Experience with an Interdisciplinary Competition-
based Cybertraining Workshop

Bing Wang, Suining He, Chuanrong Zhang, Abdul-Wassay Queeshi,
Weidong Li, Sanguthevar Rajasekaran, Wei Wei, Elizabeth Howard

School of Computing
Department of Geography
School of Education

UCONNI | connecTicor



Introduction to Cyberinfrastructure (Cl)

- Cl includes computing systems, data, software, visualization, and
people

» Supports data-driven research and scientific discovery
* €.9., Satellite imagery, loT sensors, GPS data from smartphones
- Challenge

- Education and workforce development lag behind Cl’s
Importance



Workshop Motivation

» Growing need for Cl skills in research and industry

* Limited training in handling large-scale spatio-temporal data

« Goal

* Train students to use CI for research and develop innovative
applications

* Approach

* Interdisciplinary, competition-based workshop to foster skills and
collaboration



Workshop Overview

- 2 weeks, Spring 2024 | Zx —
- Participants: 10 students ’ N ;v'--'»':*f‘j{\ woa—
* 5 undergrad, 5 grad
- from CSE and Geography
* 4 Iinterdisciplinary teams
» 2—-4 students each
* Theme

- Efficient management of
bike-sharing systems

» Using NYC Citi Bike data




Interdisciplinary Design

* Why Interdisciplinary?

» Cl projects require diverse expertise
- CSE Students

- Skilled in computing, machine learning

* Limited spatio-temporal data experience
- Geography Students

* Proficient in spatial analysis

- Limited computing infrastructure knowledge

- Goal: Foster collaboration to leverage complementary skills



Competition-based Format

- Why Competition?

- Stimulates interest, enhances learning (Burguillo, 2010)
* Benefits

* Encourages critical thinking, teamwork, and innovation
- Mitigating Negatives

» Team-based competition reduces stress, focuses on
collaboration

» Judging Criteria

 Technical merit (40%)

» Team collaboration (40%)

* Presentation quality (20%)



Workshop Problem: Bike-Sharing Systems

* Predict bike flow (pick-ups/returns) for efficient bike-sharing
management

» Supports urban mobility, reduces rebalancing costs

- Challenges

» Spatial and temporal variations, influenced by urban layout,
weather, etc.

 Task
* Analyze spatio-temporal data, develop predictive models



Dataset Description

- Source: NYC Citi Bike Dataset (Oct 2019)
- Data Types

- Raw data (.csv): Bike stations, trips, rider info

* Processed data (.h5): Spatio-temporal tensor (16x8 grid, 30-min
intervals)

* Additional Data

- Teams encouraged to use external datasets (e.g., crime rates,
bike lanes)
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Data: #

of pick-ups by start stations and grid cell
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Data: # of returns by stop stations and grid cells
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Workshop Activities

 Tasks

* Process

* Find/download relevant data

- Perform spatio-temporal analysis (e.g., GIS visualizations)

» Develop machine learning models for bike flow prediction

» Teams collaborated on open-ended research, presented results
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Training and Support

* Materials Provided

» Reference papers (CSE and Geography)

» Tutorial on data analysis

» Guidelines for interdisciplinary collaboration
» Coaching

» Two sessions per team (week 1: planning, week 2: feedback)
* Purpose

» Support students in research and teamwork

12



Spatio-Temporal Analysis

* Tools
» ArcGIS for visualization (heat maps, flow maps, space-time ‘
cubes) ArcGIS
* Analyses

- Spatial: Identified high-demand areas, popular routes

- Temporal: Analyzed usage patterns (daily, weekly)

* Network: Evaluated connectivity, integration with public transit
* FIndings

* Insights on user demographics, accessibility gaps
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Spatial Data From Student Team

- Bike Station (raw data)
 Count within each cell
- Bike lane (NYDOT)
- Total length within each cell
- Traffic volume (NYDOT)

« AADT, average speed, and
speed limit

- Mean value within each cell
- Population (NHGIS)

* Population

 Derived population density

 Mean value within each cell
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Machine Learning Predictions

* Approach
- Teams developed models (LSTM, GRU, dense layers) TensorFlow
» Ablation studies to assess feature impacts

* Features
* Incorporated population density, weather, bike lane data, ...

* Evaluation Metrics

» Mean Square Error (MSE) on four weeks of test data
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Survey Results (Post-Workshop)

» Overall Experience: 7/9 rated “excellent,” 2/9 “good”
- Content: 8/9 “excellent,” 1/9 “good”

- Teamwork: Mixed (2 fair/good, 7 excellent)
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Survey Results (Pre vs Post Workshop)

* Improvements:
» Cl Understanding:

» All moderate/high,
shifted higher

* Interdisciplinary Interest:

* All reported “high”
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Team Project Highlights

* Visualizations
- 2D/3D maps, web-based dashboards
* Innovations
» Crime rate clustering, multi-scale analysis
* FIndings:
* Primary user age groups, trip characteristics
- Unsafe station locations, bike lane impacts rilgerce
* Interdisciplinary Insight

» GeoAl benefits (Al + spatial context)




Interdisciplinary Collaboration

* Participants valued learning from diverse teammates

n-person meetings enhanced idea exchange

ncreased interest in interdisciplinary work (survey results)

-ound limited time for team coordination
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L essons Learned

» Successes

- Competition format engaged students

* Interdisciplinary teams fostered learning

» Undergraduates excelled in research tasks
- Challenges

» Short duration limited exploration

 _ate team formation hindered collaboration
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Recommendations

* Extend Duration
» 3-4 weeks for deeper research

* Earlier Team Formation

» Allow more time for bonding
- Sustained Collaboration

* Link to independent studies, REU programs
- Scale Up

- Validate with larger cohorts, explore new teaming strategies
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Future Directions

* Long-Term Impact
- Encourage post-workshop projects (e.g., publications)
- Broader Reach
* Expand to more students, disciplines
* Research for Undergrads
* Integrate into curricula or research programs
* Evaluation

- Conduct more workshops to refine approach
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Conclusion

 Organized workshop that successfully trained students in Cl and
iInterdisciplinary collaboration

* Exceeded expectations with innovative projects
* Participants provided positive feedback
- Takeaways
- Competition-based format is effective for Cl education

» Interdisciplinary collaboration stimulated interests in future
interdisciplinary work

* Apply lessons to future workshops for broader impact
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