Introduction to Traffic Modeling & Prediction

Suining He

Department of Computer Science and Engineering University of Connecticut suining.he@uconn.edu

Overview

- Smart transportation
- Traffic Prediction Modeling
- Case Studies: Ride Sharing

Smart Transportation

Cutting Edge Issues & Players

- Issues:
 - Cooperative vehicle-highway systems
 - Ride sharing
 - Multi-modal transportation
- Smart transportation system
 - Smart vehicles
 - Smart infrastructures
 - Smart travelers

Traffic Prediction Modeling

Mobility Data Collection

6

- Road infrastructures
 - Loop detectors, traffic cameras, radars
 - Electronic Toll Collection (ETC)
 - Sparse coverage
- Ubiquitous sensing and intelligent transportation systems
 - Mobile devices with GPS enabled
 - Automatic fare collection (subways/buses/taxis)

Other Data Sources

- Accident reports
- Social networking
- Cellphone data
- Crowdsourcing system

Problems in Traffic Prediction

Category	Involved data sources	Desired output
Traffic speed prediction	Infrastructures, GPS-equipped vehicles	Average traffic speed (or congestion level)
Traffic flow prediction	Infrastructures, AFC systems	Total number of objects pass- ing through a road/region
Traffic accident risk prediction	Infrastructures, AFC systems, social media data, historical accident reports	Accident risk probability for each road/region

Liu, Zhidan, et al. "Urban traffic prediction from mobility data using deep learning." *IEEE Network* 32.4 (2018): 40-46.

Traffic Speed Prediction

- General definition:
 - Average travelling speed of all sampling vehicles on a given road segment
 - Fine-grained
- Input:
 - Loop detectors and cameras
 - GPS-equipped vehicles
- Output:
 - Future traffic speeds
 - Congestion levels (slow, normal and fast)

Image-based Traffic Forecasting

- Model traffic speeds in different locations as a matrix
- Apply convolution to model the spatio-temporal dependency

Graph-based Traffic Prediction

- Spatial dependency: diffusion convolution on graph
- Temporal dependency: augmented recurrent neural network

Traffic Flow Prediction

- General definition:
 - Total number of target objects (vehicles or humans) that pass through an area during a period
 - Coarse-grained (in/out-flows)
- Input:
 - Flows through an area (a road segment or a region)
 - Mobility data from infrastructures and AFC systems
- Output:
 - Movements of crowds
 - Traffic distributions

Traffic Accident Risk Prediction

- General definition:
 - How likely traffic accidents might occur on a road/region
 - Fine/coarse-grained
- Input:
 - Mobility data (current traffic conditions and human mobility)
 - Historical accident reports
- Output:
 - Likelihood of traffic accidents

Case Studies: Ride Sharing

- Using personal automobiles wisely
 - Environment, gasoline, traffic
 - Congestions: \$78 billion waste in 2007 in US
- Low private car occupancy rates

Figure 7. Carsharing feasibility, New York metropolitan area

Ride Sharing Business Models

- 1600s: Taxi industry
- 1891: Invention of taximeter
- 1970s: Carpooling
- 2000s: Carsharing
- 2010s: Peer-to-peer ride sharing

Estimated Time of Arrival (ETA)

- Essential for ride sharing
 - Route planning, order dispatching, pricing
- General approach:
 - Based on the speed by which it has covered the distance traveled so far
- Designs
 - How to measure spee
 - Given input locations
 - Unexpected events
 - Dynamic

ETA Models

- Additive models
 - Rule-based additive models: explicitly modeling the segments in a path
 - Aggregating the time of sub-paths
 - ML models for the sub-path problem
- Global models:
 - Formulating ETA as a regression problem: Learning to estimate the travel times
 - Simple regression model and deep learning
- Path-free models (if path is not available)

Simple Additive Model

- Simple rules based on physical structure of road network
- Popular solution in digital map industry
- Challenges: precise speed estimation and error accumulation

Aggregating Sub-paths

 $\mathcal{N}(\mathbf{q}) = \{\mathbf{p}_i \in \mathcal{D} | dist(o_i, o_q) \le \tau \text{ and } dist(d_i, d_q) \le \tau\},\$

- The path can be decomposed into sub-paths
- Time of each sub-path is inferred from the history
- ETA: summation

Time Series Prediction

- Regression (like support vector regression)
- Deep learning: recurrent neural network

Probabilistic ETA

- Output a distribution of ETA
- Variance of travel time
- Gaussian distribution for link travel time

Learning to Estimate Travel Time

- Big data + machine learning
 - High accuracy
 - Data-driven

Comprehensive Modeling

Wide-Deep-Recurrent Network

- Wide: dense features (road network/traffic)
- Deep: sparse features (personalized/orders)
- Recurrent: sequential features (time-related)

Learning to Estimate the Travel Time, KDD 2018

Spatio-Temporal Data Mining

Summary

- Smart transportation
- Traffic Prediction Modeling
- Case Studies: Ride sharing