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Overview

* Smart transportation

e Traffic Prediction
Modeling

e Case Studies: Ride
Sharing
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Cutting Edge Issues & Players

* |ssues:
e Cooperative vehicle-highway systems
* Ride sharing
* Multi-modal transportation

* Smart transportation system
* Smart vehicles
* Smart infrastructures
* Smart travelers



Traffic Prediction Modeling
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e Road infrastructures

* Loop detectors, traffic cameras, radars
* Electronic Toll Collection (ETC)
* Sparse coverage

* Ubiquitous sensing and intelligent transportation
systems
* Mobile devices with GPS enabled
. Automatlc fare coIIectlon (subways/buses/taX|s)

1 !
e
’

éﬁ/ f"r :‘: # .
Mobility Data Collection 2= =%



Other Data Sources

* Accident reports
* Social networking
* Cellphone data

e Crowdsourcing system
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Problems in Traffic Prediction

Category Involved data sources Desired output

Average traffic speed (or

Traffic speed prediction Infrastructures, GPS-equipped vehicles congestion level)

Traffic flow prediction Infrastructures, AFC systems VS T S E e s

Ing through a road/region
Traffic accident risk Infrastructures, AFC systems, social Accident risk probability for
prediction media data, historical accident reports each road/region

Liu, Zhidan, et al. "Urban traffic prediction from mobility data using deep learning." IEEE Network 32.4 (2018): 40-46.
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Traffic Speed Prediction

 General definition:

* Average travelling speed of all sampling vehicles on a
given road segment

* Fine-grained
* Input:
* Loop detectors and cameras
* GPS-equipped vehicles
* Output:
* Future traffic speeds
e Congestion levels (slow, normal and fast)



Image-based Traffic Forecasting
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* Model traffic speeds in different locations as a
matrix
* Apply convolution to model the spatio-temporal

dependency
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Graph-based Traffic Prediction
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* Spatial dependency: diffusion convolution on graph

 Temporal dependency: augmented recurrent neural network
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Traffic Flow Prediction

 General definition:

* Total number of target objects (vehicles or humans) that
pass through an area during a period

* Coarse-grained (in/out-flows)
* Input:
* Flows through an area (a road segment or a region)
* Mobility data from infrastructures and AFC systems
* Output:
* Movements of crowds
 Traffic distributions



Traffic Accident Risk Prediction

* General definition:
* How likely traffic accidents might occur on a road/region
* Fine/coarse-grained

* Input:

* Mobility data (current traffic conditions and human
mobility)

e Historical accident reports
* Output:
* Likelihood of traffic accidents



Case Studies: Ride Sharing

Figure 7. Carsharing feasibility, New York metropolitan area

e Using personal
automobiles : 7
wisely

* Environment, ; : |
gasoline, traffic

» Congestions: S78
billion waste in
2007 in US

* Low private car
occupancy rates

Feasible carsharing areas
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Ride Sharing Business Models

* 1600s: Taxi industry

e 1891: Invention of
taximeter

e 1970s: Carpooling
e 2000s: Carsharing

* 2010s: Peer-to-peer
ride sharing

Shared Mobility Service Models

P Bikesharing
P Carsharing
P Courier Network Servic

» Car Rental
P Liveries/Limos

. » Carpool > e-Hail
B Para.tra nsit » Vanpool b High-Tech Company Shi
- Pedn.cabs - » Casual » Microtransit
» Public Transit Carpool - B o pop Bikesharing
» Shuttles

P P2P Vehicle Sharing
P Ridesourcing/TNCs
P Scooter Sharing

P Taxis

Innovative
Services

Core and Incumbent
Services
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Estimated Time of Arrival (ETA)

 Essential for ride sharing
* Route planning, order dispatching, pricing

* General approach:

* Based on the speed by which it has covered the
distance traveled so far

* Designs
* How to measure spee
e Given input locations
* Unexpected events
* Dynamic

Suining He -- University of Con&cticut
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ETA Models

e Additive models

* Rule-based additive models: explicitly modeling the
segments in a path

e Aggregating the time of sub-paths
* ML models for the sub-path problem

* Global models:

* Formulating ETA as a regression problem: Learning to
estimate the travel times

* Simple regression model and deep learning

* Path-free models (if path is not available)



Simple Additive Model
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e Simple rules based on physical structure of road network
* Popular solution in digital map industry

* Challenges: precise speed estimation and error
accumulation
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Aggregating Sub-paths
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* The path can be decomposed into sub-paths
* Time of each sub-path is inferred from the history
* ETA: summation
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Time Series Prediction

» Regression (like support vector regression)
e Deep learning: recurrent neural network
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Probabilistic ETA

e Qutput a distribution of ETA
e Variance of travel time
e Gaussian distribution for link travel time
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Learning to Estimate Travel Time

* Big data + machine learning
* High accuracy

* Data-driven

* Robustness Machine learning »
nodel service
-

Static/dynamic feature
Dense feature
Sparse feature
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Comprehensive Modeling
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Wide-Deep-Recurrent Network
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* Wide: dense features (road network/traffic)
* Deep: sparse features (personalized/orders)
* Recurrent: sequential features (time-related)

Learning to Estimate the Travel Time, KDD 2018
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Spatio-Temporal Data Mining
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Summary

* Smart transportation
* Traffic Prediction Modeling
* Case Studies: Ride sharing



