76	0.54

 Similar results as those when using smartphone sensing data directed collected on phones

Using Other Types of Sensing Data

So far, consider location data only

Other types of sensing data

- Collected by LifeRhythm app
- Internet traffic
 - Traffic that destines to or originates from phones
 - meta-data: timing, source & destination IP addresses, size
- Social interaction
 - SMS logs and/or phone logs
 - Statistics: # of incoming/outgoing messages/calls, ...

Depression Prediction Using Metadata of Internet Traffic

Using Internet Traffic

Advantages of using Internet traffic

- Easily collected
- Much less energy consuming than collecting GPS data
- Not sensitive to phone hardware
- For user privacy, capture only meta-data of each packet on phone; no payload
 - (timestamp, src IP, dest IP, size)

Question: How to extract behavioral features from packet-level meta-data?

Data Preprocessing

Identify usage sessions (when accessing Internet)

- remove keep-alive packets
- handle background traffic
- use heuristic to aggregate traffic to identify usage sessions
- Identify application categories
 - Based on destination IP address
 - Use public database to look up information on destination IP address
 - match keywords to determine application categories (mail, social, game, shopping, ...)

Feature Extraction

- Aggregate usage features
 - Total duration online
 - Total # of sessions
 - Total off-duration
 - Internet usage in each time period (morning, afternoon, night, midnight)

Category-based usage features

- Duration of each application category
- # of sessions of each application category

Volume-based features

- Total volume
- Volume in each time period

Classification Results

Binary classification: depressed or not

Phase-I, iOS dataset

	F ₁ score	Precision	Recall	Specificity
Aggregate features	0.63	0.67	0.60	0.59
Category-based features	0.65	0.62	0.68	0.61
Aggregate + category- based features	0.71	0.71	0.71	0.63

- Using aggregate or category-based features alone can already lead to good prediction
- Aggregate + category-based features leads to even better prediction
- Usage based features generally leads to better prediction than volume-based features

Conclusion

 Using smartphone data for depression prediction is promising

- Wide range of prediction
 - depression status, depressive symptoms, depression questionnaire scores, depression severity level
- Wide variety of sensing data
 - Location, Internet traffic, activity, social interaction
 - Different tradeoffs in ease of data capture, energy consumption, scalability
- Further validation
 - Larger sample size
 - More diverse demographic groups

Future Work

- Depression prediction
 - Techniques to deal with missing data
 - Better features

• • • •

- Handling data from different platforms
- Stable data collection
- · Large dataset, deep learning
- Personalized treatment of depression
 - Using smartphone data to predict response to treatment \rightarrow assist clinician decision making

Related Papers

- Score Content of the second second
- C.Yue, S.Ware, R. Morillo, J. Lu, C. Shang, J. Bi, J. Kamath, A. Russell, A. Bamis, and B. Wang. "Fusing Location Data for Depression Prediction," IEEE Transactions of Big Data, Vol. 7, No. 2, June 2021.
- S.Ware, C.Yue, R. Morillo, J. Lu, C. Shang, J. Kamath, A. Bamis, J. Bi, A. Russell, and B. Wang. "Large-scale Automatic Depression Screening Using Meta-data from WiFi Infrastructure," Ubicomp, October 2019.
- S.Ware, C.Yue, R. Morillo, J. Lu, C. Shang, J. Bi, J. Kamath, A. Russell, A. Bamis, and B. Wang. "Predicting Depressive Symptoms Using Smartphone Data," Vol. 15, Smart Health Journal, March 2020.
- C.Yue, S.Ware, R. Morillo, J. Lu, C. Shang, J. Bi, J. Kamath, A. Russell, A. Bamis, and B. Wang. Automatic depression prediction using Internet traffic characteristics on smartphones. Smart Health Journal. Vol 18. November 2020.