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Abstract—As quantum key distribution becomes increasingly
practical, questions of how to effectively employ it in large-
scale networks and over large distances becomes increasingly
important. To that end, in this work, we model the performance
of the E91 entanglement based QKD protocol when operating
in a network consisting of both quantum repeaters and trusted
nodes. We propose a number of routing protocols for this network
and compare their performance under different usage scenarios.
Through our modeling, we investigate optimal placement and
number of trusted nodes versus repeaters depending on device
performance (e.g., quality of the repeater’s measurement devices).
Along the way we discover interesting lessons determining what
are the important physical aspects to improve for upcoming
quantum networks in order to improve secure communication
rates.

I. INTRODUCTION

Quantum key distribution (QKD) allows for the establish-

ment of information theoretically secure secret keys between

two or more parties. However, despite their great potential,

these systems face several critical shortcomings when attempt-

ing to implement them in practice. Of particular importance

are improving the speed and distance of these systems. To

overcome these limitations, quantum networks are often used,

consisting of trusted nodes and, in the near future, quantum
repeaters [1], [2]. Since quantum repeaters are still a develop-

ing technology, current QKD networks established in various

metropolitan areas consist only of end-users and trusted nodes

[3]–[7]. However, progress in developing stable quantum re-

peaters has been accelerating of late and so it is vital to

begin developing suitable routing algorithms for networks

consisting of a mixture of both repeaters and trusted nodes.

Indeed, developing efficient routing algorithms to operate in

this setting is vital to the future performance of such networks.

Numerous work has been done investigating the perfor-

mance of quantum networks consisting only of quantum

repeaters (in addition to end users) [8]–[15], including the

development and analysis of new routing protocols specific to

that scenario [16]–[20]. Mostly, the goal of such networks is to

establish end-to-end entanglement between end users (which

may, then, be used for QKD for instance). However, QKD is a

more practical technology today and there are several methods

to improve their performance, such as through trusted nodes.

Thus it is also important to study QKD-specific networks.

Such work has been done investigating practical QKD-specific

networks consisting predominately of trusted nodes and end

users [21]–[23]. However, as repeater technology progresses,

the desire to move away from trusted node technology, and

their inherent security concerns, will become stronger.

Thus, it is important to begin investigating near-future

QKD-specific networks consisting predominately of quantum

repeaters, however with a minority of trusted nodes. Fur-

thermore, these networks will allow for multiple paths to be

established between both repeaters and trusted nodes (i.e.,

repeaters are not used only to extend the distance between

trusted nodes, but will be an integral part of the network

interior). These are the networks we consider in this paper. In

particular, we consider a grid topology in which it is possible

to establish multiple paths between Alice, Bob, and various

trusted nodes though a complex network of repeaters. Our goal

is to understand what routing protocols can lead to efficient

key distribution rates between end users and to understand how

the quality of the repeaters and the number of trusted nodes,

affects the performance of this network.

In this paper, we devise and evaluate three different routing

algorithms for this QKD network: one requires global state

information and the other two are decentralized, distributed,

algorithms requiring only local state information. We perform

a rigorous evaluation, through simulations, of the performance

of our algorithms in a variety of scenarios considering net-

work size; quantum repeater quality; distance between nodes;

quantity and specific location of trusted nodes; and channel

noise. Our results show that the careful design of routing

algorithms is vital to establishing efficient key-distribution

rates between users. Along the way, we discover several

fascinating properties of these networks which may be of great

importance to operators of this future network architecture.

A. Quantum Key Distribution

Quantum key distribution (QKD) protocols operate in two

stages: In the quantum communication stage, users Alice and

Bob use the quantum channel and the authenticated classical

channel to attempt to establish a raw key which is a classical

bit string that is partially correlated (there may be errors in

the quantum channel leading to errors in the raw key) and

partially secret (an adversary may have some information on
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the raw key). Since this raw key cannot be used directly

for cryptographic purposes, a second, purely classical, stage

is performed, running an error correction protocol (leaking

additional information to an adversary) followed by privacy

amplification, which leads to the final secret key. An important

metric in any QKD protocol is the protocol’s key-rate defined

to be the ratio of secret key bits to the size of the raw key.

For a general survey of QKD protocols, the reader is referred

to [24], [25].

In this work, we are interested in the theoretical performance

of a network of QKD systems. As such, we consider ideal

single-qubit sources (though potentially there is loss due to

the fiber channel connecting nodes). Furthermore, we do not

consider finite key effects [26] or imperfect sampling, in an

attempt to understand the theoretical behavior of the network.

Under this setting, the key-rate of the E91 [27] protocol, which

we adopt as the QKD protocol used in our network, is found to

be [28], [29]: rate = 1−2h(Q), where Q is the bit error rate

in the raw key and h(·) is the binary entropy function. Note

that, if we did not assume single-qubit sources and, instead,

weak coherent sources, we would need to use an alternative

key-rate expression or, perhaps, the decoy state BB84 protocol

[30]; these are interesting issues we leave as future work.

Point-to-point QKD systems are often implemented over

fiber channels (though free-space operation is also possible if

one has direct line of sight). One limitation to QKD protocols

is their intolerance to qubit loss [25], [31]; since loss over

a fiber channel scales exponentially with distance, this is

particularly problematic for ground operation. To overcome

this, one may use quantum repeaters [1], [2] and trusted nodes.

Both systems are placed between users, thus halving the total

distance a qubit is required to travel; furthermore, multiple

such nodes may be chained together thus further decreasing

the distance. Quantum repeaters utilize entanglement swapping

to produce a shared entangled bit between two users. Trusted

nodes act as users in a QKD protocol, establishing a key kAT

with Alice and a second, independent key, kTB with Bob. The

trusted node then sends to B (using an authenticated classical

channel) the value kAT ⊕kTB , where ⊕ is the bit-wise XOR.

This allows Alice and Bob to share a classical key, though the

trusted node also shares this key.

The advantage to quantum repeaters is that the final key

A and B produce is independent of the repeater’s knowl-

edge. That is, if a repeater is controlled by an adversary, it

cannot learn the final secret key. However, the technology

for repeaters requires short-term quantum memories which

is a difficult engineering challenge (though the technology

is rapidly advancing). Trusted nodes have the advantage of

simplicity as they are no different in technology than Alice

or Bob. However, they must remain trusted and safe from an

adversary as they do have full knowledge of the secret key.

B. Related Work

There has been recent research in analyzing routing pro-

tocols, along with the general behavior and performance,

of quantum networks consisting of end-users and quantum

repeaters, but no trusted nodes; see for instance [8]–[14], [16],

[17], [19], [20] with [16], [17], [19], [20] giving particular

focus on specific routing protocols for certain network topolo-

gies in generating shared entanglement between users, which

is a stronger resource than QKD. However, QKD is, currently,

a more practical and mature technology and, furthermore,

there are numerous methods of improving the performance

(speed and distance) of these systems that are unavailable

to entanglement generation networks, namely the use of

trusted nodes. Thus, while routing protocols designed for an

entanglement-generation quantum internet can be used also

for QKD, more efficient systems may exist and, furthermore,

solutions incorporating both trusted nodes and repeaters are

vital for near-term deployment of this technology and are the

networks we consider in this work.

Early work on QKD-specific networks focused on algo-

rithms for optical-based switching networks [32]. Such net-

works were used in practice, for instance the 2004 DARPA

network in the Boston area [3], [33] and the 2009 network

in Hefei [4], utilized such an architecture (the Hefei network

also utilized trusted nodes). These networks consisted of end-

users and optical switches allowing users to route qubits to

each other.

A more capable QKD network consists of end-users and

trusted nodes and is the most common of network architectures

for practical QKD networks in operation today such as the

SECOQC network in Vienna [5], the previously mentioned

Hefei network [4], the Tokyo QKD network [7] and the

Beijing-Shanghai network [6]. In terms of routing algorithms,

the Vienna network used a variant of the OSPF routing

algorithm [21]. In [34], required functionalities of a QKD

network routing algorithm were described for this form of

network and a routing protocol was proposed, while [23] began

constructing routing protocols for larger scale networks evalu-

ated through simulations. A novel quality of service model for

these networks, and new routing protocols, were introduced in

[35]. A complete QKD network stack for such networks was

proposed in [22], along with advanced routing functionalities

through trusted nodes taking into account channel performance

and key-rate demands, while in [36], a mathematical model

was proposed for analyzing such trusted-node QKD networks.

The severe limitation to trusted nodes is that, as their name

implies, they must be trusted. Indeed, a trusted node is fully

aware of the secret key which A and B distill (multi-path rout-

ing is one counter-measure to this, though still imperfect). An

advancement from this would be the use of quantum repeaters.

However, while the technology for these is advancing rapidly,

it is more likely that in the near-future, any QKD network will

consist of both repeaters and trusted nodes. Thus, developing

new and efficient routing algorithms specific for this network

technology, is vital. In this work, we consider networks that

consist of a majority of repeaters with a minority of trusted

nodes, attempting to discover optimal routing protocols for this

scenario and to understand the behavior of such a network.

Note that in [22], the use of quantum repeaters in a chain to

link together different trusted nodes was considered an option;
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here, however, we are considering more complex networks

of repeaters, allowing for potential multi-path routing options

between both trusted nodes and multiple repeaters.

II. MODEL AND SIMULATOR

In this work we consider a grid network consisting of

N × N nodes with each node connected to at most four

others, their immediate neighbors up, down, left, and right.

These connections represent fiber links allowing for the direct

transmission of qubits between neighboring nodes only. We

assume a classical communication network allowing any pair

of nodes to send classical messages. We do not assume this

communication is secret; however for all user and trusted node

communication we do assume it is authenticated. Each node

in this network may be either a User (Alice or Bob); a Trusted

Node; or a Quantum Repeater. We place Alice at the lower-

left corner of the network and Bob in the upper-right (thus,

these users have only two neighbors they are connected to).

Later, we will simulate alternative numbers and locations of

the trusted nodes; however, predominately the other nodes will

consist of quantum repeaters in contrast to current day QKD

networks.

Users and trusted nodes perform the E91 QKD protocol.

For notation, we assume there are n trusted nodes denoted

T1, . . . , Tn. We label Alice as T0 and Bob as Tn+1. For every

pair of users and trusted nodes there exists a private raw-key

pool; that is, for every i, j ∈ {0, · · · , n+1}, with i < j, there

exists a buffer RKi,j , storing the raw key shared between

nodes Ti and Tj . Note that repeaters do not have key buffers.

As we are using the entanglement based E91 protocol, the first

goal of the network is to establish joint entanglement between

these pairs of nodes Ti and Tj , ideally the Bell state |Φ+〉 =
1√
2
(|00〉 + |11〉). This resource may be used to establish a

secret key between users.

The quantum network we analyze operates in rounds, each

round consisting of three primary stages (see examples in

Figures 1 and 2). The first stage, and part of the second

stage, are standard in repeater-only quantum networks (see

[19], [20]). As mentioned, nodes have at most four inputs

into them (since the two users are at the corner of grid, they

each only have two inputs); we assume that nodes have the

capability of storing a single qubit in short-term memory for

each of these inputs, through one complete round. After the

round is complete, any qubits not measured, are discarded.

That is, the memory capabilities of nodes are not sufficient

to store a qubit through two or more rounds in our network.

Note that users in our network have the fewest demands on

quantum memory.

In the first stage, adjacent nodes attempt to share an entan-

gled pair, in particular the Bell state |Φ+〉, with one particle

remaining at a local node and the other being transmitted to an

adjacent node. Due to fiber loss, this succeeds with a certain

probability p = 10−αL/10 where α is the fiber attenuation

coefficient (we use α = .15 in our later simulations). Further-

more, even if successful, the entangled pair may not be a Bell

state |Φ+〉 but instead will, with probability D, depolarize and

become completely mixed. Ultimately, after this first stage,

adjacent nodes u and v will either not have any qubit in their

short-term memory (with probability 1−p) or, with probability

p, they will share a quantum state of the form:

ρu,v = (1−D) |Φ+〉 〈Φ+|+D · I
4
, (1)

where I is the identity operator on two qubits. Note this D may

be used to model channel noise along with noise internal to the

quantum memory of the repeater. As is standard in repeater-

network analyses [19], [20], we assume that nodes are able

to determine whether a qubit has arrived in their short-term

quantum memory or if it is a vacuum.

In the second stage, a routing protocol, to be discussed

(see Section III), is performed to decide how to effectively

route entanglement between nodes Ti and Tj for i �= j.

This routing protocol can take into account whether nodes

have a qubit in their short-term memory. The goal of this

stage, and in particular the routing algorithm, is to determine

a set of paths, the end-points of which are either users

or trusted nodes, while the interior nodes of each path are

quantum repeaters. Given these paths, the quantum repeaters

will perform entanglement swapping operations on the qubits

that are locally held in their short-term memory, which, if

successful, create “virtual” entangled links between the end-

points of each path. The entanglement swapping operations at

the repeaters, which themselves consist of Bell measurements,

succeed only with a certain probability that we denote as

B. We assume the network is able to determine whether a

successful entanglement swapping occurred or not. Thus, at

the end of this stage, end-nodes Ti and Tj on each path can

determine whether the network was successful in creating an

end-to-end path between these nodes. Note that they cannot

tell if the state they share is the correct Bell state |Φ+〉 or

the completely mixed state I/4 due to depolarization. At this

point, repeaters are no longer needed until the next round, and

users and trusted nodes share a state of the form in Equation

(2), where the probabilities of the mixed state depend on D
and the path length – in particular, on a path consisting of k
interior nodes, the shared state will either be:

ρTiTj = (1−D)k+1 |φ+〉 〈φ+|+ (1− [1−D]k+1) · I
4
, (2)

or a vacuum if one or more repeaters failed in their entangle-

ment swapping operation.

Finally, in the third stage, all pairs Ti and Tj of users and

trusted nodes which have a shared state, and not a vacuum,

attempt to distill a raw-key bit using the E91 QKD protocol. If

successful (which depends on users choosing the correct basis,

and as such it is successful with probability 1/2), the key-bit is

added to a local raw key-pool for those usersRKi,j . Any qubit

that was not measured by now is discarded and the network

repeats at stage 1, attempting to establish fresh entangled pairs

between adjacent nodes. Refer to Figures 1 and 2.

We wrote a custom simulator to simulate the behavior of

this network and these three stages. This simulator maintains

a raw-key pool RKi,j between each pair of users Ti and Tj
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A

T

B

(a) Initial network

A

T

B

(b) Stage 1

A

T

B

(c) Stage 2

Fig. 1. (a) The initial network of a 5× 5 grid, with a central trusted node (T ) between Alice (A) and Bob (B). (b) A possible network configuration after
stage 1, in which some nodes succeed in establishing a shared state of the form in Equation (1) with their neighbors over the fiber channels and some do not.
(c) Successful entanglement chaining and routing (depicted as the “internal links” at repeaters) as discussed in Stage 2. In this graph, routing has resulted in
end-to-end paths being created between each pair of A, B and T . These routes are successful only if every Bell state measurement along the path succeeds.
Furthermore, the probability of decoherence increases with the path length in our model as discussed; thus minimizing the path lengths through effective
routing algorithms and trusted nodes is advantageous. See also Figure 2.

(b)

(a)

(d)

T

(c)

T

A (e)
(f)

Fig. 2. A legend for our network diagrams. Left: (a) denotes a node in
the network, specifically a repeater with 4 (b) connection terminals from
which entangled photons are sent and received over (c) fiber optic connections
between other repeaters and (d) trusted nodes. Right: an entangled channel
(e) connecting multiple trusted nodes through intra-node entanglement (f).

as would be done in an actual operation of this network. In

practice, nodes Ti and Tj will, once the length of the raw key

in RKi,j is sufficiently large, perform error correction and pri-

vacy amplification, leading to a secret key of size |Ki,j |. In our

simulations, we are interested in the theoretical performance

of this network, and so we only do this process once at the

end of the simulation and set |Ki,j | = |RKi,j | · (1 − 2h(Q))
where Q is the error in the raw key pool RKi,j and where

h(x) = x log(x) − (1 − x) log(1 − x) is the binary entropy

function. Again, as we are only interested in theoretical

behavior, we compute Q based on the actual simulator data;

in practice Q may be estimated by sampling from RKi,j .

Of course, the ultimate goal of the network is to maximize

the secret key pool between Alice and Bob (i.e., T0 and Tn+1).

If n = 0 (i.e., there is no trusted node), at this point, we

are done. However for n ≥ 1, a final key-routing process

is required of the trusted nodes who must attempt to “push”

a maximal amount of key material to Alice and Bob. For

n = 1, this is trivial: T1 will simply broadcast K0,1 ⊕ K1,2

(here, T0 is Alice and T2 is Bob); if they are not of equal

length, then only the left-portion is broadcast. Alice and Bob

already have a secret key of size |K0,2| before this process.

Thus, finally, they end up with a secret key of total size

|K0,2|+min(|K0,1|, |K1,2|). When n > 1 the situation is more

complicated; in this work we use the max-flow algorithm to

determine how many additional bits are appended to K0,n+1.

Note that, at the end, not all key bits in trusted node pools may

be usable if there is an insufficient amount of key material in

“matching” nodes. Later, when we evaluate performance of our

routing protocols, we will look at the key-rate of the network,

namely the size of the final secret key between Alice and Bob

(after the trusted nodes perform this final key-routing process)

divided by the total number of network rounds.

III. ROUTING PROTOCOLS

In this section, we present three routing protocols that are

used to form end-to-end paths for the second stage in a round.

These end-to-end paths have either users or trusted nodes as

end nodes and have quantum repeaters as intermediary nodes.

We first present a high-level overview of these three protocols,

and then describe each in detail.

A. High-level Overview

The three routing protocols are designed to (i) find short

paths so that these paths can lead to higher chances of shared

state (see Equation (2)), and (ii) find as many paths as possible

to leverage the significant benefits of multipath routing over

single-path routing [12], [14] to lead to more key bits.

One of the three protocols relies on global link-state infor-

mation, i.e., each node has the full knowledge of the external

links in the network (i.e., the entanglement between pair of

nodes that were created successfully in the first stage in a

round). The other two protocols only require local link-state

information, i.e., a node only knows which neighbors it shares

a quantum state with and knows nothing beyond its neighbors.

The network topology (including the locations of the users

and the trusted nodes) is known for all protocols. With the

global knowledge, the global routing protocol is more likely to

find better paths than the local routing protocols. On the other
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T

B

A

T

B

(i)

(a) Global algorithm.

A

T

B

A

T

B

(i)

(b) Local algorithm: NIA

A

T

B

A

T

B

(i)

(c) Local algorithm: IA

Fig. 3. Illustration of the three routing algorithms, where A, B and T denote Alice, Bob, and a trusted node respectively; the distances from a node to A,
B and T are marked above the node. (a) The global routing algorithm finds three paths, between A and T , B and T , and A and B, respectively. (b) The
NIA algorithm finds two paths, one between A and T , and the other between B and T . The choice of the quantum repeater at location (i) cuts off a path
between A and B. (c) The IA algorithm finds three paths; the choice of the quantum repeater at location (i) allows forming a path between A and B.

hand, gathering global information incurs longer latency since

the link state information has to be propagated throughout the

network, while local link-state information is already available

at the end of the first stage, and thus incurs no additional

latency. As a result, the global routing protocol may only be

applicable to small networks, while the local routing protocols

can also be used in large networks.

Our routing protocols are inspired by work in [14], [19],

where the authors consider routing between a pair of end

users, without leveraging trusted nodes. We extend them to

the scenarios with trusted nodes. Of the two local routing

protocols we develop, one significantly outperforms the other

(see Section IV), which can also be applied to scenarios with

no trusted nodes in [19].

B. Global Routing Protocol

The global routing protocol selects the shortest path (in

hops) between any pair of nodes in {T0, T1, . . . , Tn+1}, where

T0 is Alice, Tn+1 is Bob, and T1, . . . , Tn are trusted nodes.

When two paths of equal length are found, one of them

is selected randomly. Then all the links along the path are

removed, and the procedure repeats for the remaining links

until no path can be found. Fig. 3(a) illustrates this algorithm.

In this example, there is only a single trusted node T in the

center of the network. The first shortest path found is the path

(of 4 hops) between Bob and the trusted node T . After the

links along this path are removed, the second shortest path (of

4 hops) found is the path between Alice and T . After that, a

path (of 8 hops) between Alice and Bob is found.

C. Local Routing Protocols

The two local routing protocols are closely related. In both

algorithms, each repeater makes its own decisions on forming

an “internal link” (i.e., performing entanglement swapping on

two qubits in its short-term memory). We next describe the

action at an arbitrary repeater u. For ease of exposition, we

assume there is only a single trusted node T in the network

(the description below can be extended easily to multiple

trusted nodes). Furthermore, without loss of generality, we

assume u has four neighbors, denoted as ua, ub, ul and ur,

corresponding to the nodes that are above, below, to the left

of, and to the right of u, respectively. Let DA(ua), DB(ua)
and DT (ua) denote the distance (in hops) from ua to Alice,

Bob and trusted node T , respectively. Similarly, define the

distances for u’s other neighbors. Since each node knows

the network topology, all the above distance values of u’s

neighbors are known to u, which are used in u’s decision

making. Specifically, in a given round, u checks how many

neighbors it shares quantum state with. If it shares quantum

state with fewer than two neighbors, then it does nothing

(i.e., no “internal link” can be created). If it shares quantum

state with exactly two neighbors, it simply connects these two

neighbors. Otherwise (i.e., it shares quantum state with more

than two neighbors), it connects the two neighbors that have

the shortest distances to two unique nodes including Alice,

Bob and the trusted node. Afterwards, if there still remain two

neighbors that u shares quantum state with (i.e., u established

a quantum state with all four of its neighbors), then u connects

these two remaining neighbors.

The two local routing algorithms only differ in how they

deal with ties. Specifically, if two potential sets of connections

are equal in distance, the first local algorithm breaks the tie

randomly, while the second algorithm favors horizontal or

vertical “internal links”, which has the effect of simplifying

the paths that are created, and limiting the number of times one

path utilizes a link that is integral to the formation of another

path (see example below). We refer to the first local routing

algorithm as Non-Intersection Avoidant (NIA) algorithm, while

we refer to the second one as Intersection Avoidant (IA)
algorithm. While these two algorithms only differ slightly,

our simulation results in Section IV demonstrate that the IA

algorithm can significantly outperform the NIA algorithm. In

fact, the performance of the IA algorithm approaches that of
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the global algorithm in some scenarios.

Fig. 3(b) illustrates the NIA algorithm. In the example, the

algorithm finds two paths, one between Alice and the trusted

node T , and the other between Bob and T . At location (i), the

repeater attempts to connect node A (which has a minimum

distance of 0 from Alice) with one of the other two neighbors,

which have equal distance to the trusted node T . The algorithm

selects one at random, which happens to be the neighbor to

its right. While this “internal link” becomes part of a path

from A to T , it has a negative impact in that it cuts off

any paths between Alice and Bob (or between Alice and T )

that go through the nodes above (i). The above problem does

not happen in the IA algorithm (see Fig. 3(c)), where the

repeater at location (i) connects the node above with node A,

leading to a vertical “internal link”, which becomes part of the

longer path leading to Bob while another path is established

to connect Alice with T . In summary, in this example the IA

algorithm is able to establish a path between Alice and T , Bob

and T , and a link between Alice and Bob, just as the global

algorithm does, while the NIA algorithm lacks the logic to

enforce this outcome. Our large-scale simulation in Section IV

demonstrates that the IA algorithm leads to statistically better

performance than the NIA algorithm.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of quantum key

distribution in quantum networks using the various routing al-

gorithms. We will compare the performance of the algorithms

in a number of settings and investigate the impact of various

parameters on the performance.

A. Evaluation Setup

We consider the scenarios where Alice and Bob are placed

at the two corners of an N ×N grid. The parameters related

to network topology include the size of the grid (N ) and

the length of the fiber channel of each edge (horizontal or

vertical) of the grid (L). The quality of the quantum network

is represented by the probability of a successful Bell state

measurement (BSM) at a repeater (B), and the probability

of decoherence (D, see Equation 2). Note that L is the

fiber length between neighboring two nodes. Since Alice and

Bob are at opposite corners of the entire grid network, the

actual distance, therefore, between the two users is actually√
2(N −1)L. Table I summarizes these parameters, with their

default values and range of the values.

The performance metric is key rate, i.e., the average number

of secret key-bits generated between Alice and Bob per round

of network use as discussed in Section II. Unless otherwise

stated, the number of rounds we simulate for each test and

for each setting is 106. We also evaluate the network’s per-

formance when there are no trusted nodes; a single trusted

node; and two trusted nodes, along with different location

configurations.

TABLE I
PARAMETERS EXPLORED IN PERFORMANCE EVALUATION.

Parameter Default Range Description
N 5 5 - 15 The network consists of N2

nodes arranged in an N×N grid.
L 1 km 1 - 20 km The length of the fiber connecting

neighboring nodes. The distance
between Alice and Bob scales
with both N and L.

B .85 0.65 - 1.00 Represents the quality of the re-
peaters. A Bell state measure-
ment succeeds at a repeater with
probability B.

D .02 0.00 - 0.06 Represents the amount of noise in
the channels. EPR pairs decohere
with probability D.
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(c) Impact of BSM success rate.
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(d) Impact of network size.

Fig. 4. Impact of various parameters on key rate when there is no trusted
node in the network (5 × 5 grid). Note, as discussed, “fiber length” L is
the length between nodes. Thus, the actual distance between the two users is
actually

√
2(N − 1)L.

B. No Trusted Nodes

We first investigate the scenario with no trusted node and

only repeaters. These results serve as baselines to demon-

strate the benefits of having trusted nodes in the network in

Sections IV-C and IV-D. Fig. 4(a) plots the key rate when

varying the fiber length, L, for a 5×5 grid. The results of the

three routing algorithms are plotted in the figure. As expected,

since increasing the fiber length leads to higher fiber loss, the

key rate decreases with L. The global routing algorithm, also

as expected, outperforms the two local algorithms. Between

the two local algorithms, the intersection-avoidance (IA) al-

gorithm significantly outperforms non-intersection-avoidance
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(NIA) algorithm, particularly for lower fiber lengths. The

difference between the global algorithm and IA algorithm

is small for short fiber length, and increases when the fiber

length increases, where having global knowledge allows the

algorithm to find paths, even when they are longer and more

complicated.

Fig. 4(b) plots key rate when increasing the decoherence

rate D. We again observe that the global routing algorithm

outperforms the two local algorithms, and the IA algorithm

significantly outperforms the NIA algorithm. As expected,

increasing the decoherence rate leads to lower key rates; the

decrease is particularly dramatic when increasing the decoher-

ence rate from 0 to 2%. As an example, for the global routing

algorithm, the key rate decreases from .3 key-bits/round to just

over .07 key-bits/round when increasing the decoherence rate

from 0 to 2%. We also note that, interestingly, while both the

global and IA algorithms achieve a key rate around .07 at 2%

decoherence, the NIA algorithms, under the ideal condition

of 0% decoherence, achieves the same key rate of .07 key-

bits/round. The drastic advantage of the IA algorithm over the

NIA algorithm highlights the importance of designing effective

local routing algorithms.

Fig. 4(c) plots key rate when varying B, the probability that

the Bell state measurement at a repeater succeeds. The relative

performance across the three routing algorithms is similar as

the above two scenarios. Of note, it is evident that increasing

the reliability of these measurements can lead to a significantly

improved key rate. At a 75% success rate, for example, the

global algorithm achieves just under .026 key-bits/second, but

an increase to 95% or even 100% success rates allows us to

achieve key rates of approximately .153 and .216 respectively.

Last, Fig. 4(d) demonstrates the impact of network size

N on key rate. Note that, by increasing N (the number

of nodes in the network) but keeping the horizontal/vertical

distance between two adjacent nodes fixed at 1 km, we are

effectively increasing the total distance between Alice and

Bob (they are at the two corners of the grid). For all the

routing algorithms, the key rate decreases when the network

size (i.e., total distance) increases. This is expected since, as

the network size increases, the path between Alice and Bob

becomes longer, and therefore the overall error (see Equation

2) and probability of a path failing increases, leading to lower

key rate. Of the three routing algorithms, the global algorithm

is less affected compared with the other two algorithms since

it is more capable of finding longer paths as the network size

increases than the two local algorithms.

We observe that, as the distance between the end users A
and B increases, even using quantum repeaters with perfect

internal performance (i.e., B = 1), the efficiency of the entire

network degrades rapidly (we shall discuss this further in in

Fig. 6). We show in the following sections how even a single

trusted node can dramatically improve the performance of

QKD, indicating that, even in the future as repeater technology

becomes more prevalent, trusted nodes may still be necessary

to ensure high key rate when the distance between end users

is significant.
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(c) Impact of BSM success rate.
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(d) Impact of network size.

Fig. 5. Impact of various parameters on key rate when there is one trusted
node in the network (5× 5 grid).

C. Single Trusted Node

We now consider the scenario where a single trusted node

is placed at the center of the network grid, and investigate

the impact of various parameters on key rate in this scenario.

Figures 5(a)-(d) plot the key rate when varying the fiber

length, decoherence rate, BSM success rate and network size,

respectively. The results show that, under all three routing

algorithms, having one trusted node leads to significantly

higher key rate than the same setting with no trusted node

(see Fig. 4). As an example, when there is no trusted node,

as shown in Fig. 4(a), the maximal key rate achieved for the

global algorithm was .07 key-bits/round, while it is .3 key-

bits/round, more than 3× higher, as shown in Fig. 5(a) when

there is one trusted node.

Comparing Fig. 5(a) and Fig. 4(a), we see that for the global

algorithm, when varying the fiber length from 1 to 15 km, the

key rates with one trusted node are .08-.25 higher than that

with no trusted node under the same setting, corresponding

to a 1.9-4.4× increase; the corresponding increases in key

rate for IA and NIA algorithms are 1.2-8.8× and 2.1 - 9.2×,

respectively. In fact, with one trusted node and in the same

setting, the NIA algorithm achieves greater key rates than

even the global algorithm could with no trusted nodes. This

is because the trusted node essentially reduces the “size” of

the network, allowing shorter paths to be constructed between

Alice/Bob and the trusted node, As the local algorithms have

information on a higher fraction of the total network for
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Fig. 6. (a) The capabilities of the network when operating in an idealized
scenario with no BSM failures (i.e. perfect repeaters) and 2% decoherence
probability. (b) The capabilities of the network with 5% decoherence proba-
bility and 85% BSM success probability.

smaller networks, this reduction in the effective size of the

network has a particularly strong effect on the local algorithms.

This trend is also exhibited in Figs. 5(b)-(d). Where, again

comparing with their counterparts in Fig. 4, we see that

the addition of a trusted node results in an almost two-fold

increase in maximum achievable key-rate for the cases of

decoherence, BSM success rate and network size.

In Fig. 6, we show the performance of the three algorithms

with no trusted nodes and one trusted node in two additional

channel scenarios: perfect BSM success probability with 2%

decoherence and 85% BSM success probability with 5%

decoherence. In Fig. 6(a), we see that even with the elimination

of BSM failures, as the length increases between nodes the

key rate still drops significantly. We see that even the NIA

algorithm with a central trusted node (TN) outperforms the

global algorithm with no TN, as the shorter paths between

the parties and the TN are simply more likely to exist than

the longer paths that must exist to connect Alice and Bob

in the no TN case. In Fig. 6(b) we consider a less idealized

scenario, in which the BSM probability is our default of 85%
and our decoherence rate is higher, at 5%. We see that for

this scenario, not even the global algorithm can achieve a

positive key rate for the no TN case (at least in 106 rounds

of the network), and that in general the key rates achieved

by the central TN is significantly lower (between 5 − 10×)

than was achieved with 2% decoherence in Fig. 5(a). It is

notable, however, that in Fig. 6(b) we see that using 1 TN,

each algorithm is able to maintain a positive key rate even

when there is a 5% decoherence rate, and Alice and Bob are

separated by 113 km (when L = 20 km, considering a 5× 5
network grid).

D. Multiple Trusted Nodes

We now consider having two trusted nodes in the network.

Specifically, we investigate three methods of placing these two

trusted nodes, referred to as corner, diagonal, and asymmetric
placements. In the corner placement, the two trusted nodes

are located at the two opposite corners of the graph (distinct

from Alice and Bob’s corners); in the diagonal placement,

the two trusted nodes are placed evenly along the diagonal

A C

C B

R

D

R D

Fig. 7. A 7 × 7 network with 3 different ways of placing the two trusted
nodes. The nodes labeled with A and B are Alice and Bob in each type of
placement; the two nodes labeled with C are the trusted nodes in the corner
placement; the two nodes labeled with D are the trusted nodes in the diagonal
placement; and the two nodes labeled with R are the two trusted nodes in the
asymmetric placement.

between Alice and Bob; in the asymmetric placement, one

trusted node is located in the center, while the other is located

one node along the diagonal closer to Alice. Fig. 7 illustrates

the above three types of placement for a 7× 7 grid (we use a

7× 7 instead of a 5× 5 grid as the diagonal placement only

performs optimally for grid size N = 3x+1 for some integer

x).

Figures 8(a) through (c) plot the key rate as the decoherence

rate increases for each of the above types of placement for

the global, IA and NIA routing algorithms, respectively. For

comparison, in each figure, the results with a single trusted

node placed in the center and no trusted node are also plotted

in the figure. We see that for the global routing algorithm (see

Fig. 8(a)), the diagonal placement outperforms the other four

cases (i.e., corner and asymmetric placement of two trusted

nodes, as well as no trusted node and placing a single trusted

node in the center) by a large margin.

The clustering of the non-diagonal configurations we at-

tribute to two separate reasons. First, consider that in the cen-

tral configuration, an optimal pathing results in two channels

connecting Alice to the trusted node, and two more connecting

the trusted node to Bob. Importantly, these channels will

consist of 6 edges each. In the corner configuration, an optimal

pathing results in one channel between Alice and each of

the two trusted nodes, and likewise from Bob to the trusted

nodes. Again, these channels will consist of 6 edges each. As

a result, at least in the global case, the likelihood that these

paths exist, that the channels are successfully established and

that the entanglement remains coherent are all equivalent. It

stands to reason then, and the data reflects that reasoning,

that the corner configuration and the central configuration are

equivalent, in terms of performance. In the other case, it is

the asymmetry that causes the equality. Although the second

trusted node does result in Alice and the central trusted node

sharing a larger key, the central trusted node and Bob establish

no more key-bits than if the second trusted node did not exist.
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Fig. 8. Key rate versus the decoherence rate for the three routing algorithms in a 7× 7 grid with L = 1 km and B = .85. We consider the No TN case,
the Central TN case, and the 2 TN cases in which there are two trusted nodes in the network, following corner, diagonal or asymmetric placements.
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Fig. 9. Key rate versus the network size for the global and IA routing
algorithms for a 10 km × 10 km network grid where the fiber length between
each node decreases as the network size increases. Notably, we see some non-
monotonicity as the diagonal configuration does not operate effectively at grid
sizes that are not of the form 3x+1 for some integer x, and the central case
does not operate effectively at even grid sizes such as 10x10.
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Fig. 10. Key rate versus the BSM Success rate for the global and IA routing
algorithms in a 7 × 7 grid with L = 1 km and D = .02. We consider the
no TN case, the central TN case, and the 2 TN cases in which there are
two trusted nodes in the network, following corner, diagonal or asymmetric
placements.

As a result, in the final routing of key material, the overall

capacity between Alice and Bob remains unchanged, and so

the additional key-bits that Alice and the trusted node were

able to establish go unused. Finally, the over-performance of

the diagonal configuration is a result, as one would expect,

from the further segmentation of the 7 × 7 network into 3

distinct sub-networks: between Alice and the first trusted node;

the first and second trusted nodes; and finally the second

trusted node and Bob. As shown in the figure, this additional

trusted node can increase our key rate by almost a factor of

1.5 over the central trusted node configuration.

We repeat the above investigation for the IA algorithm

(see Fig. 8(b)). Again, we see that the diagonal placement

outperforms the others, and that the performance of the corner

placement of two trusted nodes is very similar to that when

placing a single trusted node in the center. We also see,

however, that the redundant trusted node in the asymmetric

case results in a large detriment to the key rate, dropping it

almost a full .3 key-bits/round. This is likely due to the greedy

nature of the routing algorithm – having an additional node

complicates the decision process of the repeaters near both

trusted nodes, potentially wasting edges that otherwise could

have been utilized in a more effective manner.

The differences in the performance of the different types

of placement are even more dramatic for the NIA algorithm

in Fig. 8(c). For each configuration we see a significant

drop in performance, except for the corner placement, which

remains relatively consistent with its performance in the other

algorithms. This difference can be explained by the fact

that that the NIA algorithm does not generally struggle with

intersecting paths in the corner case, as the optimal paths

themselves tend not to contain many right angles. The effect

of this is so great, in fact, that at lower error rates the corner

configuration in fact outperforms the diagonal configuration,

until the shorter hop-length of the channels in the diagonal

configuration becomes the dominating factor in determining

key rate.

As physical distance between Alice and Bob increases,

one might think that there is benefit to be had by adding

additional repeaters and decreasing the distance between nodes

themselves. We investigate whether or not this is feasible in

Fig. 9 in which the physical distance the network spans is

fixed at 10 km × 10 km, while the number of nodes in the
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grid is increased (this is in contrast to our other simulations

where the total width of the network was not fixed, but instead,

the length and width are both (N − 1) · L km). What we see

is that the tendency for BSM failure chance and decoherence

probability to increase as path sizes increase puts a damper on

any benefit that can be achieved through this method. In some

scenarios it is likely that there are trade-offs that can be made,

depending on the target distance between Alice and Bob,

BSM success probabilities, and decoherence probabilities, but

evidently there are limitations inherent to trying to augment

the key rate using this method.

It is clear, however, that this limitation can be alleviated

in part by the addition of trusted nodes. As can be seen in

Fig. 9, while the key rate of each configuration decreases as

the size increases, even as the fiber length decreases, additional

trusted nodes remain effective in boosting the key rate. As a

result, it is still possible to increase network size to alleviate

fiber length concerns, as long as the number of trusted nodes

is also increased. Additionally, Fig. 9 showcases the way in

which non-optimal grid sizes affect key rate for the different

TN configurations. Namely, we see that the key rate of the

diagonal configuration actually increases between N = 5 and

N = 7, or N = 9 and N = 10, as we move from grid sizes

not of the form 3x + 1 to grid sizes of that form. We see

the same for the central configuration at the even grid size of

N = 10, where the node is placed slightly off center, and as

such actually increases at N = 11.

Finally, in Fig. 10 we consider the performance of the

global and IA algorithms on a number of TN configurations

as the BSM success probability increases. Again, we see that

the general trend is the same between the global and IA

algorithms, with the global algorithm outperforming the IA

algorithm in each configuration, and especially the asymmetric

case. In the diagonal configuration, with perfect quantum

repeaters (i.e. B = 1), both are able to achieve a key rate

of more than .45 key-bits/round with 2 TN in the diagonal

configuration, and with 1 TN in the center, the IA algorithm

and global algorithms achieve key rates of .3 and .33 key-

bits/round, respectively. The above results are notable, because

they give some sense of the trends we might expect to see as

quantum repeater technology advances. They also show the

great benefit to using trusted nodes, even with perfect, ideal,

repeaters.

V. SUMMARY AND INSIGHTS

The data suggests a number of interesting lessons regarding

this sort of QKD network. Most glaringly, it is immediately

evident that the addition of even a single trusted node into a

network can greatly increase what key rates are achievable,

even with ideal repeater technology. Further, we see that a

small adjustment to the natural local routing algorithm, in the

form of a tendency to avoid intersection of paths, can lead to

increases in key rate comparable to, or even exceeding, that of

the addition of a single trusted node, with a negligible increase

in complexity. As we have seen, this increase in key rates

generalizes to multiple trusted nodes, on larger grids, but there

is some consideration that must be given to the placement of

the additional trusted nodes. Indeed, a non-optimal placement

of trusted nodes can in fact hinder the operation of the network,

especially for the local algorithms.
The data further suggests some lessons regarding the lim-

itations of such a network. We see that while fiber length

plays an important role in determining key rate, it is the

BSM success probability and the decoherence rate that are

seemingly the largest obstacles to achieving a higher key rate.

This relationship is no more evident than in Fig. 9, where we

see that these factors play an important role in limiting the total

distance the network can cover, as they make it infeasible to

mitigate the effects of fiber length by simply adding additional

nodes to the network. In fact doing so can actually decrease

key rates, if not counterbalanced with the addition of trusted

nodes.
Finally, our analysis makes clear the important role trusted

nodes will still have to play after quantum repeater networks

become practical, or even perfect. As was shown in Fig. 10,

even with perfect quantum repeaters, the addition of trusted

nodes can result in positive and significant key rates being

achieved where they were otherwise not possible. Trusted

nodes can be used in the networks to facilitate the establish-

ment of efficient QKD networks reaching along far distances

consisting of many nodes. In fact, one can even conceive of

network models in which the trusted nodes also operate as part

of a multi-party QKD system.

VI. CONCLUSION

In this work we have proposed a novel model for analyzing

the performance of quantum repeater QKD grid networks with

the inclusion of a minority of trusted nodes. We proposed

three routing algorithms, and evaluate the performance of the

E91 QKD protocol when using them for a variety of channel

and network configurations. We discuss general lessons that

can be drawn from our results, including the importance

of not only the inclusion of trusted nodes, but also their

placement, and some general limitations inherent to working

with such networks. Note that our approach can also be used

to determine network resources needed to achieve desired

rates between users at given distances or with given repeater

quality. Our work in this paper can serve as a baseline for

future exploration of this area, and we leave open as future

work issues such as the development of better local and

global algorithms; analysis of mutli-party networks of this

form; analysis of more complicated, potentially asymmetric

networks; analytic results regarding the capabilities of these

networks; the possibility of embedding Alice and Bob as part

of a larger network, rather than at the corners; as well as the

extension of this analysis to additional QKD protocols.
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